
 

 e-ISSN: 2289-8131   Vol. 10 No. 1-15 53 

 

Computing a Perceptual Map Using a Stereo-Vision 

Mobile Robot 
 

 

S. K. Eng1, B. E. Khoo1 and W. K. Yeap2 
1School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Malaysia. 

2Centre for Artificial Intelligence Research, Auckland University of Technology, New Zealand. 

khengkent@gmail.com 

 

 
Abstract—A new computational model of how humans 

integrate successive “local environments” obtained as views at 

limiting points in the environment to create a perceptual map 

has been proposed and validated using a laser-ranging mobile 

robot.  Compared with the SLAM (Simultaneous Localization 

and Mapping)-based approach, the proposed process is less 

computationally demanding and provides an interesting account 

of how humans compute their cognitive maps.  Since vision plays 

an important role in how humans compute their maps, we 

extend the previous work by implementing the model using a 

vision-based mobile robot.  Specifically, our model takes a pre-

recorded series of stereo-vision images of a large indoor 

environment at USM and produces a perceptual map.  The 

results show that the model is not dependent on the use of a 

laser-ranging device and this is significant if the model is 

intended as a cognitive model of spatial cognition.   

 
Index Terms—Human Perceptual Map; Mobile Robot; 

Stereo-Vision Images; SLAM. 

 

I. INTRODUCTION 

 

When an autonomous mobile robot moves in an unknown 

environment, it needs to incrementally build a map of the 

explored environment and uses the map to estimate its 

location in the environment.  This is the key issue addressed 

in the Simultaneous Localization And Mapping (SLAM) [1] 

approach.  The main goal of SLAM then is to create an 

accurate map of the environment.  The SLAM problem has 

gained significant attention from robotics researchers over the 

years [1,2].  Laser-based systems [3] and the vision-based 

systems [4] are the two most popular sensors for robotic 

researchers using the SLAM-based approach. 

While the SLAM-based methods have been shown to 

perform well in producing an accurate map of the 

environment, it is interesting that human (and animals) do not 

compute such a map [5]. Instead, based on studies by 

researchers interested in cognitive mapping, it has been 

shown that human memory pertaining to the environment is 

incomplete, inaccurate (in the metric term) and fragmented 

[6-8].  How do they compute such a map?  The process, 

according to these researchers, is an intriguing one.  It appears 

that what is learned could be affected by seemingly unrelated 

factors such as the direction of travel and presence of barriers.  

Subjects also show that they learn both a topological map and 

a metric map and the latter shows local accuracy (i.e. some 

parts are accurate while others are either missing or 

inaccurate).  Consequently, there has been much debate as to 

the nature of the process and the map computed. 

In [9], it is argued that despite the controversies 

surrounding the learning of a cognitive map of one’s 

environment, what is computed initially ought to be a map of 

the environment that is incomplete and inexact.  This map is 

referred to as a perceptual map, a map obtained via one’s 

direct experience of the environment.  The process suggested 

is intriguing: it requires no updating and no error correction.  

All it needs is the tracking of familiar objects in view.  It is a 

parsimonious process for learning a map of the environment.  

The model is tested on a mobile robot equipped with a laser 

sensor and an odometer.  In this paper, we implement the 

model on a mobile robot equipped with stereo vision.  

Specifically, stereo-vision images of a large indoor 

environment at USM are captured, and computer vision and 

mapping algorithms for the map building process are 

employed to compute a perceptual map of the environment. 

Testing the model using vision is essential for two reasons.  

First, vision plays a vital role in the development of human 

spatial cognition [10] and as such our work here is to test the 

model in [9] using vision.  However, note that existing 

computer vision is unlike human vision.  For example, the 

latter is extremely illusory as it does not provide a true 

geometrical description of the environment in view.  It 

provides a rich source of information but it has high visual 

acuity only in the small foveal region of the retina, and thus a 

large part of the input lacks clarity and detail.  The eyes need 

to make rapid movements (known as saccades) to bring 

different regions into the foveal.  Consequently, in our 

implementation, there is no attempt to simulate computer 

vision.  Our goal is to replicate that of [9] using a simple 

vision system to investigate if one could still compute a 

reasonable map that is inexact and incomplete.  If successful, 

more complex visual systems could be introduced later.  

Second, computer vision systems are less expensive and are 

gaining popularity as a sensor for robotic systems and in 

particular for drones.  Developing such a process for robot 

use would be an attractive alternative to the SLAM-based 

approach.  

The remainder of this paper is organised as follows.  In 

section II, the principle of human perceptual mapping is 

presented.  The methodology used in the experimental study 

is described in section III, while the results and discussion are 

presented in section IV.  Conclusions and suggestions for 

further work are given in section V. 

 

II. THE HUMAN PERCEPTUAL MAP BUILDING ALGORITHM 

 

A perceptual map is defined as a global metric map of one’s 

environment that is the result of one’s direct experience of the 

environment.  In [9], two assumptions are made. First, a view 

affords one a map of a local environment that one is about to 

enter.  Second, the world we live in is relatively stable.  

Consequently, to compute a perceptual map, one goes into a 
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cycle: get a view which shows a map of the local environment 

that one is about to explore, explore inside the local 

environment, if one moves out of the local environment, 

repeat.  Note that the second assumption means that we do 

not need to update the view at all while exploring the local 

environment.  However, if so, how does one know where one 

is in the environment?  This is achieved by tracking familiar 

objects in every subsequent view [9].  The familiar objects 

identified in the environment are known as the reference 

objects.  When one moves out of the current local 

environment, one remembers another view and enters into 

another local environment.  A list of such views forms a 

perceptual map.  If we allow these views to have an 

overlapping region containing some common objects (Figure 

1), then we can create a single global map that is inexact and 

incomplete.  

 

 
Figure 1: Creating a global perceptual map: V1..V6 are six robot viewing 

positions, and the circles indicate the view boundary for V1, V3 and V5.  

The perceptual map consists of V1, V3 and V5. By triangulating the 
viewing position of V5 in V3 and then V3 in V1 using the common 

surfaces (solid line) respectively, one could create a global map of the 

three views. 

 

The perceptual map building algorithm implemented in a 

mobile robot [9] is described formally as follows.  Let V0 be 

one’s starting view, R be a series of reference objects detected 

in V0, and PM is the perceptual map.  Initialize PM with V0. 

For each movement of the robot in the environment, perform: 

i. Execute the “move” command and obtain a new view, 

Vn; 

ii. Identify the tracked reference objects in Vn by 

transforming the previous view to the current view, 

i.e., tracking; 

iii. If the number of tracked reference objects found are 

fewer than a pre-specified number, use Vn-1 to expand 

PM and Vn-1, to create a new R; 

iv. Remove the tracked reference objects in R that have 

disappeared in the current view. Go to step (i). 

 

The theory leaves open three implementation issues, 

namely; (i) how and what reference targets should be selected 

for tracking purposes in successive views; (ii) when the 

perceptual map needs to be expanded (i.e. step (iii) above); 

and (iii) the mechanism for expanding information in the 

perceptual map (i.e. step (iv) above). 

 

III. METHODOLOGY 

 

In this paper, instead of using a laser-ranging mobile robot, 

a stereo-vision mobile robot (as shown in Figure 2) is used to 

compute a perceptual map.  Specifically, stereo-vision images 

of the environment are used as input to compute a perceptual 

map of the environment.  Details of the proposed perceptual 

map building procedure using stereo images and robot’s 

displacement information (rotation and translation) are 

explained, as follows. 

 

 
 

Figure 2: The platform of the vision-based mobile robot. 

 

 Stereo-vision Images 

In this research, the images are captured using a stereo 

vision-based mobile robot.  The PointGrey BumbleBee stereo 

camera [11] is used, and its configuration is as shown in Table 

1. 

 
Table 1 

The Configuration of the PointGrey BumbleBee Stereo Camera 

 

Parameters Configurations 

Baseline (b) 11.9952 cm 

Focal length (f) 251.48735 pixel 

Principal Point coordinates (c0, r0) (240/2, 320/2) pixel 
Image size 320 x240 pixel 

 

1) Preprocessing Step 

When the robot moves from one position to another, its 

odometry provides information of the robot’s displacement 

(rotation and translation) relative to the starting position.  

However, here, the odometry information is retrieved from 

analysing the associated camera images using our proposed 

algorithm.  In this case, subpixel locations of the edge points 

in the previous and the current views are detected using the 

method as proposed in [12].  Then, the features of edge points 

in the previous view with those in the current view are 

matched to retrieve the corresponding edge points of both 

views.  After that, the weak matched pairs are removed.  At 

the same time, the x and z location of each corresponding edge 

points from both views in cm are retrieved using: 

 

z=
bf

d
 (1) 

x=(c-c0)
b

d
 (2) 

 

where b and f are the baselines and focal length of the stereo 

camera, respectively, c and c0 are the column(x) coordinates 

of the edge points and the column(x) principal point in the 

right reference image (in pixel values), and d denotes the 

disparity value. 

The next crucial step is to infer the spatial transformation 

from two selected corresponding control edge points.  The 

output returns a 3x3 spatial transformation matrix, which 

contains information of the robot’s displacement (rotation 

(angle) and translation(tx,tz)) relative to its last step. 

 

V5 V6 V1 
V4 

V3 

V2 
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2) Reference Objects 

Reference objects (specifically edges of the reference 

objects in this research) are essential for representing the 

spatial information of the environment in the perceived scene. 

These objects help the viewers to locate their positions in the 

environment.  In this research, subpixel location of the edge 

points in the right and left images are detected using the 

method in [12].  Then, the features of edge points in the right 

image are matched with that in the left image, so that the 

corresponding edge points in them can be obtained.  The 

weak matched pairs are removed, and the disparity values for 

each edge point in the right image can be obtained.  The 

locations of each edge points (in cm) in the right image are 

retrieved by using the Equations 1 and 2.  A filtering process 

is also performed to remove the edge points that are too far 

away (i.e. 2000cm, where the accuracy of the distance 

measurement from the camera becomes low) from the robot 

location. Figure 3 shows the final edge points of the image. 

The next step is to cluster all detected reference points (in 

cm) using a grid-based method.  In this case, the size (width 

and height) of the grid area is first determined.  The reference 

points that fall into the same grid area are considered as 

belonging to the same cluster and is represented by one 

reference object. Figure 4 illustrates an example of the result. 

The last step is to use a 2-point line to represent every 

referenced object (a group of reference points) in each 

occupied grid area.  In this case, the slope(m) and offset(b) 

values of each group of reference points are first calculated 

by using a linear regression method.  Secondly, identify the 

minimum x position value (xp1) and the maximum x position 

value (xp2) of each group of reference points, and finally, the 

2-point line (xp1 zp1; xp2 zp2) for representing every referenced 

object can be created by using the equation shown as follows; 

 

zp1=m*xp1+b (3) 

zp2=m*xp2+b (4) 

 

The reference objects (line surfaces) with the minimal size 

of length (i.e., smaller than 5cm) are removed.  An example 

of the result is shown in Figure 5.  From Figure 5, every 

referenced object is assigned an ID (identification) number. 

 

 
 

Figure 3: The edge points in an image.  Green box denotes the robot 
position, and the green arrow denotes the robot orientation. 

 
 

Figure 4: Clustering the reference points using a grid-based method.  
Green box denotes the robot position, and the green arrow denotes the 

robot orientation. 

 

 
 

Figure 5: Reference objects with their respective ID (identification) 

numbers.  Green box denotes the robot position, and the green arrow 

denotes the robot orientation. 

 

  Recognizing and Tracking Reference Objects 

This step aims to recognise and track the reference objects 

identified in the first view (i.e. those lines with an ID number 

in Figure 5).  Firstly, the reference objects in the current view 

are identified.  Then, the locations of the tracked reference 

objects in the previous view are projected based on the 

coordinate system of the current view using: 

 

[x'pi  z'pi  1] = [xpi  zpi  1]* 

spatial transformation matrix 
(5) 

 

where pi denotes the first point and the second/endpoint in the 

reference objects/line surfaces.  (xpi , zpi) is the location of 

each point in the reference objects/line surfaces (each line 

consists of two points) in the previous view (of the previous 

view coordinate system); (x'pi , z'pi) is the transformed location 

of each point in the tracked reference objects /line surfaces in 

the previous view (of the current view coordinate system).  

The 3x3 spatial transformation matrix, which consists of the 

displacement (tx, tz and angle) of the robot relative to the last 

step is retrieved from the pre-possessing step.  

There are now two copies of the reference objects in the 

current view – one consists of reference objects initially 

found in the current view (ROB) and another consist of the 

transformed tracked reference objects from the previous view 

(TROAtoB).  Those reference objects in the new view (i.e., ROB) 

that are near the transformed locations of the reference 

objects (i.e., TROAtoB) are considered as the remaining 

reference objects (also known as tracked reference objects).  
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 Expanding the Map 

When the robot detects fewer than a pre-specified 

minimum number of tracked reference objects in the current 

view, it realises that it has now moved out of the current local 

environment.  The robot adds its previous view to the global 

map, because it may not be able to triangulate its position 

using the current view.  One of the essential tasks is to 

compute the spatial location of each new reference object 

(line surface) relative to the nearest common tracked 

reference object (i.e., Lx
pv).  The location of the nearby 

reference objects can be encoded as a vector with its length 

equal to the distance from the selected end-point and its angle 

equal to the angular displacement from the surface slope (as 

illustrated in Figure 6).  The procedure for this step is as 

follows. 

i. Retrieve the common tracked reference objects in the 

initial view (CRO_0) and the previous view(CRO_1); 

ii. Identify the nearest common tracked reference object 

(CRO_1) for each new reference object in the previous 

view.  The new reference objects are to be added to the 

global map; 

iii. Compute the vector and angular displacement (i.e., vi 

and Ɵi), of each new reference object from the left end-

point of the nearest common reference object (i.e. Lx
pv) 

in the previous view; 

iv. Compute the position of each new reference object in 

the global map by using the left end-point of the same 

common reference object found in the initial view (i.e., 

Lx
gm) , with its corresponding vector length (i.e., vi) and 

new computed angle (.Ɵi_new = Ɵi – Ɵturn), where Ɵturn 

represents the accumulated turn-angle of the robot; 

v. All the new reference objects in the previous view are 

added to the global map.  Note that the global map is 

first initialised using the first view. 

 

 
 

Figure 6: Computing the spatial locations of reference objects (i.e., S1 

and S2) close to a common tracked reference object.  S1 is recognised as 
a common tracked reference object and S2 and S3 are coded using two 

pairs of vectors centred on the right end-point of S1[13]. 

 

 Remove Redundancy points in the Global Map for 

Boundary Computation 

This step aims to remove redundant points in the global 

map, in order to obtain a clean map.  Through this process, 

we can visually judge whether the shape of the global map 

corresponds to the actual environment.  Besides that, the 

spatial information of the environment can be clearly 

observed when the boundary of the global map is created.  It 

is accomplished by first removing the reference objects which 

intersect with the path line.  Then, the inner and outer 

reference objects are identified.  Figure 7 shows an example 

of the outcome.  For each path line, select an appropriate 

number of important inner and outer reference objects that 

have the nearest distance with the current path line point.  

Many redundant reference objects in the global map can be 

removed through this process.  To form the boundary, 

determine the initial reference object.  Then, connect it from 

the current point to the next point accordingly. 

 

 
 

Figure 7: The initial global map with the identified inner (green line) 
and outer (red line) reference objects.  The blue lines indicate the path 

lines and the blue circles indicate the path points. 

 

IV. RESULTS AND DISCUSSION 

 

In this paper, the perceptual map model [9] is implemented 

and evaluated using a vision-based mobile robot with respect 

to an environment at the first floor of the Lecture Hall 

Complex of the Engineering Campus of Universiti Sains 

Malaysia. 

During the evaluation, the robot explores the environment 

in both clockwise and anti-clockwise directions.  The goal of 

the experiments is to examine whether inaccurate and 

incomplete global maps can be computed using the proposed 

procedure in Section III.  This means that the global maps 

computed should be able to represent the overall spatial 

information of the environment traversed [5,9,14].  

It is important to emphasise that the model proposed in [9] 

does not attempt to correct any sensor errors since it is not 

necessary to continuously update the sensor readings when 

the perceptual map is built.  What is added as the new local 

environment is precisely what is seen in the previous view.  

The rationale is that the environmental details are not 

necessary as long as the overall spatial information of the 

environment is recognised [6].  The purpose of exploring the 

environment in both clockwise and anti-clockwise (reverse) 

directions is to make sure that the maps computed are not 

direction dependent. 

In the experiment, the robot explores an indoor 

environment with a size of 28m x 28.5m in a clockwise and 

anti-clockwise direction. Figure 8 to Figure 11 show 

respectively the floor plan, the initial global map, a global 

map with redundant objects removed, and global map with 

boundary computed for the indoor environment.  Note that S 

and E denote the starting point and end point of the robot, 

respectively.  The horizontal line denotes the x position in cm, 

and vertical line denotes the z position in cm. 

The initial location and orientation of the robot are the same 

for the clockwise and anti-clockwise directions.  From Figure 

9(a), it is observed that a group of tracked reference objects 

near location A (refer to its corresponding floor plan) is 

clearly shown.  From Figure 9(b), a group of tracked 

reference objects near location B is also clearly shown.  On 

the other hand, the path lines (obtained from odometry 

information) computed for Figure 9(a) are accurate (refer to 

the path lines in corresponding floor plan), but specific path 

lines in Figure 9(b) (as highlighted in circle) is less accurate.  

This is because of the odometry error.  In addition, the size of 

the map in Figure 9(a) and Figure 9(b) appears almost the 
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same; it is because of the orientation of the robot in starting 

points are the same. 

From Figure 10, it can be observed that the important 

reference objects nearer to the path line are retained, while 

other redundant objects (i.e., located outside the important 

reference objects) are removed.  From Figure 11(b), it is 

shown that the highlighted (in circle) boundary of the green 

line is less correct, due to less correct path lines.  

Nevertheless, the shape of the map is still intact.  Overall, the 

proposed procedure can compute a map that depicts a 

reasonably accurate shape of the environment from both 

clockwise and anti-clockwise directions, even in the presence 

of minor odometry errors in the anti-clockwise direction. 

 

 
(a) 

 
(b) 

 
Figure 8: Floor plan in half route environment (a) with clock-wise 

direction (b) with anti-clockwise direction. 

 

 
(a) 

 
(b) 

 
Figure 9: Initial global map in half route environment.  The blue line 

and red line indicate the path line and the surfaces.  (a) with clock-wise 

direction, (b) with anti-clockwise direction. 

 

 
a) 

 
b) 

 
Figure 10: Global map with redundancy objects removed in half route 

environment.  The blue line, red line and the green line indicate the path 

line, inner surfaces and outer surfaces.  a) with clock-wise direction b) 
with anti-clockwise direction. 

 

 
(a) 

 
(b) 

 

Figure 11: Boundary computed for the global map in half route 

environment.  The blue line, red line and the green line indicate the path 
line, inner surfaces and outer surfaces.  (a) with clock-wise direction, (b) 

with anti-clockwise direction. 

 

V. CONCLUSION 

 

In this research, computer vision and mapping algorithms 

for building a perceptual map based on the model in [9] have 

been successfully developed.  The map building procedure 

has been evaluated using a stereo-vision mobile robot in a 

large indoor environment.  The results indicate that the model 

is not dependent on the use of a laser-ranging device.  The 

algorithms can create imprecise and incomplete maps with a 

good match between the created and actual spatial shape of 

the environment.   
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Further work will focus on developing more robust 

algorithms for vision-based robot mapping.  Comprehensive 

evaluations of the algorithms with more complicated indoor 

and outdoor environments will also be conducted. 
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