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Abstract—This paper describes the implementation of a laser 

scanner to localise a mobile robot in a known map and navigate 

to a pinpointed location while avoiding any obstacles within the 

path. The ability to successfully localise itself is a key 

requirement for any mobile robot. The Turtlebot Create is used 

as the platform part to test the localisation. The probabilistic 

localisation method, the Adaptive Monte Carlo Localization 

(AMCL) technique is used for the purpose. The approach is 

experimentation driven due to unique and unanticipated 

challenges present in the environment. As for obstacle 

avoidance and path planning, the Dynamic Window Approach 

(DWA) and Dijkstra’s algorithm is used respectively. The 

implementation is done using Robot Operating System (ROS) 

framework and thus is reusable in any future projects with 

both, simulated and real platforms. The experiments were run 

in CEASTech and UniMAP Solutions, and it was observed that 

the robot was able to firstly map the two environments, localise 

itself in the known map and manoeuvre to the pinpointed 

locations without any collision. 

 

Index Terms—AMCL; Laser Scanner; Robotics; ROS;  

SLAM. 

I.  INTRODUCTION 

Localization has become one of the fundamental requirements 

in robot nowadays. The process enables the robot to identify 

its own location either in absolute form, relative to the map or 

at least relative to certain initial position. For map-based 

localisation, the robot can identify its position based on 

information from sensors and the map itself. There are two 

methods for the robot to gain access to its location which is 

through a map fed by the user or through simultaneous 

localisation and mapping (SLAM).  

This project is concerned about localisation of a mobile 

robot in a known map. Laser range finder was used to gain the 

obstacle locations. The data will then be fed to AMCL 

algorithm to enable pose estimation. At the end of the project, 

the robot is expected to move to a desired instructed point on 

the map. Mobile robot localisation is more and more in 

demand in today’s world. Localization is where the robot can 

identify its position concerning the global or reference frame. 

For this, all the sensors need to work in line with the robot. 

One of the critical aspects is obstacle detection process, which 

is quite challenging since the robot has to navigate and reach 

the desired location. This can be achieved by using a laser 

scanner. The most current mobile robot cannot move 

autonomously to its desired point, and this needs more human 

effort to do it through wired or wireless process. The objective 

of this project is; (i) to explore, study and implement the 

methods for Simultaneous Localization and Mapping 

(SLAM) to obtain UniMAP Solution’s Map and improving 

the CEASTech’s Map, (ii) to implement robot localization in 

a known map (CEASTech’s Map) using Adaptive Monte 

Carlo Localization (AMCL) algorithm and (iii) to implement 

and integrate the localization, obstacle avoidance and path 

planning algorithm to allow the robot to move to the desired 

point on a map. This project involves simulating robot 

localisation through Robot Operating System (ROS) and then 

implementing it on the real robot. 

This paper is structured as follows: Section II addresses the 

researches related to the problem and the techniques for 

mapping, localisation, obstacle avoidance as well as path 

planning. Section III describes the steps where the process 

done using Robot Operating System (ROS) as well as the 

components and equipment needed for the project is 

explained. This is the list of procedure to complete the project. 

Section IV explains the results obtained while Section V 

summarises the research. 

II. LITERATURE REVIEW 

Multiple types of the robot have been used in the industrial 

field since early 1960’s. Unimate was the first industrial 

robot, where it was merely comprised of an arm which was 

used for simple tasks such as moving hot die-casts and 

welding car parts [1]. Mobile robots can be used for 

transportation and exploration [1]. Although this can expand 

the use of robots to various fields, mobility itself is the root 

cause of a few major problems in mobile robots. This is 

because a mobile robot needs to localise itself as to when 

compared to an immobile robot. The ability to localise is 

needed for the robot to know its actual position in the real 

surrounding to make rational decisions regarding its 

following course of action. 

Since the early of the twenty-first century, navigation has 

been an essential part of the interest in the field of mobile 

robotics. A mobile robot can move from one point to another 

either through manual manoeuvre or automatic movements 

[2]. The point refers either to an absolute location or a position 

relative to a particular reference. One of the positioning 

methods that have been used widely is the global positioning 

system (GPS) which can provide the coordinate on earth using 

satellite signals. When it comes to mobile robots, this 

technique is, however, unsuitable due to the weak GPS signal 

indoors which tends to increase the rate of error in 

positioning. Using the GPS concept, a few researchers found 

a new method known as indoor positioning which uses static 

WI-FI beacons installed within a building [3,4]. These 

beacons have a similar function as the GPS’s satellites, thus 

providing a position to position distances to calculate 

coordinates. The major drawback of this method is that it is 
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not practical for exploring new places since the beacons have 

to be installed beforehand. Another method that can be 

applied for indoor navigation is the Simultaneous 

Localization and Mapping (SLAM). For a robot to be able to 

gain an autonomous ability, it must be able to travel within 

the environment and accurately build a map of its surrounding 

while being able to localise itself within the map being built 

[5]. This paper goes into detail regarding two main SLAM 

techniques namely HectorSLAM and Gmapping as they are 

open source and widely used techniques for indoor navigation 

and mapping. HectorSLAM uses an inertial sensing system 

which combines both 2D SLAM and 3D SLAM based on 

robust scan matching and navigation technique [6]. The use 

of a high update rate and low distance measurement noise 

implemented using Light Detection and Ranging Sensors 

(LIDARs) estimates the robot movement in real-time. This 

technique, however, does not require the odometry 

information and hence making it possible to be implemented 

in mobile robots that tend to operate on the uneven ground or 

even aerial robots. Gmapping is another laser-based SLAM 

technique [7]. This is also the most widely used SLAM 

technique when it comes to mobile robotics. Gmapping is an 

algorithm proposed by Grisetti and is based on Rao-

Blackwellized Particle Filter (RBPF) approach. This 

algorithm, however, requires a higher computational load 

since it needs a high number of particles to obtain a decent 

result. Apart from this, the depletion problem about this 

technique also greatly reduces the accuracy of this technique. 

This means that a correct hypothesis can or may be eliminated 

as the importance weight of particles tends to become 

insignificant. 

Adaptive Monte Carlo Localization (AMCL) is a 

probabilistic localisation technique. AMCL makes use of 

particle filter to estimate the location of the robot in 

opposition to a known map [8]. Patrick Heinemann has done 

a major research on mobile robot localisation. Based on his 

studies, a few self-localisation methods that are efficient have 

been developed, and AMCL is the most popular method. This 

is because it enables a mobile robot to localise itself based on 

real-time condition and has an error recovery in case of errors 

in localisation [9]. 

Obstacle avoidance and path planning come into play when 

the robot is needed to move around autonomously either to a 

user-defined location or through a set of a repeated 

movement. Path planning is the ability of the robot to identify 

gaps to manoeuvre through the available map while obstacle 

avoidance is the ability to avoid any readily available or 

instantaneous obstacles found throughout the path planned. 

The Vector Field Histogram (VFH) was an obstacle 

avoidance technique developed by Borenstein [10]. This 

method makes use of the robot’s sensors to identify objects 

and gaps within a map and returns an open direction for 

navigation that leads to the goal position. A polar histogram 

of a few latest sensor data is used by the VFH’s probabilistic 

algorithm to overcome the sensor noise problem. A local 

occupancy grid map of the robots surrounding is created to 

compute the probabilities. A set of passages that can fit the 

robot is identified using the polar histogram. Another 

algorithm for obstacle avoidance is by using the dynamic 

window approach (DWA) by Fox, Brock and Khatib. The 

DWA is an algorithm takes into consideration the dynamic 

and kinematic limitation of a mobile robot which the VFH 

approach does not [11]. The basic concept is to allow the 

mobile robot to stop before it hits a wall or an obstacle while 

still considering the previously stated constraints. Following 

this, an optimisation is performed to find a scheme that 

provides the most utilisation. 

The term path planning was developed for use in many 

fields, such as robotics, control theory and artificial 

intelligence (AI). Various techniques have been developed 

such as the A-Star, D-Star, Dijkstra as well as a Theta-Star 

algorithm. This paper, however, will go into detail regarding 

two widely used algorithms, the A-Star and Dijkstra. The 

Dijkstra is an algorithm developed by Edsger Dijkstra in 

1959. It is a graph search algorithm used to identify the 

shortest path through a set of interconnected nodes. It looks 

on the untreated neighbours of the node nearest to the start 

and sets or modernises their distances (regarding cost, not 

some nodes) from the initial point [13]. Dijkstra’s algorithm 

is called a single-source shortest path as it solves single-

source shortest-path difficulty on a subjective, directed graph. 

The A-star algorithm was developed in 1968 by Nils Nilsson, 

Bertram Raphael and Peter Hart. The A-star algorithm is well 

known in the mobile robotics world as one of the best path 

planning algorithm that can be applied to topological or 

metric design space [12]. It uses a blend of both shortest path 

and heuristic searching to complete the path planning. 

III. METHODOLOGY 

A. Robot Operating System 

As a preliminary requirement for this project, Ubuntu 

operating system and Robot Operating System (ROS) had to 

be installed. For this, the stable version of Ubuntu and ROS 

was recognised first. The versions chosen were Ubuntu 14.04 

and the ROS compatible with it, which is ROS Indigo. ROS 

Indigo is a flexible open-source framework used to write 

robot software. This software was used as the core or central 

software towards completion of the project. Various packages 

are available in the Robot Operating System, and each 

package can be used to complete particular tasks. Under this 

circumstance, the slam_gmapping, hector_slam, Adaptive 

Monte Carlo Localization (AMCL), Dynamic Window 

Approach (DWA) and Dijkstra packages were used for 

completing this project. 

 

B. Simultaneous Localization and Mapping (SLAM) 

Next, slam_gmapping and hector_slam was used to 

improve the map of Centre of Excellence for Advanced 

Sensor and Technology (CEASTech). The reason for 

choosing both techniques was to compare the advantages and 

disadvantages of using these two techniques. Several 

parameters had to be changed to match the mobile robot base 

and the laser scanner used. Both mapping processes were 

completed using the keyboard teleoperation function from 

the base station. Table 1 and Table 2 show the parameters 

that were changed together with their description in 

slam_gmapping and hector_slam technique respectively. The 

parameters that are not mentioned were left at its default 

value. 

 
Table 1  

Slam_gmapping Parameters 
 

Parameter Name Default Value New Value 

map_update_interval 5.0 2.0 

maxUrange 80 4.8 
maxRange >80 5 

minimumScore 0 200 
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Based on Table 1, the default value is set higher to reduce 

computational load but affects the quality of map produced. 

The new value was chosen based on the load the controller 

was able to handle. Both maxUrange and maxRange 

parameters were set based on the Hokuyo  

URG-04LX laser scanner’s specifications. The 

minimumScore parameter was increased to 200 to eliminate 

the mobile robot jumping issue which affected the overall 

mapping process. 

 
Table 2  

Hector_slam Parameters 

 

Parameter Name Default Value New Value 

map_update_distance_thresh 0.4 0.05 

map_update_angle_thresh 0.9 0.05 

laser_min_dist 0.4 0 
laser_max_dist 30 4.8 

laser_z_min_value -1.0 0 

laser_z_max_value 1.0 0 
pub_map_odom_transform true false 

 

Table 2 shows the list of parameters that had to be changed 

for the hector_slamtechnique. Both the 

map_update_distance_thresh and map_update_angle_thresh 

parameters were reduced to increase the map update 

frequency which in turn makes the mapping process and 

visualisation smoother. The laser_min_dist and 

laser_max_dist were set based on the Hokuyo URG-04LX 

laser scanner’s specifications. The laser_z_min_value and 

laser_z_max_value were set to zero because Hokuyo URG-

04LX laser scanner does not scan vertically and also since the 

mapping is done in two-dimensionally. The 

pub_map_odom_transform parameter is set to “false” since 

hector_slam does not require odometry information for 

mapping. 

Figure 1 shows the slam_gmapping process that was 

visualised using the ROS Visualization tool (RVIZ). Next, 

Figure 2 shows the hector_slam mapping process visualised 

using RVIZ. 

 

 
 

Figure 1: Slam_gmapping process 

 

 
 

Figure 2: Hector_slam process 

 

C. Adaptive Monte Carlo Localization (AMCL) 

Right after the mapping process was completed, the 

localisation technique was applied. The technique used for 

this was the Adaptive Monte Carlo Localization (AMCL). 

AMCL works by trying to match the laser scan data to the 

map provided and thus detecting if any drifts are occurring 

based on the odometry in the pose estimate. This drift is then 

compensated by publishing a transform between the map 

frame and the odometry frame such that at the end the 

transform map, base_frame corresponds to the real pose of 

the robot in the world. It is explained in Figure 3.  

 

 
 

Figure 3: AMCL working principle 

 

The improved map that was produced through the 

implementation of the hector_slam method on the real robot 

was used for this task. The AMCL technique needed many 

parameter adjustments before being able to localise the 

mobile robot. Each parameter had to be changed and 

carefully tested to find the most suitable for both the robot as 

well as the laser scanner used. Table 3 shows the parameters 

that were changed together with the description. 

 
Table 3  

Adaptive Monte Carlo Localization Parameters 

 

Parameter Name Default 
Value 

New 
Value 

min_particles 100 500 

max_particles 5000 1500 

update_min_d 0.2 0.05 
update_min_a 30° 10° 

laser_min_range -1.0 0 
laser_max_range -1.0 4.8 

laser_likelihood_max_dist 2.0 0.8 

odom_alpha1 0.2 0.7 
odom_alpha2 0.2 0.5 

odom_alpha3 0.2 0.8 

odom_alpha4 0.2 0.5 

 

Based on Table 3, the min_particles and max_particles 

range had to be set smaller since the Hokuyo laser scanner has 

a higher precision as compared to the default parameter set for 

the Microsoft Kinect. As for update_min_d and 

update_min_a, these values were set lower to increase the 

update frequency and hence to make the localisation more 

precise. The laser_min_range and laser_max_range were both 

set based on the Hokuyo laser scanner description. The  

laser_likelihood_max_dist, on the other hand, was set lower 

to reduce the overall computational load and thus increasing 

the performance. Each odom_alpha value was set based on 

multiple tests at different places on the map. A higher value 

of each odom_alpha reduces the dependency of the algorithm 

towards the robot’s odometry information. 

 

D. Obstacle Avoidance and Path Planning 

The next step after localisation is to integrate both obstacle 

avoidance and path planning algorithm into the system. First, 

the obstacle avoidance algorithm was added to the system. 
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The algorithm used was the Dynamic Window Approach 

(DWA). 
 

Table 4  

Dynamic Window Approach Parameters 

 
Parameter Name Value 

max_vel 0.2 
min_vel 0 

max_trans_vel 0.5 

min_trans_vel 0.1 
max_rot_vel 0.2 

min_rot_vel 0 
acc_lim 0.05 

goal_tolerance 0.05 

path_distance_bias 20 
goal_distance_bias 3 

occdist_scale 0.01 

 

Based on Table 4, the max_vel parameter is set lower at 

0.2m/s than the actual robot capacity of 0.5m/s to reduce 

odometry error that occurs that higher speed. The min_vel is 

set to zero for an apparent reason so that the robot can come 

to a halt at any point in time. The acc_lim is set to 0.05m/s² 

for the same reason as setting the velocity lower which is to 

reduce odometry errors. The goal_tolerance, 

path_distance_bias, goal_distance_bias and occdist_scale 

was set at the lowest possible values whereby there were no 

errors in reaching the goal position. Any lower value causes 

the robot to stop when it meets an obstacle, producing an 

error. 

The path planning, on the other hand, involved the use of 

Dijkstra’s algorithm since it is an open source algorithm as 

well as the basic and easy to implement the algorithm. The 

Dijkstra’s algorithm needs two custom parameter files to be 

created for it to be used. The files include the costmap 

parameters as well as the global planner parameters. The 

Table 5 and Table 6 show the list of parameters that have to 

be set for the costmap and global planner respectively. There 

was no default value for these parameters as it depends solely 

on each robot’s design. 

 
Table 5  

Global Planner parameters 

 
Parameter Name Value 

use_dijkstra True 

use_grid_path False 
allow_unknown False 

use_quadratic False 

 

Based on Table 5, the use_dijkstra parameter is set to true 

since that path planning algorithm was used to complete the 

path planning task. The use_grid_path parameter was set to 

false to allow diagonal movement of the robot. The 

allow_unknown parameter was set to false since a previously 

generated map is used instead of a dynamically expanding 

map. The use_quadratic parameter was also set to false since 

Dijkstra uses simple mathematics for path planning instead 

of quadratics method used by A-star algorithm. 

Based on Table 6, the robot_radius had to be measured. 

This parameter is needed for path planning as it is necessary 

to know if the robot can pass through an obstacle or path. The 

obstacle_layer was enabled so that obstacle throughout the 

path can be detected and the costmap can be updated 

accordingly. As for the unknown_threshold parameter, it was 

based on trial and error and also the map’s resolution. The 

obstacle_range was set lower than the maximum range of 

Hokuyo laser scanner since it increased the efficiency of path 

planning when dynamic obstacles were met. The 

raytrace_range was set to the default Hokuyo’s 

configuration. The observation_sources is the list of source 

for detecting obstacles throughout the path of the robot. The 

sources were the laser scanner and also the robot’s bump 

sensor. The data_type and topic were the type of sensor data 

and its respective ROS topic. The min_obstacle_height and 

max_obstacle_height were set to zero since the whole 

process was done in the two-dimensional map and both 

observation source does not produce value in z-domain. The 

inflation_radius was set to 0.2 meters to reduce 

computational load as well making path planning more 

specific to instantaneous dynamic obstacles. The 

global_frame was set as “map” since a static map was used 

rather than a dynamic continuous update map. The reason is 

also why the parameter static_map was set to true. The 

update_frequency and publish_frequency were set to 3.0Hz 

and 0Hz respectively to increase the rate at which obstacle is 

updated to the costmap for continuous and smooth path 

planning. 

Once the path planning was completed, the AMCL, DWA 

and Dijkstra’s algorithm has to be combined to produce a 

custom package for the robot to be able to localize and 

navigate to pinpointed location while avoiding obstacles 

using the catkin method. 

 

E. System Architecture 

Figure 4 shows the overall system architecture. From the 

figure, it can be seen that the Hokuyo URG-04LX laser 

scanner and the robot, Turtlebot Create, communicate with 

the netbook using a universal serial bus (USB) connection. 

As for the base station, it communicates through a wireless 

network connection using the router. The Turtlebot Create 

robot was used as the robotic platform for the localisation 

system. It is a low-cost robot supported by open source 

software, the Robot Operating System (ROS). A netbook is 

used as an interfacing medium for laser scanner and the robot 

as they both need a USB connection to communicate with 

each other. The base station for this project is a Dell laptop 

which has Windows 8 operating system with Ubuntu 14.04 

for Robot Operating System (ROS) installed in the VMware 

Workstation. A wireless router is used as the data transfer 

medium between the netbook and the base station. Finally, a 

Hokuyo URG-04LX is used for mapping, localisation as well 

as obstacle avoidance. 

 

Table 6  

Costmap Parameters 
 

Parameter Name Value 

robot_radius 0.2 meter 

obstacle_layer True 
unknown_threshold 15 

obstacle_range 2.5 

raytrace_range 4.8 
observation_sources scan; bump 

data_type LaserScan; Bumper 

topic scan; bumper_pointcloud 
min_obstacle_height 0 

max_obstacle_height 0 

inflation_radius 0.2 
global_frame map 

robot_base_frame base_footprint 

update_frequency 3.0 
publish_frequency 0.0 

static_map True 
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Figure 4: System architecture 

 

IV. RESULTS 

A. Mapping Process 

The mapping process was first done at the UniMAP 

Solution. Figure 5 shows the map generated by UniMAP 

Solution.  

 

 
 

Figure 5: UniMAP Solution’s map 
 

As it can be seen in Figure 5, the red marked is where the 

mapping process failed in producing a decent. This is 

because the environment was poor regarding features for 

comparison needed for map building. Another reason is that 

the Hokuyo URG-04LX has a maximum range of up to 4.8m 

and hence making it impossible to find any difference in 

features at a longer distance. Nevertheless, the significant 

portion of the map could still be used for localisation in the 

future. The better map could also be produced once more 

features are loaded in UniMAP Solution. The next task is to 

improve the current CEASTech’s map so that the new map 

covers more areas and more accurately represent the whole 

layout. 

Figure 6 and Figure 7 show the map that was generated 

using slam_gmapping and hector_slam algorithm at 

CEASTech respectively. Decent maps were able to be 

generated since the environment is vibrant and there are 

constant changes that can be captured as the robot moves. 

However, the hector_slam algorithm produced a better map 

as compared slam_gmapping. This is because hector_slam is 

not affected by odometry information. It produces a map 

solely using the sensor data. For this cause, it can only be 

used in rich environments. Hence, a high update rate and the 

accuracy of the laser scanner played an essential role in 

producing the map. The marked red areas on the map 

generated using slam_gmapping clearly shows a minor shift 

of region as compared to the map produced using 

hector_slam. 

 

 
 

Figure 6: CEASTech’s Map using Slam_gmapping 

 

 
 

Figure 7: CEASTech’s Map using Hector_slam 

 

Following the mapping process, the Adaptive Monte 

Carlo Localization (AMCL) algorithm was implemented 
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onto the Turtlebot. The map generated using the hector_slam 

algorithm in CEASTech was used for this process.  

Based on Figure 8 and Figure 9, the marked red area is the 

location of the robot before and after localisation 

respectively. As it can be seen in Figure 9, the robot has lined 

up to its actual position on the map. 

 

 
 

Figure 8: Robot’s location before localisation 

 

 
 

Figure 9: Robot’s location after localisation 

 

Next, the obstacle avoidance and path planning algorithm 

which are the Dynamic Windows Approach and Dijkstra 

respectively were added. This was completed by using the 

custom package created for the robot to localise and navigate 

to the goal position. Figure 10 to Figure 12 shows the result 

of using the custom package. Based on Figure 10, the goal 

position is pinpointed. The marked red area shows the robot’s 

initial position while the black mark shows the goal position 

being pinpointed by the green arrow. Figure 11 shows the 

path generated for the robot to reach the goal position. Next,  

Figure 12 shows the robot has reached the goal position while 

successfully avoiding static and dynamic obstacles. 

 

V. CONCLUSION 

 

Overall, the objective of the project has been achieved. 

The Hokuyo URG-04LX has been successfully interfaced to 

the Turtlebot Create for the use in Robot Operating System 

(ROS). The methods available for mapping and localisation 

has been extensively studied and implemented. The 

slam_gmapping and hector_slam were used for simultaneous 

localisation and mapping (SLAM) while the Adaptive Monte 

Carlo Localization (AMCL) was implemented for 

localisation. The Dijkstra’s algorithm was successfully 

implemented for path planning while the Dynamic Window 

Approach (DWA) was used for obstacle avoidance. At the 

end of the project, the mobile robot, Turtlebot Create, can 

localise itself within a known map and move to any location 

pinpointed while avoiding any new or dynamic obstacles 

within the path. 

 

 

 
 

 

 
 

Figure 10: Pinpointing the goal position and orientation (red mark shows 

robot’s initial position while black mark shows goal position) 

 

 
 

Figure 11: Path generated to reach the goal position 

 

 
 

Figure 12: Robot reached the goal position 
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