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Abstract—Currently, most implementations of vision systems 

still heavily rely on software - computer algorithms run on 

general purpose microprocessors, like on personal computers. 

This is understandable since personal computers (PC) are 

readily available, and software implementations provide 

flexibility, especially when trying out various algorithms. The 

need to have real-time vision-based systems influenced 

developers and researchers towards hardware-based - or at least 

hardware-assisted - vision systems that are capable of 

processing huge amount of data from an imaging device in real-

time (i.e. embedded vision system). Platforms like DSPs, GPUs 

and FPGAs are among the commonly used development 

platforms for a hardware-centric vision system, while ASIC 

implementations - tagged with a huge development cost - usually 

have the best performance. This paper compares various 

possible platforms that are readily available and can be used to 

develop hardware-centric vision systems. This includes DSPs, 

GPUs and FPGAs, with some insights on ASIC implementation. 

Consequently, two implementations of the proposed hardware-

centric vision system architecture are presented. Both 

implementations managed to process incoming image stream 

from camera module at 30 frames per second. 

 

Index Terms— Embedded Vision System; Hardware-Assisted 

Vision System; Image Processing Hardware; Machine Vision. 

 

I. INTRODUCTION 

 

Vision is defined as the ability to identify objects and their 

relative positions [1]. It could be the most valuable sensory 

mechanism that a system can have. Its data can potentially 

provide a tremendous amount of information from a single 

sample. Naturally, it also requires substantial processing 

power in order to extract useful information out of it. The fact 

that visual data is in 2-dimensional form makes processing in 

vision systems a real challenge. Stereo vision doubles that 

complexity, with the reward of having third dimension 

information. 

With the advances in mobile robot systems, among other 

reasons, the need for a robust computing platform other than 

personal computers (PC) became more apparent. Although 

some have built a chassis big enough to hold PCs for these 

applications, that is apparently not an option in the long run. 

Humanoid robots [2] and autonomous cars [3] are great 

examples of why a robust, yet portable, hardware-based 

vision system (embedded vision system) is required. 

Therefore, efforts on implementing a practical vision system 

should also consider hardware-related issues like system 

platform, architecture and interfacing. 

Implementations of vision systems have always been based 

on human vision, thus trying to imitate the things that actually 

take place in the actual biological system. The human vision 

has the ability to see the surrounding environment without 

any conscious thinking (i.e. brain efforts) - they merely 'see'. 

This is sometimes referred to as early vision, while others 

only classify it as low-level image processing (or image pre-

processing). 

On the other hand, it is the conscious signs of vision (i.e. 

the ability to identify objects and their relative positions) that 

executes complex image processing tasks to provide valuable 

information for decision making (i.e. action to be taken or 

reaction). Apparently, in an actual biological system, such 

'boundary' (i.e. between low-level image processing and 

high-level decision making) does not exist. These 

classifications are made for the more structured development 

of these 'artificial' vision systems. 

 

 
Figure 1: Components of a basic Vision System and its data flow 

 

Figure 1 shows typical components of a basic vision 

system. The components have been categorised according to 

its task in the system. It is worth noting here that the control 

unit can be implemented within the vision system for a more 

compact embedded vision system. A vision system usually 

receives image data in a streaming fashion from the imaging 

device. This is the primary reason why most current vision 

systems have latency and why it can be quite difficult to 

achieve 'real-time' performance. Nevertheless, data streaming 

is also currently the only practical way of transferring such 

amount of data. Notice that, for a system to decide on a 

suitable action or reaction, only meaningful data of the 

surrounding object(s) or environment is needed. This is no 

longer in image form and, in fact, can be in any abstract form. 

In the next section, various existing implementations of 

vision systems will be discussed, especially on the hardware 

platform used. The following section will cover the proposed 
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architecture of an excellent hardware-centric vision system. 

Consequently, some analysis on practical implementations of 

the proposed architecture will be presented, before more 

advanced features are discussed in the following section. 

 

II. EXISTING IMPLEMENTATIONS 

 

Many, if not most, vision systems have been implemented 

on personal computers (PC). The reason for this is most 

probably due to availability factor rather than suitability 

factor. In addition to that, there were not as many options for 

processing elements back then as it is today. As soon as PCs 

became powerful enough to handle basic image processing 

algorithm, it became the natural choice of research platform. 

However, with the availability of other processing elements 

like DSPs, GPUs and FPGAs, more researchers have opted to 

explore these alternatives. 

 

A. Digital Signal Processors 

Digital Signal Processors (DSP) are merely customised 

microprocessors that are equipped with basic multiply-

accumulate (MACC) blocks and specialised single-

instruction-multiple-data (SIMD) arithmetic instructions to 

accelerate computations of digital signals. The nice thing 

about a DSP is that it is programmable and developing 

software for a DSP is not much different from developing one 

for a PC. 

In [4], Texas Instruments’ TMS320DM642 Evaluation 

Module has been used in a fabric defect detection system 

(FDDS). The system utilises the DSP kit’s direct memory 

access (DMA) feature to facilitate image transfer from an 

onboard camera input to the onboard SDRAM memory 

module. The detection algorithm was implemented in C 

language using Code Composer Studio IDE, with the help of 

some predefined video processing library that comes with the 

module. The compiled code can then be downloaded to the 

DSP module for execution. The FDDS system in [4] has been 

reported to be capable of processing only two frames per 

second, with each frame covering 4 cm2 area of fabric. The 

image resolution is not mentioned. 

Another implementation of vision system on DSP platform 

has been used in image haze removal [5]. The system has 

been developed using TMS320C6678 development board, 

which is a multi-core DSP what is capable of parallel 

processing. The board has 8 C66x DSP cores with 1.25GHz 

for each, along with 4M shared L2 SRAM and 2GB DDR3 

memory. The algorithm has also been developed in C 

language using Code Composer Studio. The proposed image 

haze removal system is capable of processing 600x400 image 

frame in less than 50ms, but it should be noted that some 

downsampling process was used, which makes the effective 

resolution a lot less than that. 

 

B. Graphics Processing Units 

Graphics Processing Units (GPU) are mainly used to render 

images (i.e. synthesis) for display units. However, since most 

image analysis operations generally use the same arithmetic 

operations as in the image synthesis operations, GPUs 

become a viable candidate to process vision data. In fact, the 

processing power of GPUs is more suitable than DSPs due to 

the nature of their purpose. 

In [6], an embedded development board based on 

NVIDIA’s Tegra K1 is used in the detection of defective 

orange. The development board is equipped with HDMI 

video output, gigabit ethernet port and USB 3.0 port. The 

Tegra K1 itself contains a 32-bit quad-core ARM Cortex-A15 

with 192-core Kepler GPU, capable of running up to 2.3GHz 

clock frequency. The system uses an industry colour gigabit 

ethernet camera BFLY-PGE-13S2C with 1288x964 image 

resolution that is connected through an ethernet switch to the 

development board. It is running a Linux-based Operating 

System (OS) that allows many software libraries that are 

available for PCs. The algorithm is developed mainly in 

C/C++ language based on OpenCV library customised for 

Tegra. The reported processing time for a single orange is less 

than 30ms, and the detection success rate is about 95%. 

A face detection system has been developed using GPU in 

[7]. The project also highlights the use of CUDA 

programming language, which has been introduced by 

NVIDIA to allow GPU usage for other general processing 

work, as well as working together in parallel. The GPU used 

in this project is NVIDIA GeForce 310M, which is 

configured as a co-processing element along with Intel i5 

Core as host CPU. The image frame to be processed is 

supplied by the host CPU. This project compared GPU 

performance against standard CPU implementations and 

concluded that a speedup of at least 16 times could be 

obtained using GPU, with some cases going up to over 20 

times. 

 

C. Field Programmable Gate Arrays 

Field Programmable Gate Arrays (FPGA) are meant as a 

way to prototype digital logic circuits on hardware fabric, 

which makes it inherently faster than its equivalent software 

counterpart executed on a similar hardware fabric. Naturally, 

FPGAs can easily achieve parallel processing capabilities by 

having multiple processing logic blocks implemented on it. 

However, because of this low-level feature, it is relatively 

hard to implement sophisticated algorithms that require 

variable sequencing and iterations. 

The work presented in [8] sums up the advantages of using 

FPGAs in vision system compared to other platforms. The 

object detection system being used is a pedestrian detection 

system that has been implemented on Convey HC-2ex 

machine, which boasts a hybrid-core architecture that 

consists of two Intel Xeon E5-2643 four-core processors and 

four Xilinx Virtex-6 LX760 FPGAs. All CPUs and FPGAs 

have their local memory, but those are globally addressable 

as 256-GB virtual memory. The FPGA development work is 

done in Verilog HDL using Xilinx ISE suite. The FPGA-

based system is capable of processing VGA resolution 

images (640x480) at about eight frames per second when 

using floating-point implementation, and at about 68 frames 

per second when using fixed-point implementation. This fact 

exhibits the versatility of an FPGA implementation that 

allows developers to customise data representation and 

internal storage format. 

Meanwhile, in [9], a vision-based robot tracking monitoring 

system has been developed using Xilinx Virtex-4 

XC4VFX100-11 FPGA. It uses 4 Gigabit Ethernet camera to 

cover a robot arena of 6m x 6m. They are cable connected 

directly to the RAPTOR Development board, each camera 

providing 1024x1024 image pixels per frame. Each robot is 

marked with a circle (robot marker), a pentagon (direction) 

and a barcode (unique robot identification). For a 2048 x 2048 

pixels camera image, the system managed to run at a 

maximum frame rate of 152 frames per second. Using four 

cameras, the maximum frame rate for the complete system is 
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limited to 119.2 frames per second. When compared to a 

software implementation based on the OpenCV library on a 

state of the art PC equipped with a 3.2 GHz Intel i7 quad-core 

CPU, a speedup of more than 30 can be achieved. 

 

D. Other Alternatives 

ASIC implementations are the most ideal regarding 

performance since the processing elements can potentially be 

placed on the same integrated circuit (IC) fabric as the image 

sensors. The processing element can be designed to process 

per-pixel information even before being streamed to the next 

processing level. However, doing this requires a considerable 

cost regarding time and money - not to mention the need for 

IC design experience. 

In [10], a System-on-Chip (SoC) that implements a 

microprocessor with a customised instruction set or an 

Application Specific Instruction set Processor (ASIP) has 

been introduced. Having CMOS image sensors on-chip 

reduces the cost of image transfer that is usually inherent in 

many conventional vision systems. However, using serial 

peripheral interface (SPI) as the only data interface creates a 

limit to the image stream bandwidth. This is compensated by 

expanding the SPI port to allow 2, 4 or 8 output lines which 

can be used by external processing elements like FPGA, 

while maintaining backward compatibility with an older 

microcontroller that needs standard SPI. Even though no 

practical applications have been presented, the advantages of 

this ‘Vision Chip’ are encouraging. 

One other processing element that is worth mentioning and 

can potentially be used for a vision system platform is Cell 

processors. Cell processors are microprocessors based on 

general purpose Power Architecture Core (i.e. used in 

PowerPCs) that has been combined with co-processing 

elements to enhance multimedia and vector processing 

capabilities. They can be seen as a combination of GPU and 

general microprocessor on the same IC. Cell processors have 

the processing power to be used in vision systems, but 

unfortunately, they are not so readily available to all. 

 

III. HARDWARE-CENTRIC ARCHITECTURE 

 

As with many other optimum solutions, the preferable 

approach to implement a vision system is converging towards 

combining multiple processing units. Hardware-centric 

component could provide performance, while the software-

centric component provides feature-rich solutions for 

implementing the complex algorithm. Nevertheless, 

implementations of vision systems are usually very objective-

dependent and differ from one another based on its purpose 

[11]. The purpose of this proposed implementation is to focus 

more on the hardware implementation (i.e. hardware-centric) 

part of a vision system. 

The most critical decision that has to be made when 

implementing a hardware-centric vision system is selecting a 

platform. This is because how a system is and can be, 

developed will be based on that particular decision. Referring 

to Figure 1, the implementation that needs to be considered is 

the components inside the dotted-lined box. The following 

subsections cover specific parts of the proposed 

implementation, including platform selection. 

 

A. Hardware Platform 

The proposed implementation will make use of FPGA’s 

inherent ability to have multiple processing elements working 

in parallel. This allows the system to execute at a lower 

frequency (lower power consumption) while maintaining 

data throughput.  

The fact that development work on FPGA needs some 

digital logic design knowledge does not pose any problems 

since there are tools (e.g. Matlab® toolbox) that can 

synthesise digital logic circuit based on a standard sequential 

algorithm. However, to make tweaks to design, it is best if 

everyone can be described or structured from the ground up. 

The versatility of FPGA allows the system to implement a 

camera interface module which allows an imaging device to 

be connected directly to the system. Since a common imaging 

device with digital interface usually produces image data 

pixel-by-pixel in streaming fashion, a reasonably fast 

processing element can execute some processing while the 

image is being transferred. 

Figure 2 shows how processing element like FPGA can 

take advantage of pixel data streaming. As shown in Figure 

2(a), most implementation usually uses a standard PC (or 

another controller that takes care of image capture) to grab a 

frame and store it on system memory, before passing it to the 

processing element. The processing element can then pass the 

processed data back to the main processor for high-level 

processing or directly to display. 

 

 
Figure 2: (a) Common vision system implementation, (b) Proposed 

Implementation 
 

On the other hand, the proposed implementation assigns the 

processing element (in this case, the FPGA) to directly 

capture the input frame from the imaging device before 

passing it to the main processor for high-level processing. 

This allows for the low-level image processing (early vision) 

to occur in-stream, while the image is being transferred. 

However, interfacing a processing element directly to an 

imaging device can introduce other concerns like clock 

domain crossing. 

 

B. Clock Domain Crossing 

When creating an interface module for an imaging device 

(camera module), the easiest way to get image data is by 

sampling the control output signals and register pixel data 

when it is available and valid. This is shown in Figure 3. 
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Figure 3: The state machine samples control and data output from the 

camera module 
 

The sampling is done using FPGA clock and the camera 

module usually (and it is, in this case) has its onboard clock. 

This is something that is not desirable because a digital 

system works better in a synchronous single-clock domain. 

The sampling of camera module signals may produce 

unexpected errors, even if the FPGA clock is running more 

than twice the frequency of the clock module (Nyquist rate). 

There are two options to overcome this: the first is to use a 

camera module that can be controlled by an external clock 

(i.e. using FPGA clock signal), and the second is to separate 

the two clock signals using a dual clock First-In-First-Out 

(FIFO) buffer as shown in Figure 4 below. 

 

 
 

Figure 4: The FPGA clock domain and camera module clock domain 
separated using dual-clock FIFO buffer 

 

The FPGA clock domain is now clearly separated from the 

camera module signals. The internal state machine only needs 

to wait for camera data to be available in the FIFO buffer and 

read from it. This proves to be a better design compared to 

the previous register-based interface. 

 

C. In-stream Processing 

This concept is only possible if the processing element has 

direct access to the imaging device. Most, if not all, imaging 

device transfers an image pixel-by-pixel at a specified rate. 

So, instead of storing everything in memory, a powerful 

processing element can execute some pixel manipulation 

procedure while image data is being transferred into the 

system. 

There are four common levels of processing in a vision 

system: 

1. Pixel manipulation - each pixel can be processed 

independently. For example, thresholding or grayscale 

conversion. This type of processing can be inserted at 

any stage and only adds latency to the overall 

processing. The output is still a pixel value (image 

data). 

2. Local neighbourhood - pixels are grouped (usually an 

m x m square) for better interpretation. For example, 

edge detection or blurring. This can be implemented 

using FIFO line buffers and also only adds latency. 

The output is pixel information related to its 

neighbouring pixel (filtered image data). 

3. Global neighbourhood - the whole frame is needed to 

produce processed information. For example, 

histogram and pixel counting. Output can be either 

per-pixel information (filtered image data) or per-

image information (abstract data). 

4. Inter-frame processing - a sequence of images is 

needed for this. This is specific to vision systems, in 

which past frame (or frame information) sometimes 

need to be retained for at least another one frame 

period. For example, optical flow computation. The 

output is usually in abstract form but can be per-pixel 

information. 

 

For in-stream processing, only the first two types are 

suitable candidates. The third type can be included but only 

if the whole frame need not be buffered for processing, like 

pixel counting. As for the fourth type, it is best if this is 

implemented in the high-level processing element, where 

memory management unit may be required. This subsection 

will subsequently focus on implementing the second type 

because this type is the most commonly used filtering method 

used for early vision. 

Image data streams are usually structured in rows, column 

by column. This makes processing windowed region of the 

image a little bit tricky. For an m x m filter size, we need to 

buffer m rows of the pixel. This is shown in Figure 5. Notice 

that the FIFO buffers introduce data latency equal to m image 

row period. 

 

 
 

Figure 5: The Basic Idea of In-Stream Processing on FIFO buffer 
 

Ideally, m x m processing elements need to be placed in the 

area marked by a dot-dash line in Figure 5. However, this is 

somewhat not doable in FPGA design because FIFO element 

is usually part of the core FPGA component library that has 

been optimised for FPGA implementation. Instead, the design 

can be restructured as shown in Figure 6. 

 

 
 

Figure 6: Actual Implementation of In-stream Processing 
 

Since the processing elements need to be placed separately 

from the FIFO buffers, each of them needs to have a data latch 

to hold the pixel value (as shown in Figure 6). There is an 

advantage if doing this. Since the pixel data in row m is now 

latched by the processing elements (PE), there is no longer a 

need to buffer that last line. So, the increase in size with the 

addition of extra m x m data latches is already compensated 

by the removal of a full FIFO row buffer (less FIFO area). 

This also causes the data latency to be reduced to m-1 image 

row period plus m clock period. 
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D. Separable Filter 

Image filters usually perform a convolution operation 

against the pixels surrounding a pixel being processed. It is a 

sum of the products of neighbouring pixels (including current 

pixel) with filter coefficients. Generally, for a 3 x 3 image 

filter, processing a single pixel would require nine 

multiplications and eight additions. Since convolution is 

associative, ‘breaking down’ the 2-dimensional image filter 

into two vectors should reduce that processing load. Consider 

a 3 x 3 kernel of Sobel filter for x-direction. 
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The kernel in Equation (1) can be rewritten as a product of 

a row vector h and a column vector v, as shown in Equation 

(2).  
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The required computation is now three multiplications and 

two additions for the first vector, and another three 

multiplications and three additions for the second vector. That 

is about 30% reduction in processing complexity. Although 

in our parallel design, this does not matter much, it is still an 

advantage since we do not need as much multiplier in the 

processing elements. 

 

IV. IMPLEMENTATION ANALYSIS 

 

This section discusses two implementations of the 

hardware-centric architecture presented in the previous 

section. This is to show that the architecture does not rely on 

any specific FPGA device. The two implementations use 

different FPGA boards that were designed for different 

purposes. The first board is a general purpose FPGA 

development board that imitates a motherboard of PCs, while 

the second is a customised FPGA board meant as a co-

processor to a mobile robot controller board. 

 

A. Xilinx ML310 Development Board 

The Xilinx ML310 development board is very similar to a 

standard desktop computer motherboard. For example, it has 

the typical USB, LPT and COM communication ports, PCI 

slots, DDR SDRAM memory, and even ports for standard 

mouse and keyboard. The features that are of interest in here 

are the 256MB DDR SDRAM, CF card slot, the serial COM 

port and, of course, the FPGA Virtex-II Pro chip XC2VP30.  

Having a large memory for storage is always useful when 

executing image processing functions. The 256MB DDR 

SDRAM is more than enough for any embedded vision 

system to operate, but the excess memory could be used to 

hold multiple frames for advanced processing and debugging 

purposes should the need arises. On the other hand, a large 

memory with single access bus is not desirable for a system 

that can have parallel processing blocks executing at the same 

time. 

The XC2VP30 is a member of the Virtex-II Pro Xilinx 

FPGA family. Its most outstanding feature is the availability 

of two internal 32-bit RISC PowerPC core. It also has around 

30,800 logic cells and almost 13,700 configurable logic 

blocks (CLB). In addition to that, there are 136 18x18-bit 

multipliers and 136 18kb block RAM on it. 

The test setup is shown in Figure 7. Interface board for a 

CMOS camera and an LCD has been built and connected to 

the Xilinx ML310 Development Board. The LCD is not 

necessary for the vision system, but at the development or 

testing stage, it is essential to be able to verify what our 

system actually 'sees'. 

 

 
 

Figure 7: The test setup for ML310-based Vision System 
 

 
 

Figure 8: Block Diagram to show in-stream processing on ML310-based 

Vision System 
 

The overall implementation shown in Figure 8 is based on 

using the PowerPC core that is available on the FPGA. A 

custom controller for both the LCD and the camera has been 

developed on the FPGA along with grayscale conversion and 

an edge detection filter module. The camera has a CIF 

resolution of 352x288 while the LCD can display a 320x240 

12-bit colour image. The camera data input stream is actually 

in Bayer pattern, and therefore, the camera interface module 

(camera controller) needs to have a demosaicing (CFA 

interpolation) procedure as well. 

All the modules used in the system were developed using 

VHDL from scratch, except for the Processor Local Bus 

(PLB) interface which is better off using the provided core 

library. The PLB is only used to write the processed image to 

RAM, and for the main controller (PPC405) to send control 

signals (i.e. configurations) to the vision module. The 

PPC405 itself is executing a control program written in C. 

The vision module operations can be controlled through the 

serial port RS232 interface that is available on the ML310 

development board. 

The output of the Sobel edge detection feature as seen on 

the LCD module is shown in Figure 9. It should be noted that 
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the display is a live feed that is streaming QVGA resolution 

(320x240) image at 30 frames per second. 

 

 
 

Figure 9: Original image (left) and Filtered Image (right) 
 

Table 1 shows the FPGA resource utilisation for this 

particular implementation on ML310. The number of logic 

slices available on FPGA usually indicates the size of logic 

circuits that can be implemented. It usually consists of 

registers (memory) and logic blocks (Look-up Tables or 

LUT). The data shows that most of the FPGA resources have 

been used for basic image capture and display. 

 
Table 1 

FPGA Resource Utilization in ML310 Implementation 

 

 Used Available Percentage 

Logic Slice 7,452 13,696 54% 

Block RAM 79 136 58% 

4-input LUT 11,684 27,392 42% 

 

Although there are still some spaces available for more 

filters to be implemented, it would be more beneficial to 

offload the display buffer to an external component (maybe 

one complete with its controller). Since the display is most 

probably not needed, this would make the design closer to the 

final implementation. This is useful in determining the 

optimal memory requirement for the final system, as can be 

seen in the second implementation. 

Referring to the utilisation data for block RAM as 

presented in Table 1, it should be noted that only 1 out of 58 

percent block RAM usage is used for the simple Sobel filter 

(i.e. as row buffers). Other than the LCD memory, the 

PowerPC is also using 64kB of the remaining block RAM for 

its instruction and data memory. The external DDR SDRAM 

is yet to be used due to the requirements of the design 

architecture. The processing blocks in the stream are expected 

to have exclusive access to the memory buffer assigned to it. 

Thus, the need for dual-port memories is essential in its 

operation. Putting the processing blocks on a single bus that 

can access the external DDR SDRAM would introduce delay. 

This scenario is, in fact, has been the bottleneck of many 

systems that depend on data from memory. There are only 

two expected scenarios where the vast external memory can 

be used in the current architecture; (1) High-level image 

processing (or any other kind of image processing) that is 

executed by the PowerPC, and (2) Image stream is written to 

the external RAM and read by another type of filter block that 

is also a master on the PLB bus (on which the DDR SDRAM 

is connected to). 

 

B. EyeBot M6 Controller Board 

The EyeBot M6 controller board is a general purpose 

embedded system board that is equipped with stereo vision 

capabilities. The main controller device is an off-the-shelf 

Gumstix Connex 400xm-bt, a single board computer (SBC) 

that has a 400MHz Intel XScale PXA255-CPU, 64MB RAM 

and 16MB flash memory. The controller is configured to run 

Linux OS that is built using buildroot, a tool that can be used 

to generate Embedded Linux systems. In addition to that, it 

also has a Spartan-3E family Xilinx FPGA, the XC3S500E 

PG208, which is a low-cost FPGA with a relatively high logic 

density. It has about 10500 logic cells, almost 1200 CLBs, 20 

18x18-bit multipliers and 360kb block RAM. 

The FPGA on EyeBot M6 is clocked using a 50MHz 

crystal and has exclusive access to a 2Mb static RAM 

(SRAM) as well as the dual camera interface (stereo vision). 

There is no configuration memory for the FPGA – so, the 

FPGA is designed to be programmed by the ‘host’ processor 

running Linux. A Linux kernel driver is available to provide 

the interface required to do that. 

The vision module implemented on Eyebot M6 is the same 

one (developed using VHDL) used on ML310. However, 

some changes were made mainly on the memory interface, 

display and access method. For one, the EyeBot M6 provides 

an exclusive SRAM module, which negates the need for 

internal Block RAMs (which the Spartan-3E does not have). 

Next, the implementation on EyeBot M6 does not need an 

LCD controller because the controller on Gumstix already 

handles that. As mentioned earlier, a vision system does not 

need it. Finally, the access method is different since there are 

no PLB controllers in this implementation. Instead, a simple 

memory addressing method has been implemented so that the 

PXA255 controller can access the processed image on 

SRAM. 

Table 2 shows the FPGA resource utilisation for this 

implementation on EyeBot M6. The data shows that basic 

grayscale filter and Sobel edge detection modules take less 

than 10% of the available resources on the Spartan-3E FPGA. 

 
Table 2 

FPGA Resource Utilization in EyeBot M6 Implementation 
 

 Used Available Percentage 

Logic Slice 501 4,656 10% 

Block RAM 0 20 0% 
4-input LUT 648 9,312 6% 

 

It is clear that a lot more can be put into this implementation 

and having the main controller off-chip (unlike ML310 

implementation) helps a lot in achieving this. 

 

V. DISCUSSION 

 

It is evident that the only implementation that can be seen 

to be more efficient than in-stream processing is an ASIC 

implementation that has both processing elements and 

imaging device on the same silicon. This section discusses 

another advantage of FPGA-based implementation compared 

to other platforms and the comparison between the two 

implementations presented in the previous section. 

 

A. Reconfigurable Computing 

The reconfigurable nature of FPGAs makes them a 

compelling platform for any digital system. When used with 

another processor, the FPGA fabric can be reconfigured at 

runtime without changing any hardware interface. 

In the past, even a small change in the system design would 

require the whole system to be re-synthesised and the FPGA 

to be re-programmed. Dynamic reconfiguration is a feature in 

which only the modified part of the FPGA needs to go 

through the process. If the modified section is not part of the 
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main processing block or if the rest of the system is not 

dependent on it, the reconfiguration process could be done at 

runtime. This introduces the idea of having image processing 

filters as hardware modules that can be dynamically inserted 

or removed as required. 

On Xilinx FPGA, the feature for this purpose, which is also 

known as partial reconfiguration, is available on Virtex-II 

chips onwards. However, using this feature is not an 

automated process. The system designer needs to manually 

partition the respective part of the system that will go through 

the reconfiguration process and ensure that the rest of the 

system is manageable throughout the procedure. In short, 

more work needs to be done to be able to incorporate this 

feature into a design. 

 

B. Comparison of Implementations 

From a development point of view, there are a few things 

to note. Table 3 shows that the ML310 consumes a lot more 

space compared to Eyebot M6. This is to be expected because 

everything is implemented on FPGA, which have a PPC405 

PowerPC core to run the controller software system. Because 

of that, this implementation requires Xilinx EDK software to 

configure the PPC405 core configurations and the peripheral 

controllers around it. 

 
Table 3 

Comparison of Implementations 

 

Platform Used 
Development 

Tools 

Synthesis 

Time 

Estimated 

Xilinx 
ML310 

More than 50% usage. 
Xilinx EDK 

& ISE 
35 

minutes 

EyeBot 

M6 
Less than 10% usage 

Xilinx ISE & 

GCC-ARM 
compiler 

10 

minutes 

 

The implementation on EyeBot M6 is based on the 

interface to Gumstix, with the image grabber and image 

filters implemented on FPGA. The fact that the FPGA is 

programmable at any time by Gumstix controller board 

makes it an excellent example of how reconfigurable 

computing can be beneficial. 

Synthesis time is the time needed for the design software 

to build an FPGA bitstream image file that will be 

downloaded to an FPGA device. For testing designs on real 

boards, the bitstream image file needs to be re-synthesised if 

there are any changes made to the design. Note that the 

synthesis time when using Xilinx EDK could get up to 35 

minutes per design, which can be frustrating at the early 

design stage if the implemented design does not work as 

expected as it often does. 

 

VI. CONCLUSION 

 

FPGA could be the ideal platform to implement a 

hardware-centric vision system. Both implementations show 

that they are capable of processing incoming image stream at 

30 frames per second. The proposed architecture can easily 

be upgraded with the reconfigurable nature of FPGA. Added 

by the fact that current high-performance FPGAs are also 

fitted with DSP computation modules, the possibilities of 

having an artificial vision system that is similar to biological 

vision system are increasing quite rapidly. 
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