

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 123

Implementation of a Hardware-centric Vision

System Architecture

Azman Muhamad Yusof1,2, Ali Yeon Md Shakaff1,3 and Saufiah Abdul Rahim3

1Center of Excellence for Advance Sensor Technology (CEASTech), UniMAP.
2Department of Electronics Engineering Technology, Faculty of Engineering Technology, UniMAP.

3School of Mechatronic Engineering, UniMAP.

azman@unimap.edu.my

Abstract—Currently, most implementations of vision systems

still heavily rely on software - computer algorithms run on

general purpose microprocessors, like on personal computers.

This is understandable since personal computers (PC) are

readily available, and software implementations provide

flexibility, especially when trying out various algorithms. The

need to have real-time vision-based systems influenced

developers and researchers towards hardware-based - or at least

hardware-assisted - vision systems that are capable of

processing huge amount of data from an imaging device in real-

time (i.e. embedded vision system). Platforms like DSPs, GPUs

and FPGAs are among the commonly used development

platforms for a hardware-centric vision system, while ASIC

implementations - tagged with a huge development cost - usually

have the best performance. This paper compares various

possible platforms that are readily available and can be used to

develop hardware-centric vision systems. This includes DSPs,

GPUs and FPGAs, with some insights on ASIC implementation.

Consequently, two implementations of the proposed hardware-

centric vision system architecture are presented. Both

implementations managed to process incoming image stream

from camera module at 30 frames per second.

Index Terms— Embedded Vision System; Hardware-Assisted

Vision System; Image Processing Hardware; Machine Vision.

I. INTRODUCTION

Vision is defined as the ability to identify objects and their

relative positions [1]. It could be the most valuable sensory

mechanism that a system can have. Its data can potentially

provide a tremendous amount of information from a single

sample. Naturally, it also requires substantial processing

power in order to extract useful information out of it. The fact

that visual data is in 2-dimensional form makes processing in

vision systems a real challenge. Stereo vision doubles that

complexity, with the reward of having third dimension

information.

With the advances in mobile robot systems, among other

reasons, the need for a robust computing platform other than

personal computers (PC) became more apparent. Although

some have built a chassis big enough to hold PCs for these

applications, that is apparently not an option in the long run.

Humanoid robots [2] and autonomous cars [3] are great

examples of why a robust, yet portable, hardware-based

vision system (embedded vision system) is required.

Therefore, efforts on implementing a practical vision system

should also consider hardware-related issues like system

platform, architecture and interfacing.

Implementations of vision systems have always been based

on human vision, thus trying to imitate the things that actually

take place in the actual biological system. The human vision

has the ability to see the surrounding environment without

any conscious thinking (i.e. brain efforts) - they merely 'see'.

This is sometimes referred to as early vision, while others

only classify it as low-level image processing (or image pre-

processing).

On the other hand, it is the conscious signs of vision (i.e.

the ability to identify objects and their relative positions) that

executes complex image processing tasks to provide valuable

information for decision making (i.e. action to be taken or

reaction). Apparently, in an actual biological system, such

'boundary' (i.e. between low-level image processing and

high-level decision making) does not exist. These

classifications are made for the more structured development

of these 'artificial' vision systems.

Figure 1: Components of a basic Vision System and its data flow

Figure 1 shows typical components of a basic vision

system. The components have been categorised according to

its task in the system. It is worth noting here that the control

unit can be implemented within the vision system for a more

compact embedded vision system. A vision system usually

receives image data in a streaming fashion from the imaging

device. This is the primary reason why most current vision

systems have latency and why it can be quite difficult to

achieve 'real-time' performance. Nevertheless, data streaming

is also currently the only practical way of transferring such

amount of data. Notice that, for a system to decide on a

suitable action or reaction, only meaningful data of the

surrounding object(s) or environment is needed. This is no

longer in image form and, in fact, can be in any abstract form.

In the next section, various existing implementations of

vision systems will be discussed, especially on the hardware

platform used. The following section will cover the proposed

Journal of Telecommunication, Electronic and Computer Engineering

124 e-ISSN: 2289-8131 Vol. 10 No. 1-15

architecture of an excellent hardware-centric vision system.

Consequently, some analysis on practical implementations of

the proposed architecture will be presented, before more

advanced features are discussed in the following section.

II. EXISTING IMPLEMENTATIONS

Many, if not most, vision systems have been implemented

on personal computers (PC). The reason for this is most

probably due to availability factor rather than suitability

factor. In addition to that, there were not as many options for

processing elements back then as it is today. As soon as PCs

became powerful enough to handle basic image processing

algorithm, it became the natural choice of research platform.

However, with the availability of other processing elements

like DSPs, GPUs and FPGAs, more researchers have opted to

explore these alternatives.

A. Digital Signal Processors

Digital Signal Processors (DSP) are merely customised

microprocessors that are equipped with basic multiply-

accumulate (MACC) blocks and specialised single-

instruction-multiple-data (SIMD) arithmetic instructions to

accelerate computations of digital signals. The nice thing

about a DSP is that it is programmable and developing

software for a DSP is not much different from developing one

for a PC.

In [4], Texas Instruments’ TMS320DM642 Evaluation

Module has been used in a fabric defect detection system

(FDDS). The system utilises the DSP kit’s direct memory

access (DMA) feature to facilitate image transfer from an

onboard camera input to the onboard SDRAM memory

module. The detection algorithm was implemented in C

language using Code Composer Studio IDE, with the help of

some predefined video processing library that comes with the

module. The compiled code can then be downloaded to the

DSP module for execution. The FDDS system in [4] has been

reported to be capable of processing only two frames per

second, with each frame covering 4 cm2 area of fabric. The

image resolution is not mentioned.

Another implementation of vision system on DSP platform

has been used in image haze removal [5]. The system has

been developed using TMS320C6678 development board,

which is a multi-core DSP what is capable of parallel

processing. The board has 8 C66x DSP cores with 1.25GHz

for each, along with 4M shared L2 SRAM and 2GB DDR3

memory. The algorithm has also been developed in C

language using Code Composer Studio. The proposed image

haze removal system is capable of processing 600x400 image

frame in less than 50ms, but it should be noted that some

downsampling process was used, which makes the effective

resolution a lot less than that.

B. Graphics Processing Units

Graphics Processing Units (GPU) are mainly used to render

images (i.e. synthesis) for display units. However, since most

image analysis operations generally use the same arithmetic

operations as in the image synthesis operations, GPUs

become a viable candidate to process vision data. In fact, the

processing power of GPUs is more suitable than DSPs due to

the nature of their purpose.

In [6], an embedded development board based on

NVIDIA’s Tegra K1 is used in the detection of defective

orange. The development board is equipped with HDMI

video output, gigabit ethernet port and USB 3.0 port. The

Tegra K1 itself contains a 32-bit quad-core ARM Cortex-A15

with 192-core Kepler GPU, capable of running up to 2.3GHz

clock frequency. The system uses an industry colour gigabit

ethernet camera BFLY-PGE-13S2C with 1288x964 image

resolution that is connected through an ethernet switch to the

development board. It is running a Linux-based Operating

System (OS) that allows many software libraries that are

available for PCs. The algorithm is developed mainly in

C/C++ language based on OpenCV library customised for

Tegra. The reported processing time for a single orange is less

than 30ms, and the detection success rate is about 95%.

A face detection system has been developed using GPU in

[7]. The project also highlights the use of CUDA

programming language, which has been introduced by

NVIDIA to allow GPU usage for other general processing

work, as well as working together in parallel. The GPU used

in this project is NVIDIA GeForce 310M, which is

configured as a co-processing element along with Intel i5

Core as host CPU. The image frame to be processed is

supplied by the host CPU. This project compared GPU

performance against standard CPU implementations and

concluded that a speedup of at least 16 times could be

obtained using GPU, with some cases going up to over 20

times.

C. Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGA) are meant as a

way to prototype digital logic circuits on hardware fabric,

which makes it inherently faster than its equivalent software

counterpart executed on a similar hardware fabric. Naturally,

FPGAs can easily achieve parallel processing capabilities by

having multiple processing logic blocks implemented on it.

However, because of this low-level feature, it is relatively

hard to implement sophisticated algorithms that require

variable sequencing and iterations.

The work presented in [8] sums up the advantages of using

FPGAs in vision system compared to other platforms. The

object detection system being used is a pedestrian detection

system that has been implemented on Convey HC-2ex

machine, which boasts a hybrid-core architecture that

consists of two Intel Xeon E5-2643 four-core processors and

four Xilinx Virtex-6 LX760 FPGAs. All CPUs and FPGAs

have their local memory, but those are globally addressable

as 256-GB virtual memory. The FPGA development work is

done in Verilog HDL using Xilinx ISE suite. The FPGA-

based system is capable of processing VGA resolution

images (640x480) at about eight frames per second when

using floating-point implementation, and at about 68 frames

per second when using fixed-point implementation. This fact

exhibits the versatility of an FPGA implementation that

allows developers to customise data representation and

internal storage format.

Meanwhile, in [9], a vision-based robot tracking monitoring

system has been developed using Xilinx Virtex-4

XC4VFX100-11 FPGA. It uses 4 Gigabit Ethernet camera to

cover a robot arena of 6m x 6m. They are cable connected

directly to the RAPTOR Development board, each camera

providing 1024x1024 image pixels per frame. Each robot is

marked with a circle (robot marker), a pentagon (direction)

and a barcode (unique robot identification). For a 2048 x 2048

pixels camera image, the system managed to run at a

maximum frame rate of 152 frames per second. Using four

cameras, the maximum frame rate for the complete system is

Implementation of a Hardware-centric Vision System Architecture

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 125

limited to 119.2 frames per second. When compared to a

software implementation based on the OpenCV library on a

state of the art PC equipped with a 3.2 GHz Intel i7 quad-core

CPU, a speedup of more than 30 can be achieved.

D. Other Alternatives

ASIC implementations are the most ideal regarding

performance since the processing elements can potentially be

placed on the same integrated circuit (IC) fabric as the image

sensors. The processing element can be designed to process

per-pixel information even before being streamed to the next

processing level. However, doing this requires a considerable

cost regarding time and money - not to mention the need for

IC design experience.

In [10], a System-on-Chip (SoC) that implements a

microprocessor with a customised instruction set or an

Application Specific Instruction set Processor (ASIP) has

been introduced. Having CMOS image sensors on-chip

reduces the cost of image transfer that is usually inherent in

many conventional vision systems. However, using serial

peripheral interface (SPI) as the only data interface creates a

limit to the image stream bandwidth. This is compensated by

expanding the SPI port to allow 2, 4 or 8 output lines which

can be used by external processing elements like FPGA,

while maintaining backward compatibility with an older

microcontroller that needs standard SPI. Even though no

practical applications have been presented, the advantages of

this ‘Vision Chip’ are encouraging.

One other processing element that is worth mentioning and

can potentially be used for a vision system platform is Cell

processors. Cell processors are microprocessors based on

general purpose Power Architecture Core (i.e. used in

PowerPCs) that has been combined with co-processing

elements to enhance multimedia and vector processing

capabilities. They can be seen as a combination of GPU and

general microprocessor on the same IC. Cell processors have

the processing power to be used in vision systems, but

unfortunately, they are not so readily available to all.

III. HARDWARE-CENTRIC ARCHITECTURE

As with many other optimum solutions, the preferable

approach to implement a vision system is converging towards

combining multiple processing units. Hardware-centric

component could provide performance, while the software-

centric component provides feature-rich solutions for

implementing the complex algorithm. Nevertheless,

implementations of vision systems are usually very objective-

dependent and differ from one another based on its purpose

[11]. The purpose of this proposed implementation is to focus

more on the hardware implementation (i.e. hardware-centric)

part of a vision system.

The most critical decision that has to be made when

implementing a hardware-centric vision system is selecting a

platform. This is because how a system is and can be,

developed will be based on that particular decision. Referring

to Figure 1, the implementation that needs to be considered is

the components inside the dotted-lined box. The following

subsections cover specific parts of the proposed

implementation, including platform selection.

A. Hardware Platform

The proposed implementation will make use of FPGA’s

inherent ability to have multiple processing elements working

in parallel. This allows the system to execute at a lower

frequency (lower power consumption) while maintaining

data throughput.

The fact that development work on FPGA needs some

digital logic design knowledge does not pose any problems

since there are tools (e.g. Matlab® toolbox) that can

synthesise digital logic circuit based on a standard sequential

algorithm. However, to make tweaks to design, it is best if

everyone can be described or structured from the ground up.

The versatility of FPGA allows the system to implement a

camera interface module which allows an imaging device to

be connected directly to the system. Since a common imaging

device with digital interface usually produces image data

pixel-by-pixel in streaming fashion, a reasonably fast

processing element can execute some processing while the

image is being transferred.

Figure 2 shows how processing element like FPGA can

take advantage of pixel data streaming. As shown in Figure

2(a), most implementation usually uses a standard PC (or

another controller that takes care of image capture) to grab a

frame and store it on system memory, before passing it to the

processing element. The processing element can then pass the

processed data back to the main processor for high-level

processing or directly to display.

Figure 2: (a) Common vision system implementation, (b) Proposed

Implementation

On the other hand, the proposed implementation assigns the

processing element (in this case, the FPGA) to directly

capture the input frame from the imaging device before

passing it to the main processor for high-level processing.

This allows for the low-level image processing (early vision)

to occur in-stream, while the image is being transferred.

However, interfacing a processing element directly to an

imaging device can introduce other concerns like clock

domain crossing.

B. Clock Domain Crossing

When creating an interface module for an imaging device

(camera module), the easiest way to get image data is by

sampling the control output signals and register pixel data

when it is available and valid. This is shown in Figure 3.

Journal of Telecommunication, Electronic and Computer Engineering

126 e-ISSN: 2289-8131 Vol. 10 No. 1-15

Figure 3: The state machine samples control and data output from the

camera module

The sampling is done using FPGA clock and the camera

module usually (and it is, in this case) has its onboard clock.

This is something that is not desirable because a digital

system works better in a synchronous single-clock domain.

The sampling of camera module signals may produce

unexpected errors, even if the FPGA clock is running more

than twice the frequency of the clock module (Nyquist rate).

There are two options to overcome this: the first is to use a

camera module that can be controlled by an external clock

(i.e. using FPGA clock signal), and the second is to separate

the two clock signals using a dual clock First-In-First-Out

(FIFO) buffer as shown in Figure 4 below.

Figure 4: The FPGA clock domain and camera module clock domain
separated using dual-clock FIFO buffer

The FPGA clock domain is now clearly separated from the

camera module signals. The internal state machine only needs

to wait for camera data to be available in the FIFO buffer and

read from it. This proves to be a better design compared to

the previous register-based interface.

C. In-stream Processing

This concept is only possible if the processing element has

direct access to the imaging device. Most, if not all, imaging

device transfers an image pixel-by-pixel at a specified rate.

So, instead of storing everything in memory, a powerful

processing element can execute some pixel manipulation

procedure while image data is being transferred into the

system.

There are four common levels of processing in a vision

system:

1. Pixel manipulation - each pixel can be processed

independently. For example, thresholding or grayscale

conversion. This type of processing can be inserted at

any stage and only adds latency to the overall

processing. The output is still a pixel value (image

data).

2. Local neighbourhood - pixels are grouped (usually an

m x m square) for better interpretation. For example,

edge detection or blurring. This can be implemented

using FIFO line buffers and also only adds latency.

The output is pixel information related to its

neighbouring pixel (filtered image data).

3. Global neighbourhood - the whole frame is needed to

produce processed information. For example,

histogram and pixel counting. Output can be either

per-pixel information (filtered image data) or per-

image information (abstract data).

4. Inter-frame processing - a sequence of images is

needed for this. This is specific to vision systems, in

which past frame (or frame information) sometimes

need to be retained for at least another one frame

period. For example, optical flow computation. The

output is usually in abstract form but can be per-pixel

information.

For in-stream processing, only the first two types are

suitable candidates. The third type can be included but only

if the whole frame need not be buffered for processing, like

pixel counting. As for the fourth type, it is best if this is

implemented in the high-level processing element, where

memory management unit may be required. This subsection

will subsequently focus on implementing the second type

because this type is the most commonly used filtering method

used for early vision.

Image data streams are usually structured in rows, column

by column. This makes processing windowed region of the

image a little bit tricky. For an m x m filter size, we need to

buffer m rows of the pixel. This is shown in Figure 5. Notice

that the FIFO buffers introduce data latency equal to m image

row period.

Figure 5: The Basic Idea of In-Stream Processing on FIFO buffer

Ideally, m x m processing elements need to be placed in the

area marked by a dot-dash line in Figure 5. However, this is

somewhat not doable in FPGA design because FIFO element

is usually part of the core FPGA component library that has

been optimised for FPGA implementation. Instead, the design

can be restructured as shown in Figure 6.

Figure 6: Actual Implementation of In-stream Processing

Since the processing elements need to be placed separately

from the FIFO buffers, each of them needs to have a data latch

to hold the pixel value (as shown in Figure 6). There is an

advantage if doing this. Since the pixel data in row m is now

latched by the processing elements (PE), there is no longer a

need to buffer that last line. So, the increase in size with the

addition of extra m x m data latches is already compensated

by the removal of a full FIFO row buffer (less FIFO area).

This also causes the data latency to be reduced to m-1 image

row period plus m clock period.

Implementation of a Hardware-centric Vision System Architecture

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 127

D. Separable Filter

Image filters usually perform a convolution operation

against the pixels surrounding a pixel being processed. It is a

sum of the products of neighbouring pixels (including current

pixel) with filter coefficients. Generally, for a 3 x 3 image

filter, processing a single pixel would require nine

multiplications and eight additions. Since convolution is

associative, ‘breaking down’ the 2-dimensional image filter

into two vectors should reduce that processing load. Consider

a 3 x 3 kernel of Sobel filter for x-direction.

















−

−

−

=

101

202

101

s

(1)

The kernel in Equation (1) can be rewritten as a product of

a row vector h and a column vector v, as shown in Equation

(2).

 101

1

2

1

−=

















= hv

hvs *= (2)

The required computation is now three multiplications and

two additions for the first vector, and another three

multiplications and three additions for the second vector. That

is about 30% reduction in processing complexity. Although

in our parallel design, this does not matter much, it is still an

advantage since we do not need as much multiplier in the

processing elements.

IV. IMPLEMENTATION ANALYSIS

This section discusses two implementations of the

hardware-centric architecture presented in the previous

section. This is to show that the architecture does not rely on

any specific FPGA device. The two implementations use

different FPGA boards that were designed for different

purposes. The first board is a general purpose FPGA

development board that imitates a motherboard of PCs, while

the second is a customised FPGA board meant as a co-

processor to a mobile robot controller board.

A. Xilinx ML310 Development Board

The Xilinx ML310 development board is very similar to a

standard desktop computer motherboard. For example, it has

the typical USB, LPT and COM communication ports, PCI

slots, DDR SDRAM memory, and even ports for standard

mouse and keyboard. The features that are of interest in here

are the 256MB DDR SDRAM, CF card slot, the serial COM

port and, of course, the FPGA Virtex-II Pro chip XC2VP30.

Having a large memory for storage is always useful when

executing image processing functions. The 256MB DDR

SDRAM is more than enough for any embedded vision

system to operate, but the excess memory could be used to

hold multiple frames for advanced processing and debugging

purposes should the need arises. On the other hand, a large

memory with single access bus is not desirable for a system

that can have parallel processing blocks executing at the same

time.

The XC2VP30 is a member of the Virtex-II Pro Xilinx

FPGA family. Its most outstanding feature is the availability

of two internal 32-bit RISC PowerPC core. It also has around

30,800 logic cells and almost 13,700 configurable logic

blocks (CLB). In addition to that, there are 136 18x18-bit

multipliers and 136 18kb block RAM on it.

The test setup is shown in Figure 7. Interface board for a

CMOS camera and an LCD has been built and connected to

the Xilinx ML310 Development Board. The LCD is not

necessary for the vision system, but at the development or

testing stage, it is essential to be able to verify what our

system actually 'sees'.

Figure 7: The test setup for ML310-based Vision System

Figure 8: Block Diagram to show in-stream processing on ML310-based

Vision System

The overall implementation shown in Figure 8 is based on

using the PowerPC core that is available on the FPGA. A

custom controller for both the LCD and the camera has been

developed on the FPGA along with grayscale conversion and

an edge detection filter module. The camera has a CIF

resolution of 352x288 while the LCD can display a 320x240

12-bit colour image. The camera data input stream is actually

in Bayer pattern, and therefore, the camera interface module

(camera controller) needs to have a demosaicing (CFA

interpolation) procedure as well.

All the modules used in the system were developed using

VHDL from scratch, except for the Processor Local Bus

(PLB) interface which is better off using the provided core

library. The PLB is only used to write the processed image to

RAM, and for the main controller (PPC405) to send control

signals (i.e. configurations) to the vision module. The

PPC405 itself is executing a control program written in C.

The vision module operations can be controlled through the

serial port RS232 interface that is available on the ML310

development board.

The output of the Sobel edge detection feature as seen on

the LCD module is shown in Figure 9. It should be noted that

Journal of Telecommunication, Electronic and Computer Engineering

128 e-ISSN: 2289-8131 Vol. 10 No. 1-15

the display is a live feed that is streaming QVGA resolution

(320x240) image at 30 frames per second.

Figure 9: Original image (left) and Filtered Image (right)

Table 1 shows the FPGA resource utilisation for this

particular implementation on ML310. The number of logic

slices available on FPGA usually indicates the size of logic

circuits that can be implemented. It usually consists of

registers (memory) and logic blocks (Look-up Tables or

LUT). The data shows that most of the FPGA resources have

been used for basic image capture and display.

Table 1

FPGA Resource Utilization in ML310 Implementation

 Used Available Percentage

Logic Slice 7,452 13,696 54%

Block RAM 79 136 58%

4-input LUT 11,684 27,392 42%

Although there are still some spaces available for more

filters to be implemented, it would be more beneficial to

offload the display buffer to an external component (maybe

one complete with its controller). Since the display is most

probably not needed, this would make the design closer to the

final implementation. This is useful in determining the

optimal memory requirement for the final system, as can be

seen in the second implementation.

Referring to the utilisation data for block RAM as

presented in Table 1, it should be noted that only 1 out of 58

percent block RAM usage is used for the simple Sobel filter

(i.e. as row buffers). Other than the LCD memory, the

PowerPC is also using 64kB of the remaining block RAM for

its instruction and data memory. The external DDR SDRAM

is yet to be used due to the requirements of the design

architecture. The processing blocks in the stream are expected

to have exclusive access to the memory buffer assigned to it.

Thus, the need for dual-port memories is essential in its

operation. Putting the processing blocks on a single bus that

can access the external DDR SDRAM would introduce delay.

This scenario is, in fact, has been the bottleneck of many

systems that depend on data from memory. There are only

two expected scenarios where the vast external memory can

be used in the current architecture; (1) High-level image

processing (or any other kind of image processing) that is

executed by the PowerPC, and (2) Image stream is written to

the external RAM and read by another type of filter block that

is also a master on the PLB bus (on which the DDR SDRAM

is connected to).

B. EyeBot M6 Controller Board

The EyeBot M6 controller board is a general purpose

embedded system board that is equipped with stereo vision

capabilities. The main controller device is an off-the-shelf

Gumstix Connex 400xm-bt, a single board computer (SBC)

that has a 400MHz Intel XScale PXA255-CPU, 64MB RAM

and 16MB flash memory. The controller is configured to run

Linux OS that is built using buildroot, a tool that can be used

to generate Embedded Linux systems. In addition to that, it

also has a Spartan-3E family Xilinx FPGA, the XC3S500E

PG208, which is a low-cost FPGA with a relatively high logic

density. It has about 10500 logic cells, almost 1200 CLBs, 20

18x18-bit multipliers and 360kb block RAM.

The FPGA on EyeBot M6 is clocked using a 50MHz

crystal and has exclusive access to a 2Mb static RAM

(SRAM) as well as the dual camera interface (stereo vision).

There is no configuration memory for the FPGA – so, the

FPGA is designed to be programmed by the ‘host’ processor

running Linux. A Linux kernel driver is available to provide

the interface required to do that.

The vision module implemented on Eyebot M6 is the same

one (developed using VHDL) used on ML310. However,

some changes were made mainly on the memory interface,

display and access method. For one, the EyeBot M6 provides

an exclusive SRAM module, which negates the need for

internal Block RAMs (which the Spartan-3E does not have).

Next, the implementation on EyeBot M6 does not need an

LCD controller because the controller on Gumstix already

handles that. As mentioned earlier, a vision system does not

need it. Finally, the access method is different since there are

no PLB controllers in this implementation. Instead, a simple

memory addressing method has been implemented so that the

PXA255 controller can access the processed image on

SRAM.

Table 2 shows the FPGA resource utilisation for this

implementation on EyeBot M6. The data shows that basic

grayscale filter and Sobel edge detection modules take less

than 10% of the available resources on the Spartan-3E FPGA.

Table 2

FPGA Resource Utilization in EyeBot M6 Implementation

 Used Available Percentage

Logic Slice 501 4,656 10%

Block RAM 0 20 0%
4-input LUT 648 9,312 6%

It is clear that a lot more can be put into this implementation

and having the main controller off-chip (unlike ML310

implementation) helps a lot in achieving this.

V. DISCUSSION

It is evident that the only implementation that can be seen

to be more efficient than in-stream processing is an ASIC

implementation that has both processing elements and

imaging device on the same silicon. This section discusses

another advantage of FPGA-based implementation compared

to other platforms and the comparison between the two

implementations presented in the previous section.

A. Reconfigurable Computing

The reconfigurable nature of FPGAs makes them a

compelling platform for any digital system. When used with

another processor, the FPGA fabric can be reconfigured at

runtime without changing any hardware interface.

In the past, even a small change in the system design would

require the whole system to be re-synthesised and the FPGA

to be re-programmed. Dynamic reconfiguration is a feature in

which only the modified part of the FPGA needs to go

through the process. If the modified section is not part of the

Implementation of a Hardware-centric Vision System Architecture

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 129

main processing block or if the rest of the system is not

dependent on it, the reconfiguration process could be done at

runtime. This introduces the idea of having image processing

filters as hardware modules that can be dynamically inserted

or removed as required.

On Xilinx FPGA, the feature for this purpose, which is also

known as partial reconfiguration, is available on Virtex-II

chips onwards. However, using this feature is not an

automated process. The system designer needs to manually

partition the respective part of the system that will go through

the reconfiguration process and ensure that the rest of the

system is manageable throughout the procedure. In short,

more work needs to be done to be able to incorporate this

feature into a design.

B. Comparison of Implementations

From a development point of view, there are a few things

to note. Table 3 shows that the ML310 consumes a lot more

space compared to Eyebot M6. This is to be expected because

everything is implemented on FPGA, which have a PPC405

PowerPC core to run the controller software system. Because

of that, this implementation requires Xilinx EDK software to

configure the PPC405 core configurations and the peripheral

controllers around it.

Table 3

Comparison of Implementations

Platform Used
Development

Tools

Synthesis

Time

Estimated

Xilinx
ML310

More than 50% usage.
Xilinx EDK

& ISE
35

minutes

EyeBot

M6
Less than 10% usage

Xilinx ISE &

GCC-ARM
compiler

10

minutes

The implementation on EyeBot M6 is based on the

interface to Gumstix, with the image grabber and image

filters implemented on FPGA. The fact that the FPGA is

programmable at any time by Gumstix controller board

makes it an excellent example of how reconfigurable

computing can be beneficial.

Synthesis time is the time needed for the design software

to build an FPGA bitstream image file that will be

downloaded to an FPGA device. For testing designs on real

boards, the bitstream image file needs to be re-synthesised if

there are any changes made to the design. Note that the

synthesis time when using Xilinx EDK could get up to 35

minutes per design, which can be frustrating at the early

design stage if the implemented design does not work as

expected as it often does.

VI. CONCLUSION

FPGA could be the ideal platform to implement a

hardware-centric vision system. Both implementations show

that they are capable of processing incoming image stream at

30 frames per second. The proposed architecture can easily

be upgraded with the reconfigurable nature of FPGA. Added

by the fact that current high-performance FPGAs are also

fitted with DSP computation modules, the possibilities of

having an artificial vision system that is similar to biological

vision system are increasing quite rapidly.

ACKNOWLEDGEMENT

The ML310 Development Board was donated by Xilinx

U.S.A. for evaluation. Many thanks go to CIIPS Laboratory

(University of Western Australia) for allowing the use of

EyeBot M6 controller board.

REFERENCES

[1] D. Marr, Vision : A Computational Investigation into the Human
Representation and Processing of Visual Information. San Francisco:

W.H. Freeman, 1982.

[2] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and
K. Fujimura, “The intelligent ASIMO: system overview and

integration,” IEEE/RSJ International Conference on Intelligent Robots

and Systems, vol. 3, 2002, pp. 2478–2483.
[3] A. H. A. Widaa and W. A. Talha, “Design of Fuzzy-based autonomous

car control system,” 2017 International Conference on

Communication, Control, Computing and Electronics Engineering
(ICCCCEE), 2017, pp. 1–7.

[4] J. L. Raheja, B. Ajay, A. Chaudhary, “Real time fabric defect detection

system on an embedded DSP platform,” Optik - International Journal
for Light and Electron Optics, Volume 124, Issue 21, 2013, Pages

5280-5284.

[5] H. Zhou, R. Lai, S. Liu, B. Wang, Q. Li, “A new real-time processing
system for the IRFPA imaging signal based on DSP&FPGA,” Infrared

Physics & Technology, Volume 46, Issue 4, 2005, Pages 277-281.

[6] D. Rong, Y. Ying, X. Rao, “Embedded vision detection of defective
orange by fast adaptive lightness correction algorithm,” Computers and

Electronics in Agriculture, Volume 138, 1 June 2017, Pages 48-59.

[7] M. Chouchene, F. E. Sayadi, H. Bahri, J. Dubois, J. Miteran, M. Atri,”
Optimized parallel implementation of face detection based on GPU

component,” Microprocessors and Microsystems, Volume 39, Issue 6,

2015, Pages 393-404.
[8] X. Ma, W. A. Najjar and A. K. Roy-Chowdhury, "Evaluation and

Acceleration of High-Throughput Fixed-Point Object Detection on

FPGAs," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 6, June 2015, pp. 1051-1062.

[9] A. Irwansyah, O. W. Ibraheem, J. Hagemeyer, M. Porrmann, U.

Rueckert, “FPGA-based multi-robot tracking”, Journal of Parallel and
Distributed Computing, Volume 107, September 2017, Pages 146-161.

[10] P. Reichel, J. Döge, N. Peter, C. Hoppe and A. Reichel, "An ASIP-

based control system for Vision Chips with highly parallel signal
processing," 2015 IEEE 24th International Symposium on Industrial

Electronics (ISIE), Buzios, 2015, pp. 932-937.

[11] Yiannis Aloimonos, Active perception, 2013, Psychology Press.

