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Abstract— Patients who are suffering from diseases like motor 

neurone diseases (MND), or trauma such as spinal cord injury 

(SCI), and amputation is not able to move. This paper presents 

work on combining the power wheelchair designed to aid the 

movement of the disabled patient, and a Brain-Computer 

Interface can be used to replace conventional joystick so that it 

can be controlled without using hands. The brain signal 

emanated during Motor Imagery tasks can be converted into 

control signal for power wheelchair manoeuvring. In this 

research, five subjects are requested to perform six Kinesthetic 

Motor Imagery tasks, and Electroencephalography (EEG) 

signals are recorded. The elliptic filter was used to remove 

power line noise. Three features, namely Fractal dimension 

(FD), Mel-frequency Cepstral Coefficients (MFCCs) and a 

combined feature of FD with MFCCs were extracted and 

evaluated by using Multilayer Perceptron Neural Network 

(MLPNN). The Levenberg-Marquardt training algorithm is 

used to train the networks, and the classification result of the 

MLPNN using a combined feature of FD with MFCCs achieved 

an average accuracy of 91.7%. The developed model is tested 

and evaluated with the simulated virtual environment created 

by MATLAB graphical user interface (GUI). The result suggests 

that the combined feature of FD with MFCCs and MLPNN can 

be used to classify Motor Imagery signal for directional control 

of powered wheelchair. 

 

Index Terms—Artificial Neural Network; Brain-Computer 

Interface; Kinesthetic Motor Imagery; Powered Wheelchair. 

 

I. INTRODUCTION 

 

Differentially enabled (DE) communities suffering from 

diseases like stroke, cerebral palsy, motor neurone diseases 

(MND) including amyotrophic lateral sclerosis (ALS), or 

trauma such as spinal cord injury (SCI) and amputation is 

facing movement impairment issues.  

The wheelchair was invented to aid the movement of 

disabled patients and had gone through development for 

many centuries. A manual wheelchair consists of a seat, two 

footrests, two small front wheels and two large rear wheels. 

It can be moved by turning the rear wheels with hand rims by 

the occupant, or by pushing the handles by a second person. 

The long duration of wheel turning can be very tiring, 

especially places with uneven terrains or landscape. 

The electric-powered wheelchair was then invented to 

assist injured veterans during World War II. The electric-

powered wheelchair consists of essential components similar 

to a manual wheelchair, but with additional components like 

electric motor, joystick controller and battery. Electricity 

drives it from the battery, and the joystick can control the 

direction of the wheelchair. Henceforth, the DE communities 

can easily travel for longer distance without the need of aid 

from the others. 

However, the severe motor disabilities of the DE 

communities prevent them from using conventional 

augmentative methods, including power wheelchair that 

requires voluntary muscle movement of the patients to move 

the joystick [1]. The clinician reported that managing of 

steering and manoeuvring tasks by using the existing 

joystick-based power wheelchair interface is extremely 

difficult or impossible for approximately 40 percent of 

patients who receive power wheelchair training [2]. 

To overcome this issue, a Brain-Computer Interface (BCI) 

can be used to replace the joystick for controlling a power 

wheelchair. BCI is a communication system where it 

connects a functional human brain and a device to be 

controlled [3]. It provides an alternative pathway where the 

brain’s normal output channels of peripheral nerves and 

muscles are bypassed [1].  

By translating the brain signal into an equivalent control 

signal, BCI allows its user to gain control over the connected 

device without performing any muscular action. Thus, it can 

be an anticipated solution for the DE communities to 

overcome their physical limitations and interact with the 

external environment [4]. 

 

II. METHODOLOGY 

 

The Brain-Computer Interface (BCI) has the potential to 

replace or restore motor function for the Differentially 

Enabled (DE) communities since it does not use normal 

neuromuscular output pathways [1,5]. By converting 

Electroencephalogram (EEG) signals generated by 

Kinesthetic Motor Imagery tasks into appropriate command, 

a person’s intention can be used to control the direction of a 

power wheelchair. 

 

 
 

Figure 1: Block diagram of BCI system 

 

To be able to convert the raw EEG signals into a suitable 

control signal for a power wheelchair, there are a few 

important stages that need to be performed. Figure 1 shows 

the four stages that involved in a general BCI system, namely 

data acquisition (DAQ), signal preprocessing, feature 

extraction and classification.  
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A. Data acquisition 

The EEG signals were recorded at a sampling rate of 256Hz 

using a 19-channel EEG amplifier (Mindset-24). A unipolar 

19-channel EEG cap along with electrode attachments and 

applied with conductive gel were placed on the subject’s 

scalp based on International 10-20 electrode placement 

system [6]. Electrodes were connected only to the channel 

locations, C3, C4, Cz as only kinesthetic motor imagery 

(KMI) related tasks are considered in the experimental study 

[7]. The ground and reference electrode were attached to the 

left and right mastoids. 

Five healthy volunteers (three males and two females) aged 

21-30 years were involved in this research. None of them had 

a history of neurological or other diseases that might affect 

the experimental result. Before starting the experiment, the 

participants were briefed about the experimental procedures 

and requested to sign a written consent form. 

As the classification of KMI tasks based on the same body 

movements is involved, the proposed protocol requires the 

imagination of moving six different body parts (left hand, 

right hand, left leg, right leg, left palm and right palm) [8]. 

This six MI tasks together with relaxing function were then 

associated with four different directions (forward, backwards, 

left and right) and three control flag for stop, on and off status.  

Each task was recorded for 12 seconds, followed by 

relaxing period of 10 seconds. The experiment was repeated 

for ten such trials. The sampling frequency was 256 Hz, and 

therefore a total of 3072 samples was recorded for each test. 

The database consists of 150 set of samples (3 channels x 10 

trials x 5 subjects) for each task. 

 

B. Pre-processing 

This section discussed the pre-processing stages including 

noise removal, segmentation and validation. Digital filters are 

used for the noise removal stage. By using a fifth order band-

stop elliptic filter with 49-51 Hz cut-off frequency, 0.01 

ripple factor and 60 dB stopband attenuation, the 50 Hz 

power-line noise can be eliminated from the EEG signals [9]. 

The signal offset that might cause by electrode artefact can 

be removed by using a high pass filter with near zero cut-off 

frequency [9]. After filtering low-frequency components of 

the signal, the signal will become zero-mean distribution. 

Thus, another fifth order high-pass elliptic digital filter with 

1 Hz cut-off frequency, 0.01 ripple factor and 60 dB stopband 

attenuation was designed. 

Figure 2 shows the frequency response of the designed 

filters (a,b) and the frequency spectrum for the raw and 

filtered signal (c). The first one second and final one second 

of the filtered signal were removed. The remaining ten 

seconds samples (2560 samples) were considered for this 

study. 

The segmentation process takes place after filtering of raw 

EEG signal. The filtered EEG signal is being divided into 

multiple frames of the fixed-size window. The window size 

was experimentally selected as 640 sample. Instead of 

straightforward segmentation, each frame was overlapped by 

50% such that each of the frames contains 50% signal from 

the previous frame and the next frame. 

 
Figure 2: (a) Frequency response of Elliptic band stop filter with 50 Hz cut-

off frequency; (b) Frequency response of Elliptic high pass filter with 1 Hz 

cut-off frequency; (c) Frequency spectrum of raw EEG signal vs filtered 

EEG signal 
 

Therefore, a database of 490 frames (7 frame x 10 trials x 

7 tasks) of samples is formulated for each subject. Each of the 

segmented frames is convoluted with Hann window function 

to minimise discontinuities during segmentation [10]. 

To validate that the signal recorded exhibits the properties 

of an EEG signal, Analysis of Variance (ANOVA) test is 

performed. For all the five subjects, seven tasks and ten trials, 

five segmented frames from each trial were selected 

randomly for ANOVA test.  

The probability value that is more than 0.05 would indicate 

that there is 95% confidence that the segments are the same, 

which violated the stochastic nature of EEG signal. Such trial 

will be rejected, and the recording of that trial will be 

restarted. All the trials had passed ANOVA test, with 

probability value lower than 0.05. 

 

C. Feature Extraction 

This section discussed feature extraction algorithms 

selected to extract the prominent features of the Kinesthetic 

Motor Imagery (KMI) signal. In this research work, five 

feature extraction methods are being employed: 

i. Higuchi Fractal Dimension (FD) 

ii. Mel-frequency Cepstral Coefficients (MFCCs) 

iii. Combined feature of FD with MFCCs (FD+MFCCs) 

 

Fractal dimension is a non-linear time domain feature, 

which measures descriptive quantitative that provides a 

statistical ratio of complexity [11,12]. It can clearly 

discriminate the signal with different complexity, despite 

their scaling properties [13].  

The index calculated is a fractional value, where a more 

complex signal gives higher fractal dimension value and vice 

versa [14]. There are several techniques to measure the fractal 

dimension, such as box counting, information, correlation, 

generalised dimension, and Higuchi method. 

Recently, Kesić & Spasić [15] had reviewed the 

applications of Higuchi’s fractal dimension (FD) in basic and 

clinical neurophysiology. Higuchi’s method provided the 

most accurate estimation, although its accuracy decreases 

with increasing noise ratio. The advantages of speed, 

precision and cost-efficient of applying FD is the reason why 

it is widely used. Moreover, the combined application of FD 
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with other non-linear approaches ensures reliable and 

accurate analysis of a wide range of neurophysiological 

signals. 

To calculate fractal dimension, the segmented frame was 

first separated into k sets of time series by using  

Equation (1). 
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Using the mean length value Lk, the fractal dimension value 

Fd is computed by using Equation (3). 
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By taking k = 2, 3, 4, 5 and 6 [12], five fractal dimension 

values were obtained for each segmented frame. Thus, a 

database of FD features consisting of 490 rows (7 frames x 

10 trials x 7 tasks), and 15 columns (5 features per channel x 

3 channels) was formulated and associated to the respective 

MI task. 

A Mel-frequency cepstral coefficient is a feature extraction 

method originally used in speech recognition system [16]. It 

is being applied in EEG tasks classification recent years and 

achieved high classification accuracy up to 90% [17,18]. 

MFCCs contain filter banks that model the ability of the 

human ear to resolve frequencies non-linearly across the 

audio spectrum [19]. To compute MFCCs, the segmented 

frame was converted into the frequency domain by using 

Short Time Fourier Transform (STFT). Mel-frequency 

cepstrum is then calculated by mapping the FFT spectrum 

onto a mel scale based triangular band-pass filter banks. 

Using Equation (4), ten triangular filter banks which equally 

spaced along the Mel scale that covered 0-100 Hz were 

designed. The frequency nodes for the created filter banks are 

located at [0, 8.6, 17.2, 26.0, 34.8, 43.8, 52.9, 62.1, 71.4, 80.8, 

90.4, 100.0] Hz. Each triangular filterbank was formed by 

three continuous frequency nodes, with overlapping of 50% 

as shown in Figure 3. 
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Figure 3: 10 Mel filter banks across 0-100 Hz with 50% overlapping 

 

The Mel scaled output was then logarithmically 

transformed and discrete cosine transform (DCT) was applied 

as represented in Equation (5). Thus a database of MFCCs 

featured consisting of 490 rows (7 frames x 10 trials x 7 tasks) 

and 30 columns (10 features per channel x 3 channels) and 

associated to the respective MI task was formulated. 
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where kS  is the output of the filter bank, K is the length of 

kS , and Cn is the cepstral coefficients.  

The third feature set was developed by combining FD 

features with the MFCCs features. Thus, a database 

consisting 490 rows (7 frames x 10 trials x 7 tasks) and 45 

columns (5+10 features per channel x 3 channels) were 

formulated. 

 

D. Classification 

This section discussed the nonlinear classifier selected, 

namely Multilayered Perceptron Neural Network (MLPNN) 

for classifying the MI tasks. It was frequently employed by 

researchers in a complex application, especially in the 

biosignal recognition application. The three feature databases 

(FD, MFCCs and FD+MFCCs) were normalised and then 

used to develop three different network models for each 

subject. The performance of the different models will be 

tested by using wheelchair simulator developed by MATLAB 

Graphical User Interface (GUI). 

The features extracted are used as input vector of the 

networks. There are totally three different features used in 

this research, and each feature set gives different numbers of 

the input vector. The details of the numbers of neurones are 

provided in Table 1. 

 
Table 1 

Network Parameters 
 

 
Feature Sets  

FD MFCCs FD+MFCCs 

Input Neurons 
3 x 5  
= 15 

3 x 10 = 
30 

3 x 15  
= 45 

Hidden Layers 1 

Hidden Neurons 10 
Output Neurons 7 

Initial Weight Value random 

 

The number of hidden neurones is experimentally selected 

as 10. The number of input neurones is multiplied by three as 

there is three channel (C3, Cz and C4) while the number of 

output neurone is set to 7 as there are seven tasks. The weights 

value is randomised initially.  

To ensure the generalisation capability of the network, the 

database is being randomly divided into three sets. 65% of the 

database is used for training, while 10% for validation and 

remaining 25% for testing [20]. The training stops when the 

MSE of the validation set increases and the weights vector 

before increment of validation MSE will be saved. The 

network training will otherwise continue until it reached the 

following criteria: 

• Maximum epoch: 1000 

• Maximum training time: 100 minutes 

• Minimum performance: 1e-7 

• Minimum gradient: 1e-7 
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As these criteria were set at a minimal value, the network 

training considered a failure if the training parameters reach 

these standards. Over-fitting may happen due to overtraining 

of the system. The network model will lose its generalisation 

capability when it overfits.  

The best well-performed feature extraction algorithm is 

compared and selected based on the classification result. The 

trained networks are then tested in a simulated virtual 

environment created using MATLAB Graphical User 

Interface (GUI) for visualising the accuracy of the system 

output. 

The GUI divides routeing protocol into five by five blocks 

and indicating the direction of a wheelchair with a blue arrow. 

The pathway between each block can be redesign by selecting 

‘Redraw Route’ button. The GUI will choose a frame (640 

samples) at a random time from a random trial of the 

corresponding task, based on the required task at each step. 

The selected frame will be preprocessed, and its features will 

be fed into MLPNN. Green or red colour indicates the 

classification correctness at respective block or line. 

The route simulation will always start with Task 6, 

representing ‘On’ and robot chair will start moving. At each 

block, the robot chair will ‘Stop’ (Task 1), ‘Turn Left’ (Task 

2) or ‘Turn Right’ (Task 3) according to the route designed. 

The connection between each block representing ‘forward’ 

(Task 4) and ‘Backwards’ (Task 5) movements and the route 

will always end with ‘off’ (Task 7). Upon reaching the last 

block, the wheelchair will continue to move in a reverse 

direction, and start over infinitely once it reaches the first 

block. 

 

III. RESULT AND DISCUSSION 

 

By using MLPNN, the ability of five feature extraction 

methods is tested and evaluated. The combined feature of FD 

with MFCCs has yielded highest classification accuracy 

among all five feature extraction methods. It appeared that the 

low accuracy member in both FD based MLP and MFCCs 

based MLP was improved by around 15% when the two 

features were combined. 

On top of that, the performance variance of the combined 

feature of FD with MFCCs was the lowest, indicating that it 

can provide a reliable classification output. This result 

suggests that the fusion of time domain and frequency domain 

features is very efficient for increasing classification 

performance and able to discriminate the KMI tasks better. 

The Combined feature of FD with MFCCs and MLPNN is 

employed in the designed MATLAB GUI for wheelchair 

route simulation. Figure 5 shows the example of the 

simulation performed. The top right figure always display the 

20 newest classification result, the red line represents network 

output, and the green line represents the target. The 

misclassification rate of a particular task can be observed 

quickly through the bar chart at the bottom right of the GUI. 
 

Table 2 

Classification Accuracy for FD based MLPNN 
 

Accuracy (%) 
Subject 

1 2 3 4 5 

Training (65%) 73.0 75.8 71.4 97.8 97.8 
Validation (10%) 49.0 61.2 61.2 89.8 87.8 

Testing (25%) 49.6 55.3 52.9 85.4 89.4 

Overall (100%) 64.7 69.2 65.7 93.9 94.7 

 
 

Table 3 
Classification Accuracy for MFCCs based MLPNN 

 

Accuracy (%) 
Subject 

1 2 3 4 5 

Training (65%) 87.7 97.8 72.3 100.0 100.0 

Validation (10%) 73.5 69.4 77.6 98.0 95.9 

Testing (25%) 66.7 74.0 59.4 97.6 96.8 
Overall (100%) 81.0 89.0 69.6 99.2 98.8 

 

Table 4 

Classification Accuracy for FD+MFCCs based MLPNN 
 

Accuracy (%) 
Subject 

1 2 3 4 5 

Training (65%) 90.3 96.5 83.3 100.0 100.0 
Validation (10%) 71.4 69.4 73.5 91.8 98.0 

Testing (25%) 66.7 78.1 71.5 100.0 97.6 

Overall (100%) 82.5 89.2 79.4 99.2 99.2 

 

 
 

Figure 4: Overall Accuracy for FD, MFCCs and FD+MFCCs based MLP 
 

 

 
 

Figure 5: Wheelchair route simulator created by using MATLAB GUI  

 

IV. CONCLUSION 

 

In this research, three different feature extraction methods 

were applied for the classification of six different KMI tasks. 

The use of the combined feature of FD with MFCCs 

(FD+MFCCs) resulted in consistently higher classification 

accuracy compared to Higuchi Fractal Dimension (FD) 

feature and Mel-frequency Cepstral Coefficients (MFCCs) 

feature. This result suggests that the combined feature of FD 

with MFCCs can be used as a promising feature extraction 

method in motor imagery based BCI. 
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