
 

 e-ISSN: 2289-8131   Vol. 10 No. 1-15 101 

 

Gas Sensing Mobile Robot: A Review 
 

 

R.Visvanathan1,2, K.Kamarudin1,2, S.M.Mamduh1,3, A.S.A.Yeon1,4, A.Zakaria1,2, L.M.Kamarudin1,4, 

S.A.A.Shukor1,2 and A.Y.M.Shakaff1,3 
1Centre of Excellence for Advanced Sensor Technology (CEASTech), Universiti Malaysia Perlis (UniMAP), Arau, Perlis 

02600. 
2Pusat Pengajian Kejuruteraan Mekatronik, Universiti Malaysia Perlis (UniMAP), Arau, Perlis 02600. 

3Pusat Pengajian Kejuruteraan Mikroelektronik, Universiti Malaysia Perlis (UniMAP), Arau, Perlis 02600. 
4Pusat Pengajian Kejuruteraan Komputer dan Perhubungan, Universiti Malaysia Perlis (UniMAP), Arau, Perlis 02600. 

retnamvr7@gmail.com 

 

 
Abstract—Mobile robot applications are required in various 

hazardous fields to reduce human casualties. One of the most 

demanding applications is gas sensing mobile robot. Since the 

hazardous chemical compound is undetectable by humans, 

autonomous mobile gas sensors are needed. Over the past few 

decades, various attempts to incorporate gas sensor on mobile 

robots are reported. Gas source localisation and gas distribution 

mapping are the two mainly focused scope of research. This 

paper presents the earliest works and recent development in gas 

sensing mobile robots. 

 

Index Terms—Bio-inspired Algorithm; Gas Sensor; Mobile 

Robot; Gas Distribution Mapping; Gas Source Localization. 

 

I. INTRODUCTION 

 

The need for odour-sensing applications has been triggered 

due to air contamination diseases and deaths recorded for the 

past few decades [1]. Industrial facilities or even research 

institutions, mainly related to chemical works often face 

casualty due to unidentified chemical leakages. Since most of 

the hazardous chemical compounds are in gas form, odourless 

and colourless, humans are unable to identify a potential 

leakage. These tragedies led to the deployment of static gas 

detectors in an indoor environment to continually monitor 

possible contamination breakout and chemical compound 

leakages [2]. However, this method is impractical due to the 

nature of gas sensors where the gas molecules need to be in 

contact with the reactive surface of the sensor to produce 

response [3]. Therefore, the information of gas concentration 

or reading is only valid for a limited space around the location 

of the gas sensor. As the sensing capability is limited in range, 

a large number of sensors are required to cover relatively 

large environment efficiently.  

Thus, the mobile-based olfactory application became a 

practical solution. Gas sensors are combined with the mobile 

robot and dispatched in a designated area to continually 

monitor the environment for the presence of gas. Unlike static 

gas sensors, mobile gas sensors can provide a more accurate 

representation of gas distribution due to the ability to move 

from one location to another. Besides, mobile robot with gas 

sensor holds an upper hand compared to humans, since the 

mobile robot can explore hazardous environments, has better 

heat tolerance, and does not show exhaustion[4].  

As the field of mobile olfaction gains attention, several 

research directions have emerged including localisation of the 

gas source and spatial representation of the gas distribution. 

This paper discusses the reported works of gas sensing mobile 

robots, including state-of-the-art approaches. Significant 

solutions for mobile olfaction problems are also highlighted. 

Finally, possible research gaps in mobile olfaction are also 

discussed in this paper.  

 

II. GAS SENSING 

 

The development of gas sensing mobile robot is now 

possible due to the recent advancement in chemical sensor 

development. Various types of gas sensors have emerged and 

are available commercially. However, each type of sensors 

exhibits different characteristics based on the sensing 

material used in the sensors. 

 

Followings are the types of gas sensor available: 

1. Metal Oxide (MOX) 

2. Polymer 

3. Photo Ionization Detectors (PID) 

4. Pellistors 

5. Optical  

6. Gas Chromatography (GC) 

 

One the most widely used gas sensor is MOX type. This 

sensor can react to different types of gas at different 

temperatures ranging from 200°C to 500°C[5]. Due to this, 

the MOX gas sensor requires heaters and consumes relatively 

high power to operate. On the other hand, polymer gas sensor 

can detect volatile organic compound (VOC) that may not be 

detected by MOX gas sensor. This sensor absorbs the gas 

molecules and responses by changing the polymer’s electrical 

properties.  

Photo Ionization Detectors (PID) senses gas by ionising the 

gas with ultraviolet light. Then, the ions are discharged 

through electrodes producing a detectable current [6]. 

Pellistors are a calorimetric gas sensor which detects the 

changes in heat due to changes in concentration. This is 

usually done by using a thermistor or a platinum wire. The 

heat changes occur due to the changes in thermal conductivity 

of the gas flow [7]. The optical-based gas sensor uses optical 

properties of gases, such as light absorption, photo 

fluorescence, diffraction and reflection to generate a 

response. This method requires preparation of spectrometry 

to operate [8].  

In recent years, MOX gas sensor has dominated the 

research field of gas sensing mobile robots. This sensor has 

been widely used by many researchers in their works [9-11]. 

Although MOX gas sensor consumes relatively high power 

and has low selectivity, it is more practical to be deployed on 

mobile robots. This is due to the lower deployment cost, less 
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complexity regarding electronics, and high reliability. Fig. 1 

illustrates the typically used MOX gas sensor on mobile 

robots. 

 

 
 

Figure 1: MOX gas sensor (TGS series) [44]. 
 

III. GAS SOURCE LOCALIZATION 

 

The principal objective of implementing gas sensor on a 

mobile robot is to trace and locate the source of a volatile 

chemical distributed in an environment. This task is defined 

as gas source localisation [9]. Earlier researchers suggested 

that gas source localisation can be achieved by performing 

three subtasks, starting from plume finding, followed by 

plume tracking, and finally source location declaration [12]. 

This strategy was adapted from living organism, where the 

olfactory behaviour of animals and insects is mimicked using 

mobile robots. For example, male moths can find their mates 

by tracking and following the pheromones released by female 

moths. Trained police dogs, on the other hand, can pursue 

criminals. Many successful bio-inspired algorithms have 

been reported.  

 

A. Chemotaxis 

Chemotactic behaviour is the act of moving along the 

concentration gradient of a chemical. This behaviour is 

exhibited by most animals to search food and mates. 

Similarly, a pair of sensors is equipped with a mobile robot, 

and a measured gas concentration gradient is used to steer the 

mobile robot towards the gas source. An example of the 

chemotactic based mobile robot is shown in Fig. 2. One of the 

notable works was presented in [13], where the location of 

the gas source was successfully identified. In this work, the 

researchers found that higher concentration was detected 

closer to the gas source. Similar work was also presented by 

[14], where several chemotaxis algorithms were compared. 

This work proved that Braitenberg vehicle followed a shorter 

path to the gas source. However, it is least reliable due to lack 

of airflow information.  

Apart from that, another simple approach was also reported 

based on gradient climbing behaviour of E. coli. The work 

presented in [15] became the starting point of this approach. 

Simulation work was presented in [16], claimed as Biased 

Random Walk (BRW). The result shows that this algorithm 

was ineffective due to fluctuation in the gas dispersion. The 

same result was obtained in [10] and [14] with real-world 

implementation.  

Later, swarm-based approaches were also attempted, 

mainly to improve the gas source localisation problems 

reported by the non-swarm approach. This strategy was also 

bio-inspired, mainly from organisms living in a colony. One 

of the important approaches was Particle Swarm 

Optimization (PSO). A simulation work was presented in [17] 

and [18], where PSO was compared with BRW. The 

simulation was performed under turbulent dominated gas 

dispersion. It was proven that PSO has better performance in 

vigorous environment condition. This work was further 

improved in [19] by proposing a modified PSO algorithm. 

Another improvement of PSO was presented in [20], known 

as Explorative PSO (EPSO). In this work, the mobile robots 

are configured to avoid previously explored location to 

prevent the swarm from being trapped in local maxima. A 

convincing result was presented showing that EPSO performs 

better than PSO.  

Another bio-inspired algorithm adapted from ants social 

foraging behaviour was later introduced. This strategy was 

altered to solve the gas source localisation task, known as ant 

colony algorithm [11]. In this work, mobile robots are divided 

into two groups, searchers and residents. The searcher is 

responsible for tracking and moving toward higher gas 

concentration areas. When a possible source location is 

found, the searcher becomes resident. Meanwhile, another 

resident with lower gas concentration will be appointed as 

searcher again. The process is repeated until all robots 

converge towards one location, which is declared as the gas 

source.  

Recently, several works are reported to improve the gas 

source localisation task further. In [21], a hybrid algorithm 

was introduced by combining PSO with Bacterial Foraging 

Optimization (BFO) to localise the gas source. This work 

manages to eliminate robots from being trapped in local 

minimum by adapting elimination-dispersal operation of 

BFO. The results showed that PSO-BFO algorithm could 

localise gas source with higher success rate and shorter time. 

Another work considered obstacles around the environment 

by incorporating path planning algorithm with BFO. A 

Gaussian cost function was introduced to determine the 

shortest path from an unknown position to a target position in 

the presence of obstacles. This work was proven to be less 

complicated and able to localise gas source faster compared 

to other well-known algorithms [22].  

 

 
 

Figure 2: Mobile robot equipped with a pair of gas sensors [13]. 

 

B. Anemotaxis 

Unlike chemotactic behaviour, anemotaxis utilises 

additional information, which is airflow measurement to 

localise the gas source. Since volatile chemical molecules are 

carried by moving air, following upwind direction can 

theoretically lead a mobile robot to the source. Thus, mobile 

robots were equipped with airflow sensors (Fig. 3), which are 

inspired by plume tracking capability of moths.  

One of the earliest works was reported in [23] 

implementing dung beetle algorithm. This work claims that 

the algorithm only works if the robot starts within the plume 

area. Several failures were also highlighted due to high 

variations in wind flow. Later, the algorithm was enhanced in 

[24] using a state machine to improve the plume tracking task. 
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This improvement led to less failure rate of the gas 

localisation task. A similar approach was also presented by 

[14] with a comparison to E. coli algorithm, showing that 

anemotaxis are more reliable. An enhanced method was also 

presented using both chemical concentration and 

anemometric reading [25]. This work calculated vectors to 

the centre of the plume and the gas source, providing a 

multiphase algorithm to track the gas source.  

 

 
 

Figure 3: Mobile robot equipped gas sensor and anemometer [39]. 

 

Another commonly used and most studied approaches were 

silkworm moth algorithm. The initial work was implemented 

by [26] and later adapted in comparison work in [10] and [14] 

under turbulent dominated gas dispersion. Following these 

researchers, weak airflow was also considered in improving 

the silkworm algorithm [27]. By removing anemometric 

information, a fixed motion pattern towards higher 

concentration level was implemented in this work. The 

adapted algorithm has improved the performance of plume 

tracing task compared to random search algorithms.  

A few casting algorithms were also introduced namely 

casting, surge-cast, and spiral surge. The initial work was 

focused on casting and spiral surge algorithms [28]. Later, a 

new algorithm was implemented in a comparative work [29]. 

These algorithms manage to locate the gas source 

successfully under turbulent dominated dispersion. This 

approach was also proven to be more practical in 

implementing on mobile robots. 

Genetic Algorithm (GA) is another approach emerged with 

a solution to optimisation problems. GA has been 

implemented in both turbulent dominated and diffusion 

dominated gas dispersion to localise gas source [30]. 

Anemometric and chemical information were used in this 

algorithm to de-randomise the possible solutions. Through 

simulation, the ability to localise gas source using both single 

robot and multiple robots were shown in this work. 

Moreover, the swarm-based approach was also reported in 

previous works [31] and [32]. Silkworm moth algorithm was 

used as the fundamental in these works, where the robots 

perform upwind surge when gas is detected. Other robots will 

be attracted through an attractive virtual force by the robot 

which detects the gas. Both simulation and real-world works 

showed that this approach shortened the search time to 

localise the gas source.  

Recently, another novel approach was introduced [33] 

which can estimate the distance of the mobile robot to a gas 

source. Rapid change in the sensor signal (“bouts”) and the 

wind directions are combined to guide the Gaussian 

regression to interpolate distance estimates. The proposed 

method can perform better under turbulent conditions to 

localise the gas source. 

 

IV. GAS DISTRIBUTION MAPPING 

  

In specific applications, the exact location of the gas source 

is not required. However, the distribution of the gas in space 

is needed. Gas distribution mapping (GDM) is a task of 

representing how gases spatially dispersed within an 

environment. This task can also be achieved through mobile 

robots exploring an environment by carrying a gas sensor. 

Similar to the static gas sensor problem, the challenge in 

building a GDM lies in the gas sensor itself, where the 

measurement of the gas sensor is only valid for limited space 

around the point of measurement.  

The earliest breakthrough in GDM was reported in [34] by 

proposing a statistical approach. This works introduced an 

extrapolation algorithm by convolving gas sensor readings 

with a Gaussian kernel. In this work, the environment is 

represented as grid map, and each grid holds a convolved 

value of the gas sensor measurement taken at a random 

location. This method held a significant advantage where the 

mobile robot does not need to explore every part of the 

environment to construct a GDM fully. Moreover, 

concentration maximum was used to obtain an approximate 

estimate of the gas source location. The method was then 

adapted in the case of multiple gas sources [35], where the 

gas source was able to be localised with higher certainty. 

Besides, this approach was also extended to the case of three-

dimensional GDM [36]. This work implemented a tri-variate 

Gaussian kernel to model gas dispersion. To achieve this, 

three gas sensors were attached to the mobile robot at a 

different height.  

However, these works assumed that the position of the 

mobile robot is known and the map is built before GDM. In 

the case of the unknown position of the mobile robot, 

simultaneous localisation and mapping (SLAM) were 

integrated to GDM [37]. This work implemented the Rao-

Blackwellized particle filter approach to estimate the mobile 

robot position and map of the environment, while 

simultaneous build GDM as the mobile robot explores the 

environment.  

Later, uncertainty estimation was incorporated to GDM by 

accounting predictive variance. Gaussian process mixture 

model (GPM) was proposed by assuming gas distribution 

modelling as a regression problem [38]. This work reported 

that prediction of uncertainty for GDM improves the 

accuracy of the gas concentration prediction. Following this 

approach, two parallel estimation processes was carried out 

separately for mean and variance prediction of GDM, known 

as the kernel DM+V algorithm [39]. This approach pointed 

out the previous work that variability lies in the gas sensor 

readings, not on the uncertainty in the estimation process. 

Although both works [38] and [39] produced similar GDM, 

the kernel DM+V holds the upper hand in handling more 

massive datasets with more straightforward learning 

procedure. More recently, another approach to variance 

prediction was presented using sparsified Kalman filter [40]. 

There are also several other variables that influence gas 

dispersal, namely wind, pressure, temperature and humidity. 

Several works were also reported which took these variables 

into account. Adapting the kernel DM+V algorithm, wind 

information was taken into account to build GDM using 

kernel DM+V/W algorithm [41]. This approach used the 

measured wind vector to alter the shape of the bivariate 

Gaussian kernel. The outcome of this approach produced a 

notable improvement in GDM compared to previous 
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methods. An example result is shown in Fig. 4. The similar 

work was also further extended to a three-dimensional 

representation of GDM [42]. This work has taken the wind 

vector to improve the multivariate Gaussian kernel shape. 

Similar to the stated variable which effects GDM, the 

physical nature of the environment was not taken into account 

while building GDM. A structured environment consists of 

walls, corridors and rooms which affect the dispersal of gas. 

In previous approaches, a gas concentration measurement 

taken from one location was directly correlated to another 

location without considering the presence of physical 

obstacles in between. Apart from that, another question raised 

was the similarity between two measurements taken from the 

same location at different times. This is due to the vanishing 

nature of gas. Most recently, both problems were considered, 

and a novel approach was introduced in GDM [43]. This work 

employed Gaussian Markov Random Field (GMRF) by 

accounting obstacles in the environment and “age” of the 

measured gas concentration which suits the characteristic of 

GDM. The results of this approach provide a better 

representation of gas dispersal in a structured indoor 

environment.  

 

 
 

Figure 4: Improved GDM with wind information [41]. 
 

V. RESEARCH GAPS 

 

Although various approaches towards mobile olfaction 

have been reported, there is always room for improvement to 

achieve an ideal gas sensing mobile robot which can work in 

real environment. Reported approaches to date have been 

only considering gas sources placed on the floor of the 

environment. However, in the real world, possible gas 

leakages could occur in various places which are higher than 

the floor, such as pipelines in ceilings. A very few approaches 

towards this direction is reported so far. Apart from that, the 

presence of obstacles in the environment is another 

challenging problem which remains open. To the best 

knowledge of the author, only one work is presented 

accounting the obstacles in the environment [43].  

The performance of the gas sensor is another issue that was 

brought up by many researchers. As mentioned previously, 

MOX gas sensor is the favourite choice in mobile olfaction. 

However, this sensor has a slow recovery time which 

becomes one of the challenges in mobile olfaction. Although 

several reported approaches accounted this issue and 

managed to compensate the recovery time, a revolutionary 

sensor with faster response and recovery time will further 

improve the mobile olfaction research. 

Another notable problem faced by most researchers is the 

validation of the experiment conducted. Currently, there is no 

standardised framework to verify the results in mobile 

olfaction due to the lack of ground truth information. 

Development of a standardised verification framework is 

highly essential in this research field.   

 

VI. CONCLUSION 

 

In this paper, significant contributions towards mobile 

olfaction have been reviewed. Many successful works have 

been reported on gas source localisation and gas distribution 

mapping. Previously, most of the works are presented 

through simulations and later directed towards the real-world 

application. The gaps exist in this research field were also 

highlighted, and possible directions were also stated. In the 

near future, gas sensing mobile robot may commercially 

available for humans.  
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