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Abstract—The non-predictive behaviour of wireless signal 

especially that of 2.4GHz WiFi due to the complex signal 

propagation is primarily non-usable for mobile robot 

positioning system. It is fluctuating and prone to error that made 

positioning accuracy haywires even in stationary location. 

Therefore, there is a need to estimate the wireless signal to its 

real value as per fingerprint location. This paper proposed to 

use the Linear Kalman Filter (LKF) to predict the wireless 

signal, i.e. the WiFi Received Signal Strength (RSS) to estimate 

the location using the Weighted K-Nearest Neighbor (WKNN) 

algorithm that matched the fingerprinting database constructed 

beforehand. By employing the LKF, the accuracy of the 

positioning system at any stationary location has improved 

significantly when compared to the use of raw original WiFi 

signal. 

 

Index Terms—Positioning Systems; Fingerprinting 

Technique; Wireless Localization; Kalman Filters; Robotics. 

 

I. INTRODUCTION 

 

In the recent years, the positioning of subjects or objects such 

as mobile robot using wireless methods has gained reputable 

attentions due to ease of deployment as well as cost 

facilitative. The foundation works using a method known as 

fingerprinting technique has notched a reasonable accuracy 

for user tracking in an office environment [1]. Since then, 

numerous literature has adapted the fingerprinting technique 

prior to their applications [2-4]. Fingerprinting technique is 

much favoured than the classical approach of wireless 

positioning, i.e. the triangulation (or trilateration) technique 

for their effectiveness and accuracies. 

While triangulation technique requires the knowledge of 

the location of transmitting devices such as the WiFi Access 

Point (AP) in order to geo-locate the mobile robot [5], 

fingerprinting technique does not need them. The Received 

Signal Strength (RSS) from the WiFi AP is usually measured 

at pre-determined reference locations to construct the signal 

radio map. Some literature suggested that constructing the 

signal radio map requires humanly effort [6], but the radio 

map can also be interpolated by algorithms such as the 

stochastic Kriging algorithms [7] or using a more 

deterministic algorithm such as the Modified Shepard’s 

Method [8,9]. The database collecting workload can be 

further reduced with the aid of autonomous mobile robot 

fusioned with odometry sensors [10]. 

Figure 1 shows the commonly used diagram to illustrate the 

wireless positioning system based on the signal fingerprinting 

technique. In the training phase, as explained previously the 

multiple WiFi signals radiated from AP1 to APk are recorded, 

and the average signal strength is stored in the database. In 

the positioning phase, the signal measured by the mobile 

robot is matched to those in the database, and the result is later 

returned in the form of estimated location, usually in 

Cartesian spatial space [11].  

 

 
 

Figure 1: A typical flow of the wireless positioning system based on 
fingerprinting technique 

 

As simple it might sound, such positioning technique has 

complex challenges due to the fluctuating behaviour of the 

wireless signal. Taking examples of using deterministic 

database matching such as the nearest neighbour (NN) and a 

stationary mobile robot, the measured WiFi RSS varies 

unexpectedly over time as depicted in Figure 2. Then the 

online which matched to the fingerprint database also are 

varied unexpectedly. Theoretically, the positioning system 

using such signal will yield different locations. Computation, 

the average of these locations, is not so beneficial since the 

‘true’ location is unknown. Hence it is perplexing. 

Therefore, it is natural to filter in the sense of predicting the 

incoming signal to the mobile robot. A correct prediction will 

yield in an accurate positioning result of the mobile robot. In 

this paper, we discuss the use of the Linear Kalman Filter to 

predict the WiFi signal in the online phase. As a rule of 

thumb, the signal fingerprint database has been constructed 

beforehand having the tuple of reference location coordinate 

and the average RSS over some sampling period. In addition, 

the result is also compared with the original WiFi data to 
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observe the effectiveness of the proposed algorithm. 

 
Figure 2: An example of the WiFi signal fluctuation where the mobile robot 

stays stationary over some period of time. 

 

This paper is organised as follows. Section II introduces the 

analytical background such as the fingerprinting database and 

the derivation of the Linear Kalman Filter as well as the 

Weighted K-Nearest Neighbour (WKNN) positioning 

algorithm. Then, section III presents the experimental setup 

including the hardware used in this works. Section IV, on the 

other hand, discusses the results of the signal prediction from 

positioning error perspective. Finally, the conclusion and 

future remarks are drawn in Section V. 

 

II. ANALYTICAL BACKGROUND 

 

A. Fingerprinting Database  

Figure 3 shows the standard IEEE 802.11 a/c/n Wireless 

Fidelity (WiFi) channels in the 2.4GHz frequency spectrum. 

From the nominal 14 channels, there are three non-

overlapping channels at channels 1, 6 and 11. This choice of 

channel is reasonable to avoid interferences between the WiFi 

APs. 

 

 
 

Figure 3: The 802.11 WiFi channels in the 2.4GHz spectrum 

 

At predefined locations, the WiFi signal can be measured 

over some sampling period. Then it is common to use the 

signal average as the scalar value to construct the database. It 

is, in fact, practical to store the database v in vector tuple form 

given in Equation (1). 

 

T
k k

i iv z P =    (1) 

 

where 
k

iz  is the vector of the average of WiFi received signal 

strength at the i-th location of AP k. These i location can be 

described as 
k

iP  in Cartesian space comprising of location 

coordinate x and y, respectively. The AP k is normally 

identified using its SSID or BSSID identifier. 
 

B. Linear Kalman Filter 

In the 60s, Kalman proposed the Kalman filter as a 

recursive filter to determine the random values of the linear 

and nonlinear system from lousy and noisy signals [12]. 

Kalman filter uses the knowledge of current and previous 

states to track or predict and thus revise the past, present and 

future states. Kalman filter can plot the system’s trajectory, 

making it suitable to model systems such as radars that 

anticipate and estimate the next state [13]. 

 This works implemented the classical approach of the 

Linear Kalman Filter (LKF). If we consider the discrete-time 

system: 
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where the state variable x, u and w represents the original 

WiFi signal, control input and the noise at time k, and the 

measurement model pertaining noise variable v.  The control 

input is, however, cannot be controlled because the WiFi AP 

properties are limited by the manufacturers built. Hence, it is 

assumed to be unity. Intuitively, Equation (2) becomes 

Equation (3). 
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Since the LKF is an iterative method, it is easier to illustrate 

the computation graphically. Figure 4 shows the algorithm of 

the LKF used in this works. 

 

Figure 4: Linear Kalman Filter algorithm 
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C. WKNN Positioning Algorithm 

When an unknown WiFi signal, zu
k is obtained, it will be 

matched to those in the database, v. The estimated location is 

then decided at Pi
k that matched zi

k. Therefore it is natural to 

use the data that has the minimum distance between the two, 

which normally attributed to finding the nearest neighbour 

(NN) using distance norm p stated in Equation (4). 

 
1

1

1 M pp
k k

j u i

ip

d z z
N =

 
= − 

 
  (4) 

 

where Np is the total number of WiFi AP, 
k

uz is the unknown 

WiFi RSS data, and 
k

iz  is the fingerprint database 

 1,2, ,i MN= , MN is a total number of the database 

defined by the level of granularity. However, this idea is 

somewhat prone to noisy samples which show unpredicted 

errors. Thus, instead of taking the nearest neighbour, 

surrounding neighbours around K is taken into consideration. 

To increase the effectiveness of the matching algorithm, a 

weightage  can be included as a function of inverse distance 

to emphasise the significance of ‘close’ neighbours while 

neglecting those ‘far’ neighbours. 

By matching the unknown WiFi signal to the database v, 

the estimated location can be computed as in Equation (5). 
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where ˆ ˆ( , )X Y  is the estimated location, j are the weights of 

the corresponding data, which can be computed merely as 

Equation (6). 
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III. EXPERIMENTAL SETUP 

 

We conduct our experiments at the second floor of Centre 

for Human-Robot Symbiosis Research, Toyohashi University 

of Technology. Figure 5 shows the location of the WiFi AP 

at their optimised location to ensure the entire wireless 

coverage within the experimental area[14]. The experimental 

area is about 11 8.4 meter area highlighted in the black box. 

The building’s surrounding walls are about 20 cm thick dry 

concrete, and the door is made of steel.  A total of 64 sampling 

locations marked with ‘ ’ are available in the mobile robot 

mobility area at one meter sparsity level, considering also 

space obstruction such as furniture and other placements as 

well as accommodated space for other works. This one-meter 

sparsity level is considered suitable since our mobile robot 

has a base diameter of 0.5 meter that fit well between two 

reference locations. A details configuration of the mobile 

robot can be found in [8,9]. Three AP were used, where AP 1 

and 2 has a clear, unobstructed line-of-sight (LOS) while AP 

3 is obstructed by a cement wall and randomly close and open 

door. This randomness is resulting from daily used of the 

experimental area by other research studies. Moreover, such 

randomness is more nature in real situations. In this works, 

we used the WiFi AP from Alfa Inc. model number AIP-

W525H dual omnidirectional antenna with 5dBi each. The 

WiFi receiver is also from Alfa Inc. model number 

AWUS036NHR-V2 with a 5dBi omnidirectional antenna 

attached on the mobile robot at one meter height from the 

floor level. For the WiFi APs, the set-ups is built such as none 

network security, default MAC from Alfa Inc., and network 

channel set to channel 1, 6 and 11 respectively. The nominal 

frequency for this AP is 2.4GHz. The recording time per 

sampling location is set to about three minutes long in order 

to obtain the generic behaviour of the wireless signal. 
 

 

 

 
 

 
 

Figure 5: Experimental area showing the location of the WiFi Access Points (AP) and signal fingerprints database [8] 
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IV. RESULT AND DISCUSSION 

 

The prediction of the WiFi RSS can be accurately 

forecasted by using the measured WiFi RSS value of the 

current state as well as the value reflecting the projection from 

the current state using a recursive algorithm and adaptive 

Kalman Gain shown as KK. Moreover, the more we trust our 

measurement, i.e. smaller value of error covariance estimate, 

then the system will converge into meaningful value in short 

period of time. In this paper, a heuristic value of error 

standard deviation of about 3 dB is used resulting in 

convergence in a considerable amount of time. Also, the 

value of K in WKNN algorithm is selected to one which 

represents the nearest neighbour of the fingerprint database. 

A thorough analysis of WKNN and its effectiveness is 

discussed in details in [8,9].  

Figure 6 shows the application of LKF towards the 

fluctuating WiFi sample signals retrieved from three different 

AP where the mobile robot stays stationary over some period. 

The stationary location is depicted at Location ID #57 in the 

experimental map Figure 5, where the strong WiFi signal is 

received from AP2, the moderate signal from AP1, and the 

weaker signal from AP3. The continuous straight line over y-

axis represents the average computation of the RSS signals 

respective to the APs. By trusting the measurement at 

aforementioned standard deviation, we can observe that the 

resulting filtered signals are converged to a respective signal 

average of about 20s. Then, we can say that the WiFi signal 

afterwards has been successfully predicted towards its 

convergence to the signal average before this stationary test 

location. 

Further experiments were conducted from the local 

positioning of view. The fingerprinting database was initially 

made using the average of WiFi signal before each test 

locations. The robot stayed stationary at the test locations, and 

then it will try to position itself using WKNN matching 

algorithm. In this sense, the robot did not know its correct 

location, but it will try to determine his location based only 

on the obtained WiFi signals. 

Referring to the test locations depicted in Figure 5, we 

experimented the positioning at test location #27, which is 

located in the central area of the experimental area. This test 

location is selected in this paper since it is located in the 

central area of the experimental area and represents the 

location where the robot operates the most. In the first trial, 

the raw WiFi signal data is fed into the WKNN positioning 

algorithms, and the estimated position is observed. Later, the 

same signal is filtered using LKF and re-fed into WKNN 

positioning system and being observed. 

About 120 seconds of sampling data were obtained, and at 

each individual sampling time, the WiFi signals were fed into 

the WKNN positioning algorithm to match with the 

fingerprinting database. Figure 7 shows the result of the 

positioning system concerning central test location ID #27 

using only raw signal. In this case, the average positioning 

error is recorded at1.3095 0.9178[m] . The highest error is 

at about 40s with the error of 4.3 [m], and the exact location 

is obtained only one time roughly at 66s.  Figure 8 on the hand 

shows the positioning accuracy using the unfiltered raw WiFi 

data in the digitised experimental area. It can be observed that 

the robot failed to position itself as proved by the scattered 

estimated locations throughout the experimental area. In 

addition, there are several locations estimated outside the 

LOS region of the AP depicted by the triangular notation. 

 
Figure 6: Effectiveness of Linear Kalman Filter towards prediction of the 

WiFi signal in a stationary location 

 

Figure 7: The positioning error the positioning system on using raw data 

 

 
Figure 8: The positioning accuracy of the positioning system on using raw 

data 

 

Figure 9 presents the positioning error at central test 

location ID #27 when the WiFi signal is applied to the linear 

Kalman filter. In the first 10 seconds, the error is at about 1 

[m], and afterwards, the error is ultimately reduced to 0 [m] 

signifies that the robot has successfully determined its true 

location. The average error at this point is recorded at 

0.06350.2448[m] which shown a remarkable 95% 

improvement from using the raw signal data. Figure 10 shows 
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the accuracy of the wireless positioning system on using the 

Linear Kalman Filter signal which depicted that the mobile 

robot has estimated its location exactly on the actual location, 

most of the time. This is because the signals have successfully 

converged to the signal average, then the fingerprinting 

matching system works ideally. 

 

 
Figure 9: The positioning error the positioning system on using LKF filter 

 

 
Figure 10: The positioning accuracy of the positioning system on using 

LKF filter 

 

V. CONCLUSION 

 

A The stationary positioning system with the use of raw 

WiFi RSS data may cause bad variation of positioning results 

due to the signal fluctuation problems. The signal fluctuation 

caused by complex signal propagation and mechanism is non-

deterministic thus controlling them is an ambitious effort. 

Hence the signal filtering approach is highly desired. 

In this paper, the prediction of the WiFi signal specifically 

used for fingerprinting-based wireless positioning system has 

been experimented by using the Linear Kalman Filter. With a 

proper choice of noise standard deviation, the online signal is 

likely to converge to the signal average which is the reference 

values in the fingerprinting database. In such cases, the lower 

noise standard deviation means that the WiFi RSS 

measurement is much more trustfulness. By using the LKF, 

the accuracies of the positioning system is improved with 

remarkable improvement of 95% compared to the use of 

unfiltered raw data. Moreover, the noises have also been 

successfully suppressed to the signal average. This correct 

signal prediction has contributed to the high accuracy WKNN 

positioning system, specifically at stationary locations. In the 

future, we are planning to increase the scope this works into 

mobile tracking with the use of nonlinear Kalman Filters such 

as the Extended Kalman Filter and Unscented Kalman Filter. 

Also, spatiotemporal data of robot mobility will also be 

analysed in order to achieve the ultimate goal of sensor-less 

mobile robot localisation. 
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