
 e-ISSN: 2289-8131 Vol. 10 No. 1-15 67

Implementation of Mobile Robot Localisation and

Path Planning for Navigation in Known Map

S.Gunasagaran1, K.Kamarudin1,2, A.S.A.Yeon2, R.Visvanathan2, S.M.Mamduh2 and A.Zakaria1,2

1School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, Arau, Perlis, Malaysia.
2Centre of Excellence for Advanced Sensor Technology (CEASTech), Universiti Malaysia Perlis, Arau, Perlis, Malaysia.

kamarulzaman@unimap.edu.my

Abstract—This paper describes the implementation of a laser

scanner to localise a mobile robot in a known map and navigate

to a pinpointed location while avoiding any obstacles within the

path. The ability to successfully localise itself is a key

requirement for any mobile robot. The Turtlebot Create is used

as the platform part to test the localisation. The probabilistic

localisation method, the Adaptive Monte Carlo Localization

(AMCL) technique is used for the purpose. The approach is

experimentation driven due to unique and unanticipated

challenges present in the environment. As for obstacle

avoidance and path planning, the Dynamic Window Approach

(DWA) and Dijkstra’s algorithm is used respectively. The

implementation is done using Robot Operating System (ROS)

framework and thus is reusable in any future projects with

both, simulated and real platforms. The experiments were run

in CEASTech and UniMAP Solutions, and it was observed that

the robot was able to firstly map the two environments, localise

itself in the known map and manoeuvre to the pinpointed

locations without any collision.

Index Terms—AMCL; Laser Scanner; Robotics; ROS;

SLAM.

I. INTRODUCTION

Localization has become one of the fundamental requirements

in robot nowadays. The process enables the robot to identify

its own location either in absolute form, relative to the map or

at least relative to certain initial position. For map-based

localisation, the robot can identify its position based on

information from sensors and the map itself. There are two

methods for the robot to gain access to its location which is

through a map fed by the user or through simultaneous

localisation and mapping (SLAM).

This project is concerned about localisation of a mobile

robot in a known map. Laser range finder was used to gain the

obstacle locations. The data will then be fed to AMCL

algorithm to enable pose estimation. At the end of the project,

the robot is expected to move to a desired instructed point on

the map. Mobile robot localisation is more and more in

demand in today’s world. Localization is where the robot can

identify its position concerning the global or reference frame.

For this, all the sensors need to work in line with the robot.

One of the critical aspects is obstacle detection process, which

is quite challenging since the robot has to navigate and reach

the desired location. This can be achieved by using a laser

scanner. The most current mobile robot cannot move

autonomously to its desired point, and this needs more human

effort to do it through wired or wireless process. The objective

of this project is; (i) to explore, study and implement the

methods for Simultaneous Localization and Mapping

(SLAM) to obtain UniMAP Solution’s Map and improving

the CEASTech’s Map, (ii) to implement robot localization in

a known map (CEASTech’s Map) using Adaptive Monte

Carlo Localization (AMCL) algorithm and (iii) to implement

and integrate the localization, obstacle avoidance and path

planning algorithm to allow the robot to move to the desired

point on a map. This project involves simulating robot

localisation through Robot Operating System (ROS) and then

implementing it on the real robot.

This paper is structured as follows: Section II addresses the

researches related to the problem and the techniques for

mapping, localisation, obstacle avoidance as well as path

planning. Section III describes the steps where the process

done using Robot Operating System (ROS) as well as the

components and equipment needed for the project is

explained. This is the list of procedure to complete the project.

Section IV explains the results obtained while Section V

summarises the research.

II. LITERATURE REVIEW

Multiple types of the robot have been used in the industrial

field since early 1960’s. Unimate was the first industrial

robot, where it was merely comprised of an arm which was

used for simple tasks such as moving hot die-casts and

welding car parts [1]. Mobile robots can be used for

transportation and exploration [1]. Although this can expand

the use of robots to various fields, mobility itself is the root

cause of a few major problems in mobile robots. This is

because a mobile robot needs to localise itself as to when

compared to an immobile robot. The ability to localise is

needed for the robot to know its actual position in the real

surrounding to make rational decisions regarding its

following course of action.

Since the early of the twenty-first century, navigation has

been an essential part of the interest in the field of mobile

robotics. A mobile robot can move from one point to another

either through manual manoeuvre or automatic movements

[2]. The point refers either to an absolute location or a position

relative to a particular reference. One of the positioning

methods that have been used widely is the global positioning

system (GPS) which can provide the coordinate on earth using

satellite signals. When it comes to mobile robots, this

technique is, however, unsuitable due to the weak GPS signal

indoors which tends to increase the rate of error in

positioning. Using the GPS concept, a few researchers found

a new method known as indoor positioning which uses static

WI-FI beacons installed within a building [3,4]. These

beacons have a similar function as the GPS’s satellites, thus

providing a position to position distances to calculate

coordinates. The major drawback of this method is that it is

Journal of Telecommunication, Electronic and Computer Engineering

68 e-ISSN: 2289-8131 Vol. 10 No. 1-15

not practical for exploring new places since the beacons have

to be installed beforehand. Another method that can be

applied for indoor navigation is the Simultaneous

Localization and Mapping (SLAM). For a robot to be able to

gain an autonomous ability, it must be able to travel within

the environment and accurately build a map of its surrounding

while being able to localise itself within the map being built

[5]. This paper goes into detail regarding two main SLAM

techniques namely HectorSLAM and Gmapping as they are

open source and widely used techniques for indoor navigation

and mapping. HectorSLAM uses an inertial sensing system

which combines both 2D SLAM and 3D SLAM based on

robust scan matching and navigation technique [6]. The use

of a high update rate and low distance measurement noise

implemented using Light Detection and Ranging Sensors

(LIDARs) estimates the robot movement in real-time. This

technique, however, does not require the odometry

information and hence making it possible to be implemented

in mobile robots that tend to operate on the uneven ground or

even aerial robots. Gmapping is another laser-based SLAM

technique [7]. This is also the most widely used SLAM

technique when it comes to mobile robotics. Gmapping is an

algorithm proposed by Grisetti and is based on Rao-

Blackwellized Particle Filter (RBPF) approach. This

algorithm, however, requires a higher computational load

since it needs a high number of particles to obtain a decent

result. Apart from this, the depletion problem about this

technique also greatly reduces the accuracy of this technique.

This means that a correct hypothesis can or may be eliminated

as the importance weight of particles tends to become

insignificant.

Adaptive Monte Carlo Localization (AMCL) is a

probabilistic localisation technique. AMCL makes use of

particle filter to estimate the location of the robot in

opposition to a known map [8]. Patrick Heinemann has done

a major research on mobile robot localisation. Based on his

studies, a few self-localisation methods that are efficient have

been developed, and AMCL is the most popular method. This

is because it enables a mobile robot to localise itself based on

real-time condition and has an error recovery in case of errors

in localisation [9].

Obstacle avoidance and path planning come into play when

the robot is needed to move around autonomously either to a

user-defined location or through a set of a repeated

movement. Path planning is the ability of the robot to identify

gaps to manoeuvre through the available map while obstacle

avoidance is the ability to avoid any readily available or

instantaneous obstacles found throughout the path planned.

The Vector Field Histogram (VFH) was an obstacle

avoidance technique developed by Borenstein [10]. This

method makes use of the robot’s sensors to identify objects

and gaps within a map and returns an open direction for

navigation that leads to the goal position. A polar histogram

of a few latest sensor data is used by the VFH’s probabilistic

algorithm to overcome the sensor noise problem. A local

occupancy grid map of the robots surrounding is created to

compute the probabilities. A set of passages that can fit the

robot is identified using the polar histogram. Another

algorithm for obstacle avoidance is by using the dynamic

window approach (DWA) by Fox, Brock and Khatib. The

DWA is an algorithm takes into consideration the dynamic

and kinematic limitation of a mobile robot which the VFH

approach does not [11]. The basic concept is to allow the

mobile robot to stop before it hits a wall or an obstacle while

still considering the previously stated constraints. Following

this, an optimisation is performed to find a scheme that

provides the most utilisation.

The term path planning was developed for use in many

fields, such as robotics, control theory and artificial

intelligence (AI). Various techniques have been developed

such as the A-Star, D-Star, Dijkstra as well as a Theta-Star

algorithm. This paper, however, will go into detail regarding

two widely used algorithms, the A-Star and Dijkstra. The

Dijkstra is an algorithm developed by Edsger Dijkstra in

1959. It is a graph search algorithm used to identify the

shortest path through a set of interconnected nodes. It looks

on the untreated neighbours of the node nearest to the start

and sets or modernises their distances (regarding cost, not

some nodes) from the initial point [13]. Dijkstra’s algorithm

is called a single-source shortest path as it solves single-

source shortest-path difficulty on a subjective, directed graph.

The A-star algorithm was developed in 1968 by Nils Nilsson,

Bertram Raphael and Peter Hart. The A-star algorithm is well

known in the mobile robotics world as one of the best path

planning algorithm that can be applied to topological or

metric design space [12]. It uses a blend of both shortest path

and heuristic searching to complete the path planning.

III. METHODOLOGY

A. Robot Operating System

As a preliminary requirement for this project, Ubuntu

operating system and Robot Operating System (ROS) had to

be installed. For this, the stable version of Ubuntu and ROS

was recognised first. The versions chosen were Ubuntu 14.04

and the ROS compatible with it, which is ROS Indigo. ROS

Indigo is a flexible open-source framework used to write

robot software. This software was used as the core or central

software towards completion of the project. Various packages

are available in the Robot Operating System, and each

package can be used to complete particular tasks. Under this

circumstance, the slam_gmapping, hector_slam, Adaptive

Monte Carlo Localization (AMCL), Dynamic Window

Approach (DWA) and Dijkstra packages were used for

completing this project.

B. Simultaneous Localization and Mapping (SLAM)

Next, slam_gmapping and hector_slam was used to

improve the map of Centre of Excellence for Advanced

Sensor and Technology (CEASTech). The reason for

choosing both techniques was to compare the advantages and

disadvantages of using these two techniques. Several

parameters had to be changed to match the mobile robot base

and the laser scanner used. Both mapping processes were

completed using the keyboard teleoperation function from

the base station. Table 1 and Table 2 show the parameters

that were changed together with their description in

slam_gmapping and hector_slam technique respectively. The

parameters that are not mentioned were left at its default

value.

Table 1

Slam_gmapping Parameters

Parameter Name Default Value New Value

map_update_interval 5.0 2.0

maxUrange 80 4.8
maxRange >80 5

minimumScore 0 200

Implementation of Mobile Robot Localization and Path Planning for Navigation in Known Map

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 69

Based on Table 1, the default value is set higher to reduce

computational load but affects the quality of map produced.

The new value was chosen based on the load the controller

was able to handle. Both maxUrange and maxRange

parameters were set based on the Hokuyo

URG-04LX laser scanner’s specifications. The

minimumScore parameter was increased to 200 to eliminate

the mobile robot jumping issue which affected the overall

mapping process.

Table 2

Hector_slam Parameters

Parameter Name Default Value New Value

map_update_distance_thresh 0.4 0.05

map_update_angle_thresh 0.9 0.05

laser_min_dist 0.4 0
laser_max_dist 30 4.8

laser_z_min_value -1.0 0

laser_z_max_value 1.0 0
pub_map_odom_transform true false

Table 2 shows the list of parameters that had to be changed

for the hector_slamtechnique. Both the

map_update_distance_thresh and map_update_angle_thresh

parameters were reduced to increase the map update

frequency which in turn makes the mapping process and

visualisation smoother. The laser_min_dist and

laser_max_dist were set based on the Hokuyo URG-04LX

laser scanner’s specifications. The laser_z_min_value and

laser_z_max_value were set to zero because Hokuyo URG-

04LX laser scanner does not scan vertically and also since the

mapping is done in two-dimensionally. The

pub_map_odom_transform parameter is set to “false” since

hector_slam does not require odometry information for

mapping.

Figure 1 shows the slam_gmapping process that was

visualised using the ROS Visualization tool (RVIZ). Next,

Figure 2 shows the hector_slam mapping process visualised

using RVIZ.

Figure 1: Slam_gmapping process

Figure 2: Hector_slam process

C. Adaptive Monte Carlo Localization (AMCL)

Right after the mapping process was completed, the

localisation technique was applied. The technique used for

this was the Adaptive Monte Carlo Localization (AMCL).

AMCL works by trying to match the laser scan data to the

map provided and thus detecting if any drifts are occurring

based on the odometry in the pose estimate. This drift is then

compensated by publishing a transform between the map

frame and the odometry frame such that at the end the

transform map, base_frame corresponds to the real pose of

the robot in the world. It is explained in Figure 3.

Figure 3: AMCL working principle

The improved map that was produced through the

implementation of the hector_slam method on the real robot

was used for this task. The AMCL technique needed many

parameter adjustments before being able to localise the

mobile robot. Each parameter had to be changed and

carefully tested to find the most suitable for both the robot as

well as the laser scanner used. Table 3 shows the parameters

that were changed together with the description.

Table 3

Adaptive Monte Carlo Localization Parameters

Parameter Name Default
Value

New
Value

min_particles 100 500

max_particles 5000 1500

update_min_d 0.2 0.05
update_min_a 30° 10°

laser_min_range -1.0 0
laser_max_range -1.0 4.8

laser_likelihood_max_dist 2.0 0.8

odom_alpha1 0.2 0.7
odom_alpha2 0.2 0.5

odom_alpha3 0.2 0.8

odom_alpha4 0.2 0.5

Based on Table 3, the min_particles and max_particles

range had to be set smaller since the Hokuyo laser scanner has

a higher precision as compared to the default parameter set for

the Microsoft Kinect. As for update_min_d and

update_min_a, these values were set lower to increase the

update frequency and hence to make the localisation more

precise. The laser_min_range and laser_max_range were both

set based on the Hokuyo laser scanner description. The

laser_likelihood_max_dist, on the other hand, was set lower

to reduce the overall computational load and thus increasing

the performance. Each odom_alpha value was set based on

multiple tests at different places on the map. A higher value

of each odom_alpha reduces the dependency of the algorithm

towards the robot’s odometry information.

D. Obstacle Avoidance and Path Planning

The next step after localisation is to integrate both obstacle

avoidance and path planning algorithm into the system. First,

the obstacle avoidance algorithm was added to the system.

Journal of Telecommunication, Electronic and Computer Engineering

70 e-ISSN: 2289-8131 Vol. 10 No. 1-15

The algorithm used was the Dynamic Window Approach

(DWA).

Table 4

Dynamic Window Approach Parameters

Parameter Name Value

max_vel 0.2
min_vel 0

max_trans_vel 0.5

min_trans_vel 0.1
max_rot_vel 0.2

min_rot_vel 0
acc_lim 0.05

goal_tolerance 0.05

path_distance_bias 20
goal_distance_bias 3

occdist_scale 0.01

Based on Table 4, the max_vel parameter is set lower at

0.2m/s than the actual robot capacity of 0.5m/s to reduce

odometry error that occurs that higher speed. The min_vel is

set to zero for an apparent reason so that the robot can come

to a halt at any point in time. The acc_lim is set to 0.05m/s²

for the same reason as setting the velocity lower which is to

reduce odometry errors. The goal_tolerance,

path_distance_bias, goal_distance_bias and occdist_scale

was set at the lowest possible values whereby there were no

errors in reaching the goal position. Any lower value causes

the robot to stop when it meets an obstacle, producing an

error.

The path planning, on the other hand, involved the use of

Dijkstra’s algorithm since it is an open source algorithm as

well as the basic and easy to implement the algorithm. The

Dijkstra’s algorithm needs two custom parameter files to be

created for it to be used. The files include the costmap

parameters as well as the global planner parameters. The

Table 5 and Table 6 show the list of parameters that have to

be set for the costmap and global planner respectively. There

was no default value for these parameters as it depends solely

on each robot’s design.

Table 5

Global Planner parameters

Parameter Name Value

use_dijkstra True

use_grid_path False
allow_unknown False

use_quadratic False

Based on Table 5, the use_dijkstra parameter is set to true

since that path planning algorithm was used to complete the

path planning task. The use_grid_path parameter was set to

false to allow diagonal movement of the robot. The

allow_unknown parameter was set to false since a previously

generated map is used instead of a dynamically expanding

map. The use_quadratic parameter was also set to false since

Dijkstra uses simple mathematics for path planning instead

of quadratics method used by A-star algorithm.

Based on Table 6, the robot_radius had to be measured.

This parameter is needed for path planning as it is necessary

to know if the robot can pass through an obstacle or path. The

obstacle_layer was enabled so that obstacle throughout the

path can be detected and the costmap can be updated

accordingly. As for the unknown_threshold parameter, it was

based on trial and error and also the map’s resolution. The

obstacle_range was set lower than the maximum range of

Hokuyo laser scanner since it increased the efficiency of path

planning when dynamic obstacles were met. The

raytrace_range was set to the default Hokuyo’s

configuration. The observation_sources is the list of source

for detecting obstacles throughout the path of the robot. The

sources were the laser scanner and also the robot’s bump

sensor. The data_type and topic were the type of sensor data

and its respective ROS topic. The min_obstacle_height and

max_obstacle_height were set to zero since the whole

process was done in the two-dimensional map and both

observation source does not produce value in z-domain. The

inflation_radius was set to 0.2 meters to reduce

computational load as well making path planning more

specific to instantaneous dynamic obstacles. The

global_frame was set as “map” since a static map was used

rather than a dynamic continuous update map. The reason is

also why the parameter static_map was set to true. The

update_frequency and publish_frequency were set to 3.0Hz

and 0Hz respectively to increase the rate at which obstacle is

updated to the costmap for continuous and smooth path

planning.

Once the path planning was completed, the AMCL, DWA

and Dijkstra’s algorithm has to be combined to produce a

custom package for the robot to be able to localize and

navigate to pinpointed location while avoiding obstacles

using the catkin method.

E. System Architecture

Figure 4 shows the overall system architecture. From the

figure, it can be seen that the Hokuyo URG-04LX laser

scanner and the robot, Turtlebot Create, communicate with

the netbook using a universal serial bus (USB) connection.

As for the base station, it communicates through a wireless

network connection using the router. The Turtlebot Create

robot was used as the robotic platform for the localisation

system. It is a low-cost robot supported by open source

software, the Robot Operating System (ROS). A netbook is

used as an interfacing medium for laser scanner and the robot

as they both need a USB connection to communicate with

each other. The base station for this project is a Dell laptop

which has Windows 8 operating system with Ubuntu 14.04

for Robot Operating System (ROS) installed in the VMware

Workstation. A wireless router is used as the data transfer

medium between the netbook and the base station. Finally, a

Hokuyo URG-04LX is used for mapping, localisation as well

as obstacle avoidance.

Table 6

Costmap Parameters

Parameter Name Value

robot_radius 0.2 meter

obstacle_layer True
unknown_threshold 15

obstacle_range 2.5

raytrace_range 4.8
observation_sources scan; bump

data_type LaserScan; Bumper

topic scan; bumper_pointcloud
min_obstacle_height 0

max_obstacle_height 0

inflation_radius 0.2
global_frame map

robot_base_frame base_footprint

update_frequency 3.0
publish_frequency 0.0

static_map True

Implementation of Mobile Robot Localization and Path Planning for Navigation in Known Map

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 71

Figure 4: System architecture

IV. RESULTS

A. Mapping Process

The mapping process was first done at the UniMAP

Solution. Figure 5 shows the map generated by UniMAP

Solution.

Figure 5: UniMAP Solution’s map

As it can be seen in Figure 5, the red marked is where the

mapping process failed in producing a decent. This is

because the environment was poor regarding features for

comparison needed for map building. Another reason is that

the Hokuyo URG-04LX has a maximum range of up to 4.8m

and hence making it impossible to find any difference in

features at a longer distance. Nevertheless, the significant

portion of the map could still be used for localisation in the

future. The better map could also be produced once more

features are loaded in UniMAP Solution. The next task is to

improve the current CEASTech’s map so that the new map

covers more areas and more accurately represent the whole

layout.

Figure 6 and Figure 7 show the map that was generated

using slam_gmapping and hector_slam algorithm at

CEASTech respectively. Decent maps were able to be

generated since the environment is vibrant and there are

constant changes that can be captured as the robot moves.

However, the hector_slam algorithm produced a better map

as compared slam_gmapping. This is because hector_slam is

not affected by odometry information. It produces a map

solely using the sensor data. For this cause, it can only be

used in rich environments. Hence, a high update rate and the

accuracy of the laser scanner played an essential role in

producing the map. The marked red areas on the map

generated using slam_gmapping clearly shows a minor shift

of region as compared to the map produced using

hector_slam.

Figure 6: CEASTech’s Map using Slam_gmapping

Figure 7: CEASTech’s Map using Hector_slam

Following the mapping process, the Adaptive Monte

Carlo Localization (AMCL) algorithm was implemented

Journal of Telecommunication, Electronic and Computer Engineering

72 e-ISSN: 2289-8131 Vol. 10 No. 1-15

onto the Turtlebot. The map generated using the hector_slam

algorithm in CEASTech was used for this process.

Based on Figure 8 and Figure 9, the marked red area is the

location of the robot before and after localisation

respectively. As it can be seen in Figure 9, the robot has lined

up to its actual position on the map.

Figure 8: Robot’s location before localisation

Figure 9: Robot’s location after localisation

Next, the obstacle avoidance and path planning algorithm

which are the Dynamic Windows Approach and Dijkstra

respectively were added. This was completed by using the

custom package created for the robot to localise and navigate

to the goal position. Figure 10 to Figure 12 shows the result

of using the custom package. Based on Figure 10, the goal

position is pinpointed. The marked red area shows the robot’s

initial position while the black mark shows the goal position

being pinpointed by the green arrow. Figure 11 shows the

path generated for the robot to reach the goal position. Next,

Figure 12 shows the robot has reached the goal position while

successfully avoiding static and dynamic obstacles.

V. CONCLUSION

Overall, the objective of the project has been achieved.

The Hokuyo URG-04LX has been successfully interfaced to

the Turtlebot Create for the use in Robot Operating System

(ROS). The methods available for mapping and localisation

has been extensively studied and implemented. The

slam_gmapping and hector_slam were used for simultaneous

localisation and mapping (SLAM) while the Adaptive Monte

Carlo Localization (AMCL) was implemented for

localisation. The Dijkstra’s algorithm was successfully

implemented for path planning while the Dynamic Window

Approach (DWA) was used for obstacle avoidance. At the

end of the project, the mobile robot, Turtlebot Create, can

localise itself within a known map and move to any location

pinpointed while avoiding any new or dynamic obstacles

within the path.

Figure 10: Pinpointing the goal position and orientation (red mark shows

robot’s initial position while black mark shows goal position)

Figure 11: Path generated to reach the goal position

Figure 12: Robot reached the goal position

Implementation of Mobile Robot Localization and Path Planning for Navigation in Known Map

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 73

REFERENCES

[1] Robot hall of fame. 2016. [Online]. Available:

http://www.robothalloffame.org/ unimate.html.

[2] Siegwart, Roland, Illah Reza Nourbakhsh, and Davide Scaramuzza.

Introduction To Autonomous Mobile Robots. 1st ed. Cambridge
(Mas.): MIT Press, 2011.

[3] N. Chang, R. Rashidzadeh and M. Ahmadi, "Robust indoor positioning

using differential wi-fi access points", IEEE Transactions on
Consumer Electronics, [online] vol. 56, no. 3, pp. 1860-1867, 2010.

Available: ieeexplore.ieee.org

[4] S. Mazuelas, A. Bahillo, R. Lorenzo, P. Fernandez, F. Lago, E. Garcia,
J. Blas and E. Abril, "Robust Indoor Positioning Provided by Real-

Time RSSI Values in Unmodified WLAN Networks", IEEE Journal

of Selected Topics in Signal Processing, [online] vol. 3, no. 5, pp. 821-
831, 2009. Available: ieeexplore.ieee.org

[5] R. Havangi, "Intelligent FastSLAM: An Intelligent Factorized

Solution to Simultaneous Localization and Mapping", International
Journal of Humanoid Robotics, [online] vol. 14, no. 01, p. 1650026,

2017. Available: www.sciencedirect.com

[6] F. Koksal and C. Ersoy, "A Flexible Scalable Solution for All-Optical
Multifiber Multicasting: SLAM", Journal of Lightwave Technology,

[online] vol. 25, no. 9, pp. 2653-2666, 2007. Available:

www.sciencedirect.com
[7] G. Grisetti, C. Stachniss and W. Burgard, "Improved Techniques for

Grid Mapping with Rao-Blackwellized Particle Filters", IEEE

Transactions on Robotics, [online] vol. 23, no. 1, pp. 34-46, 2007.
Available: ieeexplore.ieee.org

[8] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo

Localization for Mobile Robots.” [online]. vol 4, Pages 243–282.
Available: www.sciencedirect.com

[9] P. Heinemann, T. Rückstieß, and A. Zell, “Fast and Accurate

Environment Modelling using Omnidirectional Vision,” [online] vol.1
Pages. 1–6. Available: scholar.google.com

[10] J. Latombe, Robot motion planning, 1st ed. Boston: Kluwer, 2010.

[11] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle
avoidance for mobile robots", IEEE Transactions on Robotics and

Automation, [online] vol. 7, no. 3, pp. 278-288, 1991. Available:

ieeexplore.ieee.org
[12] D. Adams, "Introduction to Inertial Navigation", Journal of

Navigation, [online] vol. 9, no. 03, pp. 249-259, 1956. Available:

scholar.google.com
[13] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico and L.

Jurišica, "Path Planning with Modified a Star Algorithm for a Mobile

Robot", Procedia Engineering, [online] vol. 96, pp. 59-69, 2014.
Available: www.sciencedirect.com.

