
ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Remote Monitoring of Industrial Waste

19

Abstract

Conventional industrial monitoring systems
are tedious, inefficient and the at times integrity
of the data is unreliable. The objective of this
system is to monitor industrial processes
specifically the fluid level which will measure
the instantaneous fluid level parameter and
respond by text messaging the exact value of
the parameter to the user when being enquired
by a privileged access user. The development
of the embedded program code and the circuit
for fluid level measuring are discussed as well.
Suggestions for future implementations and
efficient remote monitoring works are included.

Keywords: Industrial monitoring system, text
messaging, embedded programming.

I.	 INTRODUCTION

Monitoring on industrial waste water
discharge had been implemented across
the country since decades but is usually
confine to site. Monitoring and controlling
industrial process maybe a tedious task
where a person must be employed on
site in order to monitor an industrial
process which is a waste of money and
time should there be no problem on site.
Environmental Quality Act, 1974 and
the Environmental Quality (Sewage and
Industrial Effluents) Regulations, 1979 [1],
requires all industries with known point
source of waste water discharge to install,
monitor and report flow measurement of
wastewater discharges from an industrial
outlet.

Such method of monitoring is a time-
consuming task, inefficient, subjected to
fraudulence and centralize monitoring

Remote Monitoring of Industrial Waste

Khairuddin bin Osman, Ngo Boon Kiat@Desmond Ngo,
A. Hamid bin hamidon, Khairul Azha bin A. Aziz,

Hazli Rafis bin abdul Rahman, Mazran bin Esro

Faculty of Electronic Engineering and Computer Engineering, Universiti
Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal,

Melaka, Malaysia

khairuddin.osman@utem.edu.my
is almost impossible at times due to the
site locality and limited resources of
personnel present. Higher officials are
unable to acquire first hand data but
rather have to go through numerous
unreliable intermediate channels.

II.	L ITERATURE REVIEW

A.	E mbedded Systems and
Computing

In November 2005, Andrew David Moss
[2] developed a program transformation
tools in the analysis and compilation of
programs for embedded systems to aid
the programmer in understanding and
controlling the effects towards software
precision and timing and therefore
reduces the complexity of the problem.

With the advent of system level integration
(SLI)—the next level of integration
beyond Very Large System Integration
(VLSI)—and system-on-chip (SOC)
capabilities, the computer industry’s
focus is shifting from personal to
embedded computing. The opportunities,
needs, and constraints of this emerging
trend will lead to significantly different
computer architectures at both the
system and processor levels as well as a
rich diversity of off-the-shelf (OTS) and
custom designs.

Driven by the accelerated pace of
semiconductor integration during the
past three decades, the computer industry
has steadily moved from mainframes and
minicomputers to workstations and PCs.

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

20

In accordance with a corollary of Moore’s
law, computing power becomes half as
expensive every 18 to 24 months. Over a
decade, this reduces the cost by a factor of
30 to 100, making computing affordable
to an exponentially larger number of
users and dramatically changing the key
applications of this computing power.
Manufacturers have for several years
incorporated embedded computers in
so-called smart products such as video
games, DVD players, televisions, printers,
scanners, cellular phones, and robotic
vacuum cleaners. Using embedded
computers in devices that previously
relied on analog circuitry such as digital
cameras, digital camcorders, digital
personal recorders, internet radios, and
internet telephones provides revolutionary
performance and functionality that
analog designs could not achieve [3].
Any computer architecture must balance
the latest technological opportunities
with product, market, and application
requirements that together determine
three important features of embedded
computing architecture: specialization,
customization, and automation.
Specialization increases the performance
and reduces the manufacturing cost
of embedded computer systems.
Customization permits specialization
when no adequately specialized OTS
product is available. Automation
reduces the design costs incurred by
customization.

B.	 Teltonika T-Box N12R

T-BoxN12R was designed for M2M
(machine-to-machine) applications or
other wireless solutions. Integrated
Nokia 12 GSM module enables flexible
wireless communication over GSM
network connecting external hardware
(controllers for Real-Time operation)
to RS-232 interface. All these features
enable to use T-BoxN12R in wide range of
applications.

Fig. 1: Teltonika T-BoxN12R

It is an open architecture device, which is fully

programmable, the device can be adapted to our own
needs by programming or writing your own JAVA IMlet.
The GSM module has up to 7 digital inputs, up to 8
digital outputs, 3 analog inputs and 2 usable RS232 ports,
which could be used for performing tasks on remote
objects, such as monitoring air or water temperature,
humidity, or switching lamps, motors etc.

C. Principles of Ultrasonic sensors

Ultrasonic sensors transmit ultrasonic waves from its
sensor head and receive ultrasonic waves reflected back
from an object, therefore an ultrasonic sensor generally
would involve the use of a transmitter and a receiver.

By measuring the length of time from the
transmission to reception of the sonic wave, it measures
the distance of the object as shown in Figure 2.

Fig. 2: Diagram of calculating the length L of the distance
from the transmitted and received wave.

III. METHODOLOGY

A. Wireless Messaging API
The Wireless Messaging API was used to send and

receive short messages. The Wireless Messaging API
specification was obtained at
http://jcp.org/aboutJAVA/communityprocess/final/jsr120/
index2.html and the JAVAdocs are available at
http://JAVA.sun.com/products/wma/.

The application would first obtain an instance of the
MessageConnection through the Connector class. The
URL was then passed to the
JAVAx.microedition.io.Connector.open() method that
identifies the protocol to be used (SMS), the phone
number and/or port of the target. Valid URLs are as
follows:
1) sms://+0123xxxx
2) sms://+0123xxxx:5678
3) sms://:5678

B. Openning a connection
As in any communication that uses IMlets, the time

period from starting the Nokia 12 module to registering
into the network can vary in different networks. Another
way to wait for the network registration is simply to try
and open a connection, catch the raised exception, and try
again until the connection succeeds.

C. Sending a Text Message

To send a message, the
MessageConnection.newMessage() method was used to
create an empty message, set its payload (text or binary
data to be sent), and then the MessageConnection.send()
method was invoked.

D. Receiving a Text Message

There are two methods in receiving a text message.
Either incoming messages are channeled through a
receiving port that listens to incoming text messages
using the Wireless Messaging API, or the device can read
the received message from the SIM card and then deletes
it after reading it using the Embedded Terminal Module.

1) Using the Wireless Messaging API

The server connection must be opened with the port
number, but without the phone number. After opening
the connection, the MessageConnection.receive()
method is called. This returns the next available
message to the specified port. If there is no message
available, the method blocks until a message arrives
or a different thread closes the connection.

2) Using the Embedded Terminal Module

The previous method of receiving messages via port
number will set a limitation for the amount of SMS
received and would not be efficient as it receives
messages by listening through a port number for
incoming text messages. Since local Malaysian
telecommunication networks do not disclose the port
number being used for subscribers to receive text
messages, the Wireless Messaging API method
cannot be used.

Another alternative method can be used rather than to

receive incoming text messages through a port number,
the Embedded Terminal or (ET Module) shall be used
from the package
com.nokia.m2m.orb.idl.terminal.ETPackage. This
method reads the latest received text message from the
SIM card and then deletes it after the instruction has been
executed

E. I/O Control

Some of the methods are only supported by the real
Nokia 12 GSM module, not by the Nokia 12 IMP 1.0
Concept Simulator. Methods not supported by the Nokia
12 IMP 1.0 Concept Simulator are defined in this
interface for compatibility but they will not implement
any functionality.

Fig. 1: Teltonika T-BoxN12R

It is an open architecture device, which
is fully programmable, the device
can be adapted to our own needs by
programming or writing your own JAVA
IMlet. The GSM module has up to 7
digital inputs, up to 8 digital outputs, 3
analog inputs and 2 usable RS232 ports,
which could be used for performing tasks
on remote objects, such as monitoring
air or water temperature, humidity, or
switching lamps, motors etc.

C.	 Principles of Ultrasonic sensors

Ultrasonic sensors transmit ultrasonic
waves from its sensor head and receive
ultrasonic waves reflected back from
an object, therefore an ultrasonic sensor
generally would involve the use of a
transmitter and a receiver.

By measuring the length of time from
the transmission to reception of the sonic
wave, it measures the distance of the
object as shown in Figure 2.

Fig. 1: Teltonika T-BoxN12R

It is an open architecture device, which is fully

programmable, the device can be adapted to our own
needs by programming or writing your own JAVA IMlet.
The GSM module has up to 7 digital inputs, up to 8
digital outputs, 3 analog inputs and 2 usable RS232 ports,
which could be used for performing tasks on remote
objects, such as monitoring air or water temperature,
humidity, or switching lamps, motors etc.

C. Principles of Ultrasonic sensors

Ultrasonic sensors transmit ultrasonic waves from its
sensor head and receive ultrasonic waves reflected back
from an object, therefore an ultrasonic sensor generally
would involve the use of a transmitter and a receiver.

By measuring the length of time from the
transmission to reception of the sonic wave, it measures
the distance of the object as shown in Figure 2.

Fig. 2: Diagram of calculating the length L of the distance
from the transmitted and received wave.

III. METHODOLOGY

A. Wireless Messaging API
The Wireless Messaging API was used to send and

receive short messages. The Wireless Messaging API
specification was obtained at
http://jcp.org/aboutJAVA/communityprocess/final/jsr120/
index2.html and the JAVAdocs are available at
http://JAVA.sun.com/products/wma/.

The application would first obtain an instance of the
MessageConnection through the Connector class. The
URL was then passed to the
JAVAx.microedition.io.Connector.open() method that
identifies the protocol to be used (SMS), the phone
number and/or port of the target. Valid URLs are as
follows:
1) sms://+0123xxxx
2) sms://+0123xxxx:5678
3) sms://:5678

B. Openning a connection
As in any communication that uses IMlets, the time

period from starting the Nokia 12 module to registering
into the network can vary in different networks. Another
way to wait for the network registration is simply to try
and open a connection, catch the raised exception, and try
again until the connection succeeds.

C. Sending a Text Message

To send a message, the
MessageConnection.newMessage() method was used to
create an empty message, set its payload (text or binary
data to be sent), and then the MessageConnection.send()
method was invoked.

D. Receiving a Text Message

There are two methods in receiving a text message.
Either incoming messages are channeled through a
receiving port that listens to incoming text messages
using the Wireless Messaging API, or the device can read
the received message from the SIM card and then deletes
it after reading it using the Embedded Terminal Module.

1) Using the Wireless Messaging API

The server connection must be opened with the port
number, but without the phone number. After opening
the connection, the MessageConnection.receive()
method is called. This returns the next available
message to the specified port. If there is no message
available, the method blocks until a message arrives
or a different thread closes the connection.

2) Using the Embedded Terminal Module

The previous method of receiving messages via port
number will set a limitation for the amount of SMS
received and would not be efficient as it receives
messages by listening through a port number for
incoming text messages. Since local Malaysian
telecommunication networks do not disclose the port
number being used for subscribers to receive text
messages, the Wireless Messaging API method
cannot be used.

Another alternative method can be used rather than to

receive incoming text messages through a port number,
the Embedded Terminal or (ET Module) shall be used
from the package
com.nokia.m2m.orb.idl.terminal.ETPackage. This
method reads the latest received text message from the
SIM card and then deletes it after the instruction has been
executed

E. I/O Control

Some of the methods are only supported by the real
Nokia 12 GSM module, not by the Nokia 12 IMP 1.0
Concept Simulator. Methods not supported by the Nokia
12 IMP 1.0 Concept Simulator are defined in this
interface for compatibility but they will not implement
any functionality.

Fig. 2: Diagram of calculating the length L of
the distance from the transmitted and received

wave.

III.	ME THODOLOGY

A.	 Wireless Messaging API

The Wireless Messaging API was used
to send and receive short messages. The
Wireless Messaging API specification was

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Remote Monitoring of Industrial Waste

21

obtained at http://jcp.org/aboutJAVA/
communityprocess/final/jsr120/index2.
html and the JAVAdocs are available at
http://JAVA.sun.com/products/wma/.

The application would first obtain an
instance of the MessageConnection
through the Connector class. The URL was
then passed to the JAVAx.microedition.
io.Connector.open() method that identifies
the protocol to be used (SMS), the phone
number and/or port of the target. Valid
URLs are as follows:

1)	 sms://+0123xxxx
2)	 sms://+0123xxxx:5678
3)	 sms://:5678

B.	 Openning a connection

As in any communication that uses IMlets,
the time period from starting the Nokia
12 module to registering into the network
can vary in different networks. Another
way to wait for the network registration
is simply to try and open a connection,
catch the raised exception, and try again
until the connection succeeds.

C.	S ending a Text Message

To send a message, the MessageConnection.
newMessage() method was used to create
an empty message, set its payload (text
or binary data to be sent), and then the
MessageConnection.send() method was
invoked.

D.	 Receiving a Text Message

There are two methods in receiving a text
message. Either incoming messages are
channeled through a receiving port that
listens to incoming text messages using
the Wireless Messaging API, or the device
can read the received message from the
SIM card and then deletes it after reading
it using the Embedded Terminal Module.

1)	 Using the Wireless Messaging API

The server connection must be opened
with the port number, but without
the phone number. After opening the
connection, the MessageConnection.
receive() method is called. This returns

the next available message to the specified
port. If there is no message available, the
method blocks until a message arrives or
a different thread closes the connection.

2)	 Using the Embedded Terminal
Module

The previous method of receiving
messages via port number will set a
limitation for the amount of SMS received
and would not be efficient as it receives
messages by listening through a port
number for incoming text messages.
Since local Malaysian telecommunication
networks do not disclose the port number
being used for subscribers to receive text
messages, the Wireless Messaging API
method cannot be used.

Another alternative method can be used
rather than to receive incoming text
messages through a port number, the
Embedded Terminal or (ET Module)
shall be used from the package com.
nokia.m2m.orb.idl.terminal.ETPackage.
This method reads the latest received
text message from the SIM card and then
deletes it after the instruction has been
executed

E.	 I/O Control

Some of the methods are only supported
by the real Nokia 12 GSM module, not by
the Nokia 12 IMP 1.0 Concept Simulator.
Methods not supported by the Nokia 12
IMP 1.0 Concept Simulator are defined in
this interface for compatibility but they
will not implement any functionality.

1)	 Using the I/O Control API

The IOControl API is a Nokia proprietary
API. IMlets using this API cannot be
used with M2M devices from other
manufacturers. The IOControl class is
used to control the input and output pins
of the Nokia 12 module. The number of
available pins depends on the current
port settings of the Nokia 12 module. The
Nokia 12 Configurator is a useful tool for
checking the available pins in the current
configuration.

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

22

2)	 Using the Embedded Terminal
Module

This service is used for controlling and
observing the I/O pins of the Nokia
12 module. Module ORB servant
implementing the IOControlOperations
interface. Reference to this servant can
be obtained by using the object key ORB/
OA/IDL:IOModule/IOControl:1.0.

F.	S imulating and Loading the
programmed JAVA IMlet

The Teltonika T-Box N12R uses the Nokia
12 IMP 1.0 Concept Simulator to simulate
programmed JAVA IMlets to observe
whether the desired result performs the
correct behavior and simulates it through
the Nokia 12i module as seen in Figure 3.

1) Using the I/O Control API
The IOControl API is a Nokia proprietary API. IMlets
using this API cannot be used with M2M devices
from other manufacturers. The IOControl class is used
to control the input and output pins of the Nokia 12
module. The number of available pins depends on the
current port settings of the Nokia 12 module. The
Nokia 12 Configurator is a useful tool for checking
the available pins in the current configuration.

2) Using the Embedded Terminal Module

This service is used for controlling and observing the
I/O pins of the Nokia 12 module. Module ORB
servant implementing the IOControlOperations
interface. Reference to this servant can be obtained by
using the object key
ORB/OA/IDL:IOModule/IOControl:1.0.

F. Simulating and Loading the programmed JAVA

IMlet
The Teltonika T-Box N12R uses the Nokia 12 IMP 1.0

Concept Simulator to simulate programmed JAVA IMlets
to observe whether the desired result performs the correct
behavior and simulates it through the Nokia 12i module
as seen in Figure 3.

Fig. 3: Nokia 12 IMP 1.0 Concept Simulator

Once the simulated results were successful, the .java
extension source code file was then packaged into .jad
and .jar extensions to be loaded into the Nokia 12
Configurator as seen in Figure 4.

Fig. 4: Nokia Configurator

Then using the Nokia Configurator, the programmed
JAVA IMlet is then being loaded into the Teltonika T-
Box N12R and then executed.

IV. RESULTS AND ANALYSIS
A. Receiving Text Message

For this aspect of the project, the Teltonika T-Box
N12R was programmed to read the received text
messages from the SIM card, and then delete the received
messages from the SIM card using the Embedded
Terminal module and then decrement the message count.
The I/O Control API can be used to receive incoming text
messages by which the received text message will not be
stored into the SIM card but rather would be directly
“fed” into the Nokia12i module through a listening port
number. However, this listening port varies according to
the telecommunication networks and the local
telecommunication network companies were reluctant
and unwilling to disclose such details to the public even
though a strong request was suggested for industrial
works, therefore an alternative method would have to be
implemented. Instead, another method is by receiving the
text messages like normal text messages does being
stored in SIM card and using the Embedded Terminal to
extract the received text message directly from the SIM
card. This would ensure that every telecommunication
network used by the Teltonika T-Box N12R would still
be adaptable to receive text message.

The device reads the text message and the compares
the text message, once the content of the text message
matches, it will set the digital output pin of the Teltonika
T-Box N12R number 5 as high as an indicator.

Fig. 5: Receiving text message to trigger digital output

B. Sending Text Messages

The sending message program code applies to all
telecommunication network protocols as it needs to
define a connection object that will open the connection
to the Telecommunication Network. The message sent
will be set with payload text along with the message
before sending in order to enable protocols at the
receiving end to decode or execute specific modes before
actually sending a text message to the receiver.

The device was tested by programming a trigger at
digital input pin number 5 to send out a message to a
predefined recipient number as follows.

Fig. 3: Nokia 12 IMP 1.0 Concept Simulator

Once the simulated results were
successful, the .java extension source code
file was then packaged into .jad and .jar
extensions to be loaded into the Nokia 12
Configurator as seen in Figure 4.
	

1) Using the I/O Control API
The IOControl API is a Nokia proprietary API. IMlets
using this API cannot be used with M2M devices
from other manufacturers. The IOControl class is used
to control the input and output pins of the Nokia 12
module. The number of available pins depends on the
current port settings of the Nokia 12 module. The
Nokia 12 Configurator is a useful tool for checking
the available pins in the current configuration.

2) Using the Embedded Terminal Module

This service is used for controlling and observing the
I/O pins of the Nokia 12 module. Module ORB
servant implementing the IOControlOperations
interface. Reference to this servant can be obtained by
using the object key
ORB/OA/IDL:IOModule/IOControl:1.0.

F. Simulating and Loading the programmed JAVA

IMlet
The Teltonika T-Box N12R uses the Nokia 12 IMP 1.0

Concept Simulator to simulate programmed JAVA IMlets
to observe whether the desired result performs the correct
behavior and simulates it through the Nokia 12i module
as seen in Figure 3.

Fig. 3: Nokia 12 IMP 1.0 Concept Simulator

Once the simulated results were successful, the .java
extension source code file was then packaged into .jad
and .jar extensions to be loaded into the Nokia 12
Configurator as seen in Figure 4.

Fig. 4: Nokia Configurator

Then using the Nokia Configurator, the programmed
JAVA IMlet is then being loaded into the Teltonika T-
Box N12R and then executed.

IV. RESULTS AND ANALYSIS
A. Receiving Text Message

For this aspect of the project, the Teltonika T-Box
N12R was programmed to read the received text
messages from the SIM card, and then delete the received
messages from the SIM card using the Embedded
Terminal module and then decrement the message count.
The I/O Control API can be used to receive incoming text
messages by which the received text message will not be
stored into the SIM card but rather would be directly
“fed” into the Nokia12i module through a listening port
number. However, this listening port varies according to
the telecommunication networks and the local
telecommunication network companies were reluctant
and unwilling to disclose such details to the public even
though a strong request was suggested for industrial
works, therefore an alternative method would have to be
implemented. Instead, another method is by receiving the
text messages like normal text messages does being
stored in SIM card and using the Embedded Terminal to
extract the received text message directly from the SIM
card. This would ensure that every telecommunication
network used by the Teltonika T-Box N12R would still
be adaptable to receive text message.

The device reads the text message and the compares
the text message, once the content of the text message
matches, it will set the digital output pin of the Teltonika
T-Box N12R number 5 as high as an indicator.

Fig. 5: Receiving text message to trigger digital output

B. Sending Text Messages

The sending message program code applies to all
telecommunication network protocols as it needs to
define a connection object that will open the connection
to the Telecommunication Network. The message sent
will be set with payload text along with the message
before sending in order to enable protocols at the
receiving end to decode or execute specific modes before
actually sending a text message to the receiver.

The device was tested by programming a trigger at
digital input pin number 5 to send out a message to a
predefined recipient number as follows.

Fig. 4: Nokia Configurator

Then using the Nokia Configurator, the
programmed JAVA IMlet is then being
loaded into the Teltonika T-Box N12R and
then executed.

IV.	 RESULTS AND ANALYSIS

A.	 Receiving Text Message

For this aspect of the project, the Teltonika
T-Box N12R was programmed to read the
received text messages from the SIM card,
and then delete the received messages
from the SIM card using the Embedded
Terminal module and then decrement the
message count. The I/O Control API can
be used to receive incoming text messages
by which the received text message will
not be stored into the SIM card but rather
would be directly “fed” into the Nokia12i
module through a listening port number.
However, this listening port varies
according to the telecommunication
networks and the local telecommunication
network companies were reluctant and
unwilling to disclose such details to the
public even though a strong request was
suggested for industrial works, therefore
an alternative method would have to be
implemented. Instead, another method is
by receiving the text messages like normal
text messages does being stored in SIM
card and using the Embedded Terminal to
extract the received text message directly
from the SIM card. This would ensure
that every telecommunication network
used by the Teltonika T-Box N12R would
still be adaptable to receive text message.

The device reads the text message and
the compares the text message, once the
content of the text message matches,
it will set the digital output pin of the
Teltonika T-Box N12R number 5 as high
as an indicator.

1) Using the I/O Control API
The IOControl API is a Nokia proprietary API. IMlets
using this API cannot be used with M2M devices
from other manufacturers. The IOControl class is used
to control the input and output pins of the Nokia 12
module. The number of available pins depends on the
current port settings of the Nokia 12 module. The
Nokia 12 Configurator is a useful tool for checking
the available pins in the current configuration.

2) Using the Embedded Terminal Module

This service is used for controlling and observing the
I/O pins of the Nokia 12 module. Module ORB
servant implementing the IOControlOperations
interface. Reference to this servant can be obtained by
using the object key
ORB/OA/IDL:IOModule/IOControl:1.0.

F. Simulating and Loading the programmed JAVA

IMlet
The Teltonika T-Box N12R uses the Nokia 12 IMP 1.0

Concept Simulator to simulate programmed JAVA IMlets
to observe whether the desired result performs the correct
behavior and simulates it through the Nokia 12i module
as seen in Figure 3.

Fig. 3: Nokia 12 IMP 1.0 Concept Simulator

Once the simulated results were successful, the .java
extension source code file was then packaged into .jad
and .jar extensions to be loaded into the Nokia 12
Configurator as seen in Figure 4.

Fig. 4: Nokia Configurator

Then using the Nokia Configurator, the programmed
JAVA IMlet is then being loaded into the Teltonika T-
Box N12R and then executed.

IV. RESULTS AND ANALYSIS
A. Receiving Text Message

For this aspect of the project, the Teltonika T-Box
N12R was programmed to read the received text
messages from the SIM card, and then delete the received
messages from the SIM card using the Embedded
Terminal module and then decrement the message count.
The I/O Control API can be used to receive incoming text
messages by which the received text message will not be
stored into the SIM card but rather would be directly
“fed” into the Nokia12i module through a listening port
number. However, this listening port varies according to
the telecommunication networks and the local
telecommunication network companies were reluctant
and unwilling to disclose such details to the public even
though a strong request was suggested for industrial
works, therefore an alternative method would have to be
implemented. Instead, another method is by receiving the
text messages like normal text messages does being
stored in SIM card and using the Embedded Terminal to
extract the received text message directly from the SIM
card. This would ensure that every telecommunication
network used by the Teltonika T-Box N12R would still
be adaptable to receive text message.

The device reads the text message and the compares
the text message, once the content of the text message
matches, it will set the digital output pin of the Teltonika
T-Box N12R number 5 as high as an indicator.

Fig. 5: Receiving text message to trigger digital output

B. Sending Text Messages

The sending message program code applies to all
telecommunication network protocols as it needs to
define a connection object that will open the connection
to the Telecommunication Network. The message sent
will be set with payload text along with the message
before sending in order to enable protocols at the
receiving end to decode or execute specific modes before
actually sending a text message to the receiver.

The device was tested by programming a trigger at
digital input pin number 5 to send out a message to a
predefined recipient number as follows.

Fig. 5: Receiving text message to trigger digital
output

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Remote Monitoring of Industrial Waste

23

B.	S ending Text Messages

The sending message program code
applies to all telecommunication network
protocols as it needs to define a connection
object that will open the connection to
the Telecommunication Network. The
message sent will be set with payload text
along with the message before sending in
order to enable protocols at the receiving
end to decode or execute specific modes
before actually sending a text message to
the receiver.

The device was tested by programming
a trigger at digital input pin number 5
to send out a message to a predefined
recipient number as follows.

Fig. 6: Triggered digital input no 5 on the Teltonika T-
Box N12R

Fig. 7: The sent text messages send out by the Teltonika
T-BoxN1R received by the predefined user

C. Analog Voltage to Parameter Conversion

Once the receiving and sending text message through
the Teltonika T-Box N12R was successful, the analog
voltage conversion was conducted.

The Teltonika T-BoxN12R casing is able to receive 0-
12V of analog input with 0-2809mV internally for the
Nokia 12i module, therefore programming works were
done for analog voltage input with an integer value range
of 0 to 2809. However, conversion from analog voltage
into measured parameters requires the division operation
which means floating-point will be involved in the
process but embedded JAVA does not support floating-
point formats such as double type or float type in String
format. One of the methods to resolve this problem for
the time being was using multiplication to multiply the
ratio with a factor (x1000), then divide the final answer
back with that factor. Value cut-off without round-up or
round-down would exist but it will have an accuracy of 4
digits cut-off.

D. Power Failure Notification Alert

This monitoring system will incorporate a power
failure notification alert function whenever the power
source of the industrial outlet is absent or experienced a
power failure. In the event of a power failure, the
Teltonika T-Box N12R will be programmed to send out a

text message to a pre-defined user’s number but will
confirm the existence of a power failure after about 5
seconds of delay time to prevent from misleading
notification alerts to the user.

The program code in shows the “if” statement loop
used to detect the power failure of the digital input pins
for a low or “0” state. Whenever the input is low, the
process is blocked by a delay of 3000 milliseconds
equivalent to 3 seconds, and then enters another nested
“if” loop to proceed with sending a power failure
notification alert whenever the power failure is confirmed.

E. Parameter Value Conversion

The parameter value in absolute integer value would be
converted into decimal fractions (e.g. 4510mm >> 4.51m)
through arithmetic operational manipulating methods to
separate the integer part on the left and the decimal
fraction on the right separated by a period (.) as seen in
Figure 8.

Fig. 8: Representation of integer, period and decimal
fraction

Once the parameter value was calculated, using the

above example, 4510mm. The value was divided by 1000
and then stored as an integer in variable “numbers”. Due
to the characteristics of embedded systems of not being
able to perform arithmetic operations in decimal fractions,
dividing 4510 by 1000 would yield 4 instead of the
conventional answer 4.51. Then the previous value of
4510 was then used again to deduct the product of
(“numbers” x 1000) and then answer divided by 10 to
obtain the absolute integer value of decimal fraction after
the period, then the answer was then stored in the variable
“fractions” .

Fig. 9: Representation of integer, period and decimal
fraction

F. Embedded System Response Analysis

Embedded system architecture has a tradeoff in
performance between flexibility, versatility and speed of
processing speed. An analysis between the relationship

4 . 5 1

integer

period
decimal fraction

4510

4510 / 1000 = 4
numbers = 4

4510 – (numbers x1000) = 510
510 / 10 = 51
fractions = 51

String combination:
numbers + “.” + fractions will give

4.51

Fig. 6: Triggered digital input no 5 on the
Teltonika T-Box N12R

Fig. 6: Triggered digital input no 5 on the Teltonika T-
Box N12R

Fig. 7: The sent text messages send out by the Teltonika
T-BoxN1R received by the predefined user

C. Analog Voltage to Parameter Conversion

Once the receiving and sending text message through
the Teltonika T-Box N12R was successful, the analog
voltage conversion was conducted.

The Teltonika T-BoxN12R casing is able to receive 0-
12V of analog input with 0-2809mV internally for the
Nokia 12i module, therefore programming works were
done for analog voltage input with an integer value range
of 0 to 2809. However, conversion from analog voltage
into measured parameters requires the division operation
which means floating-point will be involved in the
process but embedded JAVA does not support floating-
point formats such as double type or float type in String
format. One of the methods to resolve this problem for
the time being was using multiplication to multiply the
ratio with a factor (x1000), then divide the final answer
back with that factor. Value cut-off without round-up or
round-down would exist but it will have an accuracy of 4
digits cut-off.

D. Power Failure Notification Alert

This monitoring system will incorporate a power
failure notification alert function whenever the power
source of the industrial outlet is absent or experienced a
power failure. In the event of a power failure, the
Teltonika T-Box N12R will be programmed to send out a

text message to a pre-defined user’s number but will
confirm the existence of a power failure after about 5
seconds of delay time to prevent from misleading
notification alerts to the user.

The program code in shows the “if” statement loop
used to detect the power failure of the digital input pins
for a low or “0” state. Whenever the input is low, the
process is blocked by a delay of 3000 milliseconds
equivalent to 3 seconds, and then enters another nested
“if” loop to proceed with sending a power failure
notification alert whenever the power failure is confirmed.

E. Parameter Value Conversion

The parameter value in absolute integer value would be
converted into decimal fractions (e.g. 4510mm >> 4.51m)
through arithmetic operational manipulating methods to
separate the integer part on the left and the decimal
fraction on the right separated by a period (.) as seen in
Figure 8.

Fig. 8: Representation of integer, period and decimal
fraction

Once the parameter value was calculated, using the

above example, 4510mm. The value was divided by 1000
and then stored as an integer in variable “numbers”. Due
to the characteristics of embedded systems of not being
able to perform arithmetic operations in decimal fractions,
dividing 4510 by 1000 would yield 4 instead of the
conventional answer 4.51. Then the previous value of
4510 was then used again to deduct the product of
(“numbers” x 1000) and then answer divided by 10 to
obtain the absolute integer value of decimal fraction after
the period, then the answer was then stored in the variable
“fractions” .

Fig. 9: Representation of integer, period and decimal
fraction

F. Embedded System Response Analysis

Embedded system architecture has a tradeoff in
performance between flexibility, versatility and speed of
processing speed. An analysis between the relationship

4 . 5 1

integer

period
decimal fraction

4510

4510 / 1000 = 4
numbers = 4

4510 – (numbers x1000) = 510
510 / 10 = 51
fractions = 51

String combination:
numbers + “.” + fractions will give

4.51

Fig. 7: The sent text messages send out by
the Teltonika T-BoxN1R received by the

predefined user

C.	A nalog Voltage to Parameter
Conversion

Once the receiving and sending text
message through the Teltonika T-Box
N12R was successful, the analog voltage
conversion was conducted.

The Teltonika T-BoxN12R casing is able
to receive 0-12V of analog input with
0-2809mV internally for the Nokia 12i
module, therefore programming works
were done for analog voltage input
with an integer value range of 0 to 2809.
However, conversion from analog voltage
into measured parameters requires the
division operation which means floating-
point will be involved in the process
but embedded JAVA does not support
floating-point formats such as double
type or float type in String format. One of
the methods to resolve this problem for
the time being was using multiplication
to multiply the ratio with a factor (x1000),
then divide the final answer back with
that factor. Value cut-off without round-
up or round-down would exist but it will
have an accuracy of 4 digits cut-off.

D.	 Power Failure Notification Alert

This monitoring system will incorporate
a power failure notification alert function
whenever the power source of the
industrial outlet is absent or experienced
a power failure. In the event of a power
failure, the Teltonika T-Box N12R will be
programmed to send out a text message
to a pre-defined user’s number but will
confirm the existence of a power failure
after about 5 seconds of delay time to
prevent from misleading notification
alerts to the user.
The program code in shows the “if”
statement loop used to detect the power
failure of the digital input pins for a low
or “0” state. Whenever the input is low,
the process is blocked by a delay of 3000
milliseconds equivalent to 3 seconds,
and then enters another nested “if” loop
to proceed with sending a power failure
notification alert whenever the power
failure is confirmed.

E.	 Parameter Value Conversion

The parameter value in absolute integer
value would be converted into decimal
fractions (e.g. 4510mm >> 4.51m) through
arithmetic operational manipulating
methods to separate the integer part on
the left and the decimal fraction on the

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

24

right separated by a period (.) as seen in
Figure 8.

Fig. 6: Triggered digital input no 5 on the Teltonika T-
Box N12R

Fig. 7: The sent text messages send out by the Teltonika
T-BoxN1R received by the predefined user

C. Analog Voltage to Parameter Conversion

Once the receiving and sending text message through
the Teltonika T-Box N12R was successful, the analog
voltage conversion was conducted.

The Teltonika T-BoxN12R casing is able to receive 0-
12V of analog input with 0-2809mV internally for the
Nokia 12i module, therefore programming works were
done for analog voltage input with an integer value range
of 0 to 2809. However, conversion from analog voltage
into measured parameters requires the division operation
which means floating-point will be involved in the
process but embedded JAVA does not support floating-
point formats such as double type or float type in String
format. One of the methods to resolve this problem for
the time being was using multiplication to multiply the
ratio with a factor (x1000), then divide the final answer
back with that factor. Value cut-off without round-up or
round-down would exist but it will have an accuracy of 4
digits cut-off.

D. Power Failure Notification Alert

This monitoring system will incorporate a power
failure notification alert function whenever the power
source of the industrial outlet is absent or experienced a
power failure. In the event of a power failure, the
Teltonika T-Box N12R will be programmed to send out a

text message to a pre-defined user’s number but will
confirm the existence of a power failure after about 5
seconds of delay time to prevent from misleading
notification alerts to the user.

The program code in shows the “if” statement loop
used to detect the power failure of the digital input pins
for a low or “0” state. Whenever the input is low, the
process is blocked by a delay of 3000 milliseconds
equivalent to 3 seconds, and then enters another nested
“if” loop to proceed with sending a power failure
notification alert whenever the power failure is confirmed.

E. Parameter Value Conversion

The parameter value in absolute integer value would be
converted into decimal fractions (e.g. 4510mm >> 4.51m)
through arithmetic operational manipulating methods to
separate the integer part on the left and the decimal
fraction on the right separated by a period (.) as seen in
Figure 8.

Fig. 8: Representation of integer, period and decimal
fraction

Once the parameter value was calculated, using the

above example, 4510mm. The value was divided by 1000
and then stored as an integer in variable “numbers”. Due
to the characteristics of embedded systems of not being
able to perform arithmetic operations in decimal fractions,
dividing 4510 by 1000 would yield 4 instead of the
conventional answer 4.51. Then the previous value of
4510 was then used again to deduct the product of
(“numbers” x 1000) and then answer divided by 10 to
obtain the absolute integer value of decimal fraction after
the period, then the answer was then stored in the variable
“fractions” .

Fig. 9: Representation of integer, period and decimal
fraction

F. Embedded System Response Analysis

Embedded system architecture has a tradeoff in
performance between flexibility, versatility and speed of
processing speed. An analysis between the relationship

4 . 5 1

integer

period
decimal fraction

4510

4510 / 1000 = 4
numbers = 4

4510 – (numbers x1000) = 510
510 / 10 = 51
fractions = 51

String combination:
numbers + “.” + fractions will give

4.51

Fig. 8: Representation of integer, period and
decimal fraction

Once the parameter value was calculated,
using the above example, 4510mm.
The value was divided by 1000 and
then stored as an integer in variable
“numbers”. Due to the characteristics of
embedded systems of not being able to
perform arithmetic operations in decimal
fractions, dividing 4510 by 1000 would
yield 4 instead of the conventional answer
4.51. Then the previous value of 4510 was
then used again to deduct the product
of (“numbers” x 1000) and then answer
divided by 10 to obtain the absolute
integer value of decimal fraction after the
period, then the answer was then stored
in the variable “fractions”.

Fig. 6: Triggered digital input no 5 on the Teltonika T-
Box N12R

Fig. 7: The sent text messages send out by the Teltonika
T-BoxN1R received by the predefined user

C. Analog Voltage to Parameter Conversion

Once the receiving and sending text message through
the Teltonika T-Box N12R was successful, the analog
voltage conversion was conducted.

The Teltonika T-BoxN12R casing is able to receive 0-
12V of analog input with 0-2809mV internally for the
Nokia 12i module, therefore programming works were
done for analog voltage input with an integer value range
of 0 to 2809. However, conversion from analog voltage
into measured parameters requires the division operation
which means floating-point will be involved in the
process but embedded JAVA does not support floating-
point formats such as double type or float type in String
format. One of the methods to resolve this problem for
the time being was using multiplication to multiply the
ratio with a factor (x1000), then divide the final answer
back with that factor. Value cut-off without round-up or
round-down would exist but it will have an accuracy of 4
digits cut-off.

D. Power Failure Notification Alert

This monitoring system will incorporate a power
failure notification alert function whenever the power
source of the industrial outlet is absent or experienced a
power failure. In the event of a power failure, the
Teltonika T-Box N12R will be programmed to send out a

text message to a pre-defined user’s number but will
confirm the existence of a power failure after about 5
seconds of delay time to prevent from misleading
notification alerts to the user.

The program code in shows the “if” statement loop
used to detect the power failure of the digital input pins
for a low or “0” state. Whenever the input is low, the
process is blocked by a delay of 3000 milliseconds
equivalent to 3 seconds, and then enters another nested
“if” loop to proceed with sending a power failure
notification alert whenever the power failure is confirmed.

E. Parameter Value Conversion

The parameter value in absolute integer value would be
converted into decimal fractions (e.g. 4510mm >> 4.51m)
through arithmetic operational manipulating methods to
separate the integer part on the left and the decimal
fraction on the right separated by a period (.) as seen in
Figure 8.

Fig. 8: Representation of integer, period and decimal
fraction

Once the parameter value was calculated, using the

above example, 4510mm. The value was divided by 1000
and then stored as an integer in variable “numbers”. Due
to the characteristics of embedded systems of not being
able to perform arithmetic operations in decimal fractions,
dividing 4510 by 1000 would yield 4 instead of the
conventional answer 4.51. Then the previous value of
4510 was then used again to deduct the product of
(“numbers” x 1000) and then answer divided by 10 to
obtain the absolute integer value of decimal fraction after
the period, then the answer was then stored in the variable
“fractions” .

Fig. 9: Representation of integer, period and decimal
fraction

F. Embedded System Response Analysis

Embedded system architecture has a tradeoff in
performance between flexibility, versatility and speed of
processing speed. An analysis between the relationship

4 . 5 1

integer

period
decimal fraction

4510

4510 / 1000 = 4
numbers = 4

4510 – (numbers x1000) = 510
510 / 10 = 51
fractions = 51

String combination:
numbers + “.” + fractions will give

4.51

Fig. 9: Representation of integer, period and
decimal fraction

F.	E mbedded System Response
Analysis

Embedded system architecture has
a tradeoff in performance between
flexibility, versatility and speed of
processing speed. An analysis between
the relationship of the response time
of the embedded architecture with the
length and complications of the program
coding was being performed using
indicators included within the program.
The first programmed line is the code to

set both digital output pins 2 and 9 to low.
The second line of code to start the mark
of the code for setting digital output pin
number 2 to high is at the third line and
the fourth line indicates the code to set the
digital output pin number 9 to low at the
end of the main function.

The response will be measured by
introducing two sets of program codes,
one with function calls from the main
function linking to multiple function
calls to address a public function method,
and another set of code that executes the
program code directly within one main
function without the function calls. As
the program process proceeds within
the “while” loop, the first indicator was
introduced by setting the digital output of
pin number 2 high at the beginning of the
main function call, then a code was added
to set the digital pin number 9 to high at
the end of the main program function.
The time taken from the start whenever
digital output pin number 2 was high
marks the start of the process duration
and whenever digital output pin number
9 is high, it marks the end of the process
duration. A time frame within both
points of indication marks the duration
of response time of the embedded system
architecture for the Teltonika T-Box N12R.
The response analysis will be using two
sets of coding.

1)	 Actual program code with
multiple functions calls from main
function.

2)	 Modified tested program code
without function calls.

Note that the program code is the actual
program code for the project, however the
program nature for the analysis purpose
would be in the pending or standby state
of the response without power failure or
any user query/response activity (sending
or receiving message).

G.	 Retrieval of Analysis Result of
Process Duration

The program used will be first loaded into
the module, then the module rebooted.

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Remote Monitoring of Industrial Waste

25

The duration between the two digital
outputs will start to be recorded after a
short period of time for stability of the
system.

From the analysis results in Table 1 and
Table 2, the program with only a single
“if…else” statement within a single
“while” loop without function calls
produced a faster processing speed.
Significantly a deduction can be made
regarding this issue that embedded
programming architecture would
perform much faster without complicated
programs, in this case without the need
for multiple function calls. Function calls
may seem convenient for a developer
or a programmer to develop a system,
however to ensure smooth operational
performance and efficiency in processing
speed, simpler programming practices is
best preferred.

A graph can then be plotted as shown
based on the analysis of the duration of
the embedded architecture’s processing
speed versus the complications of the
program code.

Table 1: Program code with function call of the response time of the embedded architecture with
the length and complications of the program coding was
being performed using indicators included within the
program. The first programmed line is the code to set
both digital output pins 2 and 9 to low. The second line of
code to start the mark of the code for setting digital
output pin number 2 to high is at the third line and the
fourth line indicates the code to set the digital output pin
number 9 to low at the end of the main function.

The response will be measured by introducing two
sets of program codes, one with function calls from the
main function linking to multiple function calls to address
a public function method, and another set of code that
executes the program code directly within one main
function without the function calls. As the program
process proceeds within the “while” loop, the first
indicator was introduced by setting the digital output of
pin number 2 high at the beginning of the main function
call, then a code was added to set the digital pin number 9
to high at the end of the main program function. The time
taken from the start whenever digital output pin number 2
was high marks the start of the process duration and
whenever digital output pin number 9 is high, it marks the
end of the process duration. A time frame within both
points of indication marks the duration of response time
of the embedded system architecture for the Teltonika T-
Box N12R. The response analysis will be using two sets
of coding.
1) Actual program code with multiple functions calls

from main function.
2) Modified tested program code without function calls.

Note that the program code is the actual program code
for the project, however the program nature for the
analysis purpose would be in the pending or standby state
of the response without power failure or any user
query/response activity (sending or receiving message).

G. Retrieval of Analysis Result of Process Duration
The program used will be first loaded into the module,

then the module rebooted. The duration between the two
digital outputs will start to be recorded after a short
period of time for stability of the system.

From the analysis results in Table 1 and Table 2, the
program with only a single “if…else” statement within a
single “while” loop without function calls produced a
faster processing speed. Significantly a deduction can be
made regarding this issue that embedded programming
architecture would perform much faster without
complicated programs, in this case without the need for
multiple function calls. Function calls may seem
convenient for a developer or a programmer to develop a
system, however to ensure smooth operational
performance and efficiency in processing speed, simpler
programming practices is best preferred.

A graph can then be plotted as shown based on the
analysis of the duration of the embedded architecture’s
processing speed versus the complications of the program
code.

Table 1: Program code with function call
Program code with function call

Initial (Pin 2) End (Pin 9) Duration
2s 6.9s 4.9s
2s 6.0s 4.0s
2s 6.4s 4.4s
2s 6.6s 4.6s
2s 6.4s 4.4s

Average 4.46s

Table 2: Program code without function call
Program code without function call

Initial(Pin 2) End (Pin 9) Duration
2s 5.7 3.7s
2s 5.4 3.4s
2s 5.6 3.6s
2s 5.4 3.4s
2s 5.8 3.8s

Average 3.58s

3

3.5

4

4.5

5

0 5 10

Ti
m
e
(s
)

Trials

With
function
call

Without
function
call

Fig. 10: Processing Speed vs Programming Code

H. Accuracy Analysis

The project was then tested and the results analyzed for
its accuracy in the sense of the programming in arithmetic
operations to calculate the value of an external parameter
(tank level) from the analog voltage input from the
practical results and the simulated results.

I. Simulation Results

In order to give a fundamental idea of the project, the
table below shows the correlation between the analog
input voltage and the parameter value (tank level)
obtained from a theoretical simulation for the output
result. The fixed parameters value for the tank level is
minimum 0 meter to 8 meters maximum and analog
voltage minimum is 0V to maximum 12V.

Table 2: Program code without function call

of the response time of the embedded architecture with
the length and complications of the program coding was
being performed using indicators included within the
program. The first programmed line is the code to set
both digital output pins 2 and 9 to low. The second line of
code to start the mark of the code for setting digital
output pin number 2 to high is at the third line and the
fourth line indicates the code to set the digital output pin
number 9 to low at the end of the main function.

The response will be measured by introducing two
sets of program codes, one with function calls from the
main function linking to multiple function calls to address
a public function method, and another set of code that
executes the program code directly within one main
function without the function calls. As the program
process proceeds within the “while” loop, the first
indicator was introduced by setting the digital output of
pin number 2 high at the beginning of the main function
call, then a code was added to set the digital pin number 9
to high at the end of the main program function. The time
taken from the start whenever digital output pin number 2
was high marks the start of the process duration and
whenever digital output pin number 9 is high, it marks the
end of the process duration. A time frame within both
points of indication marks the duration of response time
of the embedded system architecture for the Teltonika T-
Box N12R. The response analysis will be using two sets
of coding.
1) Actual program code with multiple functions calls

from main function.
2) Modified tested program code without function calls.

Note that the program code is the actual program code
for the project, however the program nature for the
analysis purpose would be in the pending or standby state
of the response without power failure or any user
query/response activity (sending or receiving message).

G. Retrieval of Analysis Result of Process Duration
The program used will be first loaded into the module,

then the module rebooted. The duration between the two
digital outputs will start to be recorded after a short
period of time for stability of the system.

From the analysis results in Table 1 and Table 2, the
program with only a single “if…else” statement within a
single “while” loop without function calls produced a
faster processing speed. Significantly a deduction can be
made regarding this issue that embedded programming
architecture would perform much faster without
complicated programs, in this case without the need for
multiple function calls. Function calls may seem
convenient for a developer or a programmer to develop a
system, however to ensure smooth operational
performance and efficiency in processing speed, simpler
programming practices is best preferred.

A graph can then be plotted as shown based on the
analysis of the duration of the embedded architecture’s
processing speed versus the complications of the program
code.

Table 1: Program code with function call
Program code with function call

Initial (Pin 2) End (Pin 9) Duration
2s 6.9s 4.9s
2s 6.0s 4.0s
2s 6.4s 4.4s
2s 6.6s 4.6s
2s 6.4s 4.4s

Average 4.46s

Table 2: Program code without function call
Program code without function call

Initial(Pin 2) End (Pin 9) Duration
2s 5.7 3.7s
2s 5.4 3.4s
2s 5.6 3.6s
2s 5.4 3.4s
2s 5.8 3.8s

Average 3.58s

3

3.5

4

4.5

5

0 5 10

Ti
m
e
(s
)

Trials

With
function
call

Without
function
call

Fig. 10: Processing Speed vs Programming Code

H. Accuracy Analysis

The project was then tested and the results analyzed for
its accuracy in the sense of the programming in arithmetic
operations to calculate the value of an external parameter
(tank level) from the analog voltage input from the
practical results and the simulated results.

I. Simulation Results

In order to give a fundamental idea of the project, the
table below shows the correlation between the analog
input voltage and the parameter value (tank level)
obtained from a theoretical simulation for the output
result. The fixed parameters value for the tank level is
minimum 0 meter to 8 meters maximum and analog
voltage minimum is 0V to maximum 12V.

of the response time of the embedded architecture with
the length and complications of the program coding was
being performed using indicators included within the
program. The first programmed line is the code to set
both digital output pins 2 and 9 to low. The second line of
code to start the mark of the code for setting digital
output pin number 2 to high is at the third line and the
fourth line indicates the code to set the digital output pin
number 9 to low at the end of the main function.

The response will be measured by introducing two
sets of program codes, one with function calls from the
main function linking to multiple function calls to address
a public function method, and another set of code that
executes the program code directly within one main
function without the function calls. As the program
process proceeds within the “while” loop, the first
indicator was introduced by setting the digital output of
pin number 2 high at the beginning of the main function
call, then a code was added to set the digital pin number 9
to high at the end of the main program function. The time
taken from the start whenever digital output pin number 2
was high marks the start of the process duration and
whenever digital output pin number 9 is high, it marks the
end of the process duration. A time frame within both
points of indication marks the duration of response time
of the embedded system architecture for the Teltonika T-
Box N12R. The response analysis will be using two sets
of coding.
1) Actual program code with multiple functions calls

from main function.
2) Modified tested program code without function calls.

Note that the program code is the actual program code
for the project, however the program nature for the
analysis purpose would be in the pending or standby state
of the response without power failure or any user
query/response activity (sending or receiving message).

G. Retrieval of Analysis Result of Process Duration
The program used will be first loaded into the module,

then the module rebooted. The duration between the two
digital outputs will start to be recorded after a short
period of time for stability of the system.

From the analysis results in Table 1 and Table 2, the
program with only a single “if…else” statement within a
single “while” loop without function calls produced a
faster processing speed. Significantly a deduction can be
made regarding this issue that embedded programming
architecture would perform much faster without
complicated programs, in this case without the need for
multiple function calls. Function calls may seem
convenient for a developer or a programmer to develop a
system, however to ensure smooth operational
performance and efficiency in processing speed, simpler
programming practices is best preferred.

A graph can then be plotted as shown based on the
analysis of the duration of the embedded architecture’s
processing speed versus the complications of the program
code.

Table 1: Program code with function call
Program code with function call

Initial (Pin 2) End (Pin 9) Duration
2s 6.9s 4.9s
2s 6.0s 4.0s
2s 6.4s 4.4s
2s 6.6s 4.6s
2s 6.4s 4.4s

Average 4.46s

Table 2: Program code without function call
Program code without function call

Initial(Pin 2) End (Pin 9) Duration
2s 5.7 3.7s
2s 5.4 3.4s
2s 5.6 3.6s
2s 5.4 3.4s
2s 5.8 3.8s

Average 3.58s

3

3.5

4

4.5

5

0 5 10

Ti
m
e
(s
)

Trials

With
function
call

Without
function
call

Fig. 10: Processing Speed vs Programming Code

H. Accuracy Analysis

The project was then tested and the results analyzed for
its accuracy in the sense of the programming in arithmetic
operations to calculate the value of an external parameter
(tank level) from the analog voltage input from the
practical results and the simulated results.

I. Simulation Results

In order to give a fundamental idea of the project, the
table below shows the correlation between the analog
input voltage and the parameter value (tank level)
obtained from a theoretical simulation for the output
result. The fixed parameters value for the tank level is
minimum 0 meter to 8 meters maximum and analog
voltage minimum is 0V to maximum 12V.

Fig. 10: Processing Speed vs
Programming Code

H.	A ccuracy Analysis

The project was then tested and the
results analyzed for its accuracy in the
sense of the programming in arithmetic
operations to calculate the value of an
external parameter (tank level) from the
analog voltage input from the practical
results and the simulated results.

I.	S imulation Results

In order to give a fundamental idea
of the project, the table below shows
the correlation between the analog
input voltage and the parameter value
(tank level) obtained from a theoretical
simulation for the output result. The fixed
parameters value for the tank level is
minimum 0 meter to 8 meters maximum
and analog voltage minimum is 0V to
maximum 12V.

Table 3: Correlation between analog voltage
input with fluid level (simulation)

Table 3: Correlation between analog voltage input with
fluid level (simulation)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.0 0.00
2 2.0 1.33
3 4.0 2.67
4 6.0 4.00
5 8.0 5.33
6 10.0 6.67
7 12.0 8.00

A graph was then plotted based on the data in Table 3 as
shown in Figure 11.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 11: Analog Voltage Input vs Fluid Level Height

(simulation)

J. Actual Practical Results
Practical trials were tested by adjusting the analog

voltage input as accurately as possible to the data as in
Table 2. A text message was then sent to the Teltonika T-
Box N12R to query for the current fluid level of the tank
and then a text message was responded and sent out from
the module to the user with the parameter value of the
measured fluid level.

The data received were then tabulated and recorded in
Table 4.

Table 4: Correlation between analog voltage input and
fluid level (practical)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.000 0.00
2 2.013 1.42
3 4.010 2.80
4 6.010 4.24
5 8.090 5.65
6 9.990 6.96
7 12.08 8.00

A graph was then plotted based on the data in Table 4 as
shown in Figure 12.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 12: Analog Voltage Input vs Fluid Level Height

(practical)

K. Analysis of Simulation and Practical Results

From Figure 11 and Figure 12, the difference of both
simulation and practical results are both linear, however
as observed from the graph the parameter value pattern
for practical results deviates from the ideal simulated
results after an analog voltage input of 10V onwards.

From Table 5 and Figure 13, the deviation of the
simulated results and the practical results differs from the
ideal simulated results slightly from the beginning,
however as the analog input voltage increases to 6V, the
ideal height of the practical results for the fluid level has
the largest deviation from the ideal simulated results at
10.5% deviation. However, the deviation gradually
decreases as the analog voltage input approaches the
maximum value.

In comparison, the ideally simulated results exhibits
perfect linearity and however the practical results shows
slight deviation as seen from the graph in Figure 13.

Table 5: Comparison between simulation and practical

results
No Simulation

parameter
value ,

fluid level
(m)

Practical
parameter

value, fluid
level
(m)

Deviation
from
ideal

simulated
results.

Percentage
deviation

(%)

1 0.00 0.00 0 0.00%
2 1.33 1.42 0.09 6.77%
3 2.67 2.80 0.13 4.87%
4 4.00 4.24 0.42 10.5%
5 5.33 5.65 0.32 6.00%
6 6.67 6.96 0.29 4.35%
7 8.00 8.00 0 0%

A graph was then plotted based on the
data in Table 3 as shown in Figure 11.

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

26

Table 3: Correlation between analog voltage input with
fluid level (simulation)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.0 0.00
2 2.0 1.33
3 4.0 2.67
4 6.0 4.00
5 8.0 5.33
6 10.0 6.67
7 12.0 8.00

A graph was then plotted based on the data in Table 3 as
shown in Figure 11.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 11: Analog Voltage Input vs Fluid Level Height

(simulation)

J. Actual Practical Results
Practical trials were tested by adjusting the analog

voltage input as accurately as possible to the data as in
Table 2. A text message was then sent to the Teltonika T-
Box N12R to query for the current fluid level of the tank
and then a text message was responded and sent out from
the module to the user with the parameter value of the
measured fluid level.

The data received were then tabulated and recorded in
Table 4.

Table 4: Correlation between analog voltage input and
fluid level (practical)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.000 0.00
2 2.013 1.42
3 4.010 2.80
4 6.010 4.24
5 8.090 5.65
6 9.990 6.96
7 12.08 8.00

A graph was then plotted based on the data in Table 4 as
shown in Figure 12.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 12: Analog Voltage Input vs Fluid Level Height

(practical)

K. Analysis of Simulation and Practical Results

From Figure 11 and Figure 12, the difference of both
simulation and practical results are both linear, however
as observed from the graph the parameter value pattern
for practical results deviates from the ideal simulated
results after an analog voltage input of 10V onwards.

From Table 5 and Figure 13, the deviation of the
simulated results and the practical results differs from the
ideal simulated results slightly from the beginning,
however as the analog input voltage increases to 6V, the
ideal height of the practical results for the fluid level has
the largest deviation from the ideal simulated results at
10.5% deviation. However, the deviation gradually
decreases as the analog voltage input approaches the
maximum value.

In comparison, the ideally simulated results exhibits
perfect linearity and however the practical results shows
slight deviation as seen from the graph in Figure 13.

Table 5: Comparison between simulation and practical

results
No Simulation

parameter
value ,

fluid level
(m)

Practical
parameter

value, fluid
level
(m)

Deviation
from
ideal

simulated
results.

Percentage
deviation

(%)

1 0.00 0.00 0 0.00%
2 1.33 1.42 0.09 6.77%
3 2.67 2.80 0.13 4.87%
4 4.00 4.24 0.42 10.5%
5 5.33 5.65 0.32 6.00%
6 6.67 6.96 0.29 4.35%
7 8.00 8.00 0 0%

Fig. 11: Analog Voltage Input vs Fluid Level
Height (simulation)

J.	A ctual Practical Results

Practical trials were tested by adjusting
the analog voltage input as accurately as
possible to the data as in Table 2. A text
message was then sent to the Teltonika
T-Box N12R to query for the current fluid
level of the tank and then a text message
was responded and sent out from the
module to the user with the parameter
value of the measured fluid level.

The data received were then tabulated
and recorded in Table 4.

Table 4: Correlation between analog voltage
input and fluid level (practical)

Table 3: Correlation between analog voltage input with
fluid level (simulation)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.0 0.00
2 2.0 1.33
3 4.0 2.67
4 6.0 4.00
5 8.0 5.33
6 10.0 6.67
7 12.0 8.00

A graph was then plotted based on the data in Table 3 as
shown in Figure 11.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 11: Analog Voltage Input vs Fluid Level Height

(simulation)

J. Actual Practical Results
Practical trials were tested by adjusting the analog

voltage input as accurately as possible to the data as in
Table 2. A text message was then sent to the Teltonika T-
Box N12R to query for the current fluid level of the tank
and then a text message was responded and sent out from
the module to the user with the parameter value of the
measured fluid level.

The data received were then tabulated and recorded in
Table 4.

Table 4: Correlation between analog voltage input and
fluid level (practical)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.000 0.00
2 2.013 1.42
3 4.010 2.80
4 6.010 4.24
5 8.090 5.65
6 9.990 6.96
7 12.08 8.00

A graph was then plotted based on the data in Table 4 as
shown in Figure 12.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 12: Analog Voltage Input vs Fluid Level Height

(practical)

K. Analysis of Simulation and Practical Results

From Figure 11 and Figure 12, the difference of both
simulation and practical results are both linear, however
as observed from the graph the parameter value pattern
for practical results deviates from the ideal simulated
results after an analog voltage input of 10V onwards.

From Table 5 and Figure 13, the deviation of the
simulated results and the practical results differs from the
ideal simulated results slightly from the beginning,
however as the analog input voltage increases to 6V, the
ideal height of the practical results for the fluid level has
the largest deviation from the ideal simulated results at
10.5% deviation. However, the deviation gradually
decreases as the analog voltage input approaches the
maximum value.

In comparison, the ideally simulated results exhibits
perfect linearity and however the practical results shows
slight deviation as seen from the graph in Figure 13.

Table 5: Comparison between simulation and practical

results
No Simulation

parameter
value ,

fluid level
(m)

Practical
parameter

value, fluid
level
(m)

Deviation
from
ideal

simulated
results.

Percentage
deviation

(%)

1 0.00 0.00 0 0.00%
2 1.33 1.42 0.09 6.77%
3 2.67 2.80 0.13 4.87%
4 4.00 4.24 0.42 10.5%
5 5.33 5.65 0.32 6.00%
6 6.67 6.96 0.29 4.35%
7 8.00 8.00 0 0%

A graph was then plotted based on the
data in Table 4 as shown in Figure 12.

Table 3: Correlation between analog voltage input with
fluid level (simulation)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.0 0.00
2 2.0 1.33
3 4.0 2.67
4 6.0 4.00
5 8.0 5.33
6 10.0 6.67
7 12.0 8.00

A graph was then plotted based on the data in Table 3 as
shown in Figure 11.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 11: Analog Voltage Input vs Fluid Level Height

(simulation)

J. Actual Practical Results
Practical trials were tested by adjusting the analog

voltage input as accurately as possible to the data as in
Table 2. A text message was then sent to the Teltonika T-
Box N12R to query for the current fluid level of the tank
and then a text message was responded and sent out from
the module to the user with the parameter value of the
measured fluid level.

The data received were then tabulated and recorded in
Table 4.

Table 4: Correlation between analog voltage input and
fluid level (practical)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.000 0.00
2 2.013 1.42
3 4.010 2.80
4 6.010 4.24
5 8.090 5.65
6 9.990 6.96
7 12.08 8.00

A graph was then plotted based on the data in Table 4 as
shown in Figure 12.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 12: Analog Voltage Input vs Fluid Level Height

(practical)

K. Analysis of Simulation and Practical Results

From Figure 11 and Figure 12, the difference of both
simulation and practical results are both linear, however
as observed from the graph the parameter value pattern
for practical results deviates from the ideal simulated
results after an analog voltage input of 10V onwards.

From Table 5 and Figure 13, the deviation of the
simulated results and the practical results differs from the
ideal simulated results slightly from the beginning,
however as the analog input voltage increases to 6V, the
ideal height of the practical results for the fluid level has
the largest deviation from the ideal simulated results at
10.5% deviation. However, the deviation gradually
decreases as the analog voltage input approaches the
maximum value.

In comparison, the ideally simulated results exhibits
perfect linearity and however the practical results shows
slight deviation as seen from the graph in Figure 13.

Table 5: Comparison between simulation and practical

results
No Simulation

parameter
value ,

fluid level
(m)

Practical
parameter

value, fluid
level
(m)

Deviation
from
ideal

simulated
results.

Percentage
deviation

(%)

1 0.00 0.00 0 0.00%
2 1.33 1.42 0.09 6.77%
3 2.67 2.80 0.13 4.87%
4 4.00 4.24 0.42 10.5%
5 5.33 5.65 0.32 6.00%
6 6.67 6.96 0.29 4.35%
7 8.00 8.00 0 0%

Fig. 12: Analog Voltage Input vs Fluid Level
Height (practical)

K.	A nalysis of Simulation and
Practical Results

From Figure 11 and Figure 12, the

difference of both simulation and
practical results are both linear, however
as observed from the graph the parameter
value pattern for practical results deviates
from the ideal simulated results after an
analog voltage input of 10V onwards.

From Table 5 and Figure 13, the deviation
of the simulated results and the practical
results differs from the ideal simulated
results slightly from the beginning,
however as the analog input voltage
increases to 6V, the ideal height of the
practical results for the fluid level has the
largest deviation from the ideal simulated
results at 10.5% deviation. However, the
deviation gradually decreases as the
analog voltage input approaches the
maximum value.

In comparison, the ideally simulated
results exhibits perfect linearity and
however the practical results shows slight
deviation as seen from the graph in Figure
13.

Table 5: Comparison between simulation and
practical results

Table 3: Correlation between analog voltage input with
fluid level (simulation)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.0 0.00
2 2.0 1.33
3 4.0 2.67
4 6.0 4.00
5 8.0 5.33
6 10.0 6.67
7 12.0 8.00

A graph was then plotted based on the data in Table 3 as
shown in Figure 11.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 11: Analog Voltage Input vs Fluid Level Height

(simulation)

J. Actual Practical Results
Practical trials were tested by adjusting the analog

voltage input as accurately as possible to the data as in
Table 2. A text message was then sent to the Teltonika T-
Box N12R to query for the current fluid level of the tank
and then a text message was responded and sent out from
the module to the user with the parameter value of the
measured fluid level.

The data received were then tabulated and recorded in
Table 4.

Table 4: Correlation between analog voltage input and
fluid level (practical)

No Input analog voltage
range
(V)

Parameter value, fluid
level
(m)

1 0.000 0.00
2 2.013 1.42
3 4.010 2.80
4 6.010 4.24
5 8.090 5.65
6 9.990 6.96
7 12.08 8.00

A graph was then plotted based on the data in Table 4 as
shown in Figure 12.

0

5

10

0 5 10 15

Fl
ui
d
Le
ve
l(
m
)

Analog voltage input (V)

Fig. 12: Analog Voltage Input vs Fluid Level Height

(practical)

K. Analysis of Simulation and Practical Results

From Figure 11 and Figure 12, the difference of both
simulation and practical results are both linear, however
as observed from the graph the parameter value pattern
for practical results deviates from the ideal simulated
results after an analog voltage input of 10V onwards.

From Table 5 and Figure 13, the deviation of the
simulated results and the practical results differs from the
ideal simulated results slightly from the beginning,
however as the analog input voltage increases to 6V, the
ideal height of the practical results for the fluid level has
the largest deviation from the ideal simulated results at
10.5% deviation. However, the deviation gradually
decreases as the analog voltage input approaches the
maximum value.

In comparison, the ideally simulated results exhibits
perfect linearity and however the practical results shows
slight deviation as seen from the graph in Figure 13.

Table 5: Comparison between simulation and practical

results
No Simulation

parameter
value ,

fluid level
(m)

Practical
parameter

value, fluid
level
(m)

Deviation
from
ideal

simulated
results.

Percentage
deviation

(%)

1 0.00 0.00 0 0.00%
2 1.33 1.42 0.09 6.77%
3 2.67 2.80 0.13 4.87%
4 4.00 4.24 0.42 10.5%
5 5.33 5.65 0.32 6.00%
6 6.67 6.96 0.29 4.35%
7 8.00 8.00 0 0%

0

5

0 10 20Fl
ui

d
Le

ve
l (

m
)

Analog Voltage Input (V)

Simulated

Practical

Fig. 13: Comparison between simulation and
practical results

This analysis shows the limitations of the
embedded architecture in the accuracy
and integrity of the measured values.
This deviation occurs as the Nokia 12i

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Remote Monitoring of Industrial Waste

27

module inside the Teltonika T-Box N12R
accepts analog input values of millivolts
up to 2809mV relative to 12V from the
T-BoxN12R case. However, the Teltonika
T-Box N12R accepts analog voltage input
range up to 12V. This results in another
layer of filtering from the accuracy of the
first level raw analog voltage input of 0 -
12V and being converted into the range of
0mV - 2809mV instead.

CONCLUSION

This remote monitoring via text messaging
applied towards industrial use by far is
the most efficient method of monitoring
that saves man power and does not
require 24 hours human monitoring.
Data is available as a first hand direct
approach where the integrity of the data
is maintained.

The architecture of an embedded system
is fairly significant and favorable in
resolving challenges faced when dealing
with new systems. The most common of
these challenges include:

1)	 Defining and capturing the design
of a system

2)	 Cost limitations
3)	 Determining a system’s integrity,

such as reliability and safety
4)	 Working within the confines of

available elemental functionality
(i.e., processing power, memory,
battery life, etc.)

5)	 Marketability and salability
6)	 Deterministic requirements

Among others, this project can be
implemented for monitoring for:

1)	 Factory machines.
2)	 Municipal water & wastewater

treatment plants.
3)	 Agricultural irrigation.
4)	 Heating, cooling & refrigeration

equipment.
5)	 Process monitoring & control.
6)	 Condition monitoring & control.
7)	 Mining & power generation plant

and etc.

Moreover, the Teltonika T-BoxN12R
also supports GPRS and 3G applications
with the Nokia 12i module, therefore
future applications can be applied with
a Web-based remote monitoring where
parameter data can be monitored and
recorded into an online database server
for remote accessibility anywhere with
the availability of Internet access.

ACKNOWLEDGMENT

The authors gratefully acknowledge of
Universiti Teknikal Malaysia Melaka
(UTeM) for her encouragement and
financial support.

REFERENCES
[1]	 Environmental Quality Act 1974 and

Regulations Malaysia. Retrieved
from http://openlibrary.org/b/
O L 2 2 5 0 8 2 9 2 M / E n v i r o n m e n t a l _
Quality_Act_1974_and_regulations.

[2]	 Moss, A.D., 2005, K4e, Program
transformation of embedded
systems, Ph.D., Bristol, 56-5121 (BL:
DXN103086)

[3]	 Prof. Dr. Friedel Hoβfeld, Super-
Computer Evolution – Along Moore’s
Law and Beyond. Retrieved from
http://www.eml-development.de/
deutsch/veranstaltungen/kolloquien.
php?we_objectID=238

[4]	 Noergaard T., Embedded Systems
Architecture – A Comprehensive Guide
for Engineers and Programmers.

[5]	 Wiley J. & Sons, Mobile Messaging
Technologies and Services: SMS, EMS
and MMS.

[6]	 Mulchandani D., JAVA for Embedded
Systems. IEEE explore.

[7]	 A. Weaver, J. Luo, and X. Zhang,
Monitoring and control using the
internet and java, in Proceedings
of the 25th Annual Conference
of the IEEE Industrial Electronics
Society (IECON’99), vol. 3, 1999, pp.
1152–1158.

[8]	 M. J. Callaghan, J. Harkin, T. M.
McGinnity, and L. Maguire, An

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

28

internet-based methodology for
remotely accesses embedded systems,
in Proceedings of the IEEE International
Conference on Systems, Man and
Cybernetics, vol. 6, Oct. 2002.

[9]	 F. Chen and G. Ros¸u. Java-MOP: “A
Monitoring Oriented Programming
Environment for Java”. In Proceedings
of the Eleventh International
Conference on Tools and Algorithms
for the construction and analysis of
systems (TACAS’05), LNCS 3440, pages
546–550. Springer-Verlag, 2005.

[10]	 J. Ligatti. “Policy Enforcement via
ProgramMonitoring”. PhD thesis,
Princeton University, Department of
Computer Science, 2006.

[11]	 R. Sekar, C. R. Ramakrishnan, I. V.
Ramakrishnan, and S. A. Smolka.
“Model-Carrying Code (MCC): a new
paradigm for mobile-code security”. In
Proceedings of the 2001 Workshop on
New Security Paradigms, NSPW’01,
pages 23–30, New York, NY, USA, 2001.
ACM Press.

[12]	 Fei Xie, Guowu Yang , Xiaoyu Song,
“Component-based hardware/software
co-verification for building trustworthy
embedded systems”, The Journal of
Systems and Software,2007, 80,pp:
643–654

[13]	 Carlos Eduardo Pereira , Luigi Carro,
“Distributed real-time embedded
systems: Recent advances, future trends
and their impact on manufacturing
plant control”, Annual Reviews in
Control ,2007,31,pp: 81–92

