
ISSN: 2180 - 1843     Vol. 3     No. 1     January - June 2011

Distributed t-way Test Suite Generator System Using Master Worker Execution Model

7

                      

Abstract 

Advancement of software is always in line 
with its capacity. When the software is large, 
considering all exhaustive testing is impossible. 
Sequentially implemented t-way testing 
strategies have been reported of its efficiency in 
the past literature to address the aforementioned 
issues; however, they suffer limited memory and 
retarded performance. Distributed computing 
appears to be a good avenue in this case. In 
this paper, we propose the implementation of 
twayGenerator (our previous work of sequential 
t-way testing strategy) in a distributed system 
by using Master Worker execution model. 
The speedup performance is the main concern 
in the research. It is generally predicted the 
degree of increment of speedup performance 
could be improved based on the number of 
computers used to run the test cases generation. 
The expected outcomes and practical results 
have been cited out based on the supportive 
discussions.

Keywords: software testing, interaction 
testing, distributed computing, Master Worker 
execution model, t-way testing.

I.	 INTRODUCTION

Software testing can be regarded as 
any activity aimed at evaluating an 
attribute or capability of a program or 
system and determining that it meets its 
required results. It can also be defined 
as the process of executing a program or 
system with the intent of finding errors 
[1]. Software testing can be considered 
as one of the most important activities 
since it covers as much as 40 to 50 
percent of total software development 

Distributed t-way Test Suite Generator System 
Using Master Worker Execution Model

Ong Hui Yeh, Kamal Zuhairi Zamli

School of Electrical and Electronic Engineering
Universiti Sains Malaysia, Engineering Campus

14300 Nibong Tebal, Seberang Perai Selatan,
 Pulau Pinang, Malaysia

Tel: +604-5995096

Email: yeh_1985@hotmail.com, eekamal@eng.usm.my    

costs [2] [3]. It measures the reliability of 
a typical software system whereas this 
aspect has become an important factor 
especially when software is employed in 
harsh, life threatening or critical (safety) 
applications such as airplane control 
systems and biomedical instrumental 
devices. Rigorous software testing is 
therefore needed since lacking of testing 
often leads to disastrous consequences 
including loss of data, fortunes and even 
lives [4]. 

As the increments of size and capacity 
of software in line with its advancement 
and complexity, many combinations of 
possible inputs, parameters, hardware 
and software environments, and system 
conditions need to be tested and verified. 
However, it is impossible to consider 
all exhaustive testing. The main factors 
that inhibit such consideration include 
resource constraints and costing factors 
as well as strict time to meet market 
deadlines. Thus, there is a need for a 
systematic strategy in order to reduce the 
test data set into manageable ones [5]. 

Interaction testing (t-way testing) 
is an effective approach to address 
aforementioned issues, where t is the 
level of interaction among the system’s 
input parameters, may be set to 2, 3, 4 or 
higher [6]. In t-way testing, a set of test 
cases is generated to cover a subset of 
the possible combinations of the system’s 
input parameters, rather than trying 
to cover all possible combinations. The 
rationale for t-way testing stemmed from 



ISSN: 2180 - 1843     Vol. 3     No. 1     January - June 2011

Journal of Telecommunication, Electronic and Computer Engineering

8

the fact that from empirical observation, 
the number of input variables involved 
in software failures is relatively small (i.e. 
in the order of 2 to 6), in some classes of 
software.  

Numerous strategies have been developed 
in the past literature on t-way testing but 
they are more focused on pairwise (where 
t=2) testing [3] [7] [8] [9] [10] [11]. As an 
example, Lei and Tai have proposed a test 
generation strategy for pairwise testing, 
which is know as In-Parameter-Order 
(IPO) [8]. Given a system with two or 
more input parameters, the IPO strategy 
create a pairwise test set for the first two 
parameters then extends the test set to 
produce a pairwise test set for the first 
three parameters, and proceed to do so 
for each additional parameter. Earlier 
literatures claimed that pairwise testing 
(where t=2) can be effectively to disclose 
most faults in particular software system 
[12]. Nevertheless, such approach cannot 
be generalized to all software system 
faults especially when there are significant 
interactions between parameters. 

Herein, recent attentions have been 
focused more on t-way testing which 
could cope with the interaction strength 
greater than two (t≥2). Several strategies 
have been reported, such as Automatic 
Efficient Test Generator (AETG) system 
[13] and Test Vector Generator (TVG) 
tool [14]. For instant, AETG system 
utilized a new approach to testing that 
uses combinatorial designs to generate 
test cases that cover t-way combinations 
of a system’s test parameters [13]. On the 
other hands, J. Arshem then proposed 
Test Vector Generator (TVG)

tool based on the extension of AETG 
strategy to support t-way testing [14]. 
Even though these strategies are reported 
to be efficient as far as the number of 
test cases generated is concerned, most 
of them are sequentially implemented, 
which might be supportive for a system 

with limited number of inputs. With the 
rapid growth of software nowadays, 
they might encounter the bottom neck of 
insufficient memory and suffer with the 
retarded performance when there are 
massive of input variables to be taken into 
account. As a consequence, distributed 
system implementation appears to be a 
good avenue in this case.        

This paper proposes a distributed 
t-way test suite generator system by 
using Master Worker execution model. 
Specifically, a non-deterministic t-way 
strategy, twayGenerator [15] has been 
adopted in the implementation. Basically, 
the twayGenerator will be executed 
on multiple machines instead of single 
computer by utilizing distributed 
computing techniques. Nonetheless, 
several issues are to be concerned.  For 
example, it is crucial to apply the load 
balancing algorithm for distributed shared 
memory processor. Next, the distributed 
program often deals with heterogeneous 
environments, network links of varying 
latencies, and unpredictable failures in 
the network or the computers. Therefore, 
the algorithm shall be designed to be 
scalable, portable and easy-to-use. 

This paper is structured as follows: 
Section I illustrates the introduction of 
t-way testing whereas Section II describes 
the implementation of distributed 
twayGenerator. Section III gives the 
expectation outcomes. Section IV shows 
the practical results. Section V gives the 
conclusion of this work and cites the 
possible future work to be carried on.

II.	ME THODOLOGY

Before we further discuss the 
implementation of Master Worker 
execution model in distributed 
twayGenerator, there is an issue arises 
to be emphasized, i.e. the problem of 
distributing workloads on multiprocessor 
in a network. Adequate fair dynamic 

This research is funded and supported by Universiti Sains Malaysia Research University 
Postgraduate Research Grant Scheme (USM-RU-PGRS, Grant Number: 1001/PELECT/8033001) 
and USM postgraduate fellowship scheme.



ISSN: 2180 - 1843     Vol. 3     No. 1     January - June 2011

Distributed t-way Test Suite Generator System Using Master Worker Execution Model

9

load distribution techniques would be 
required to efficiently running parallel 
applications on distributed computing 
environments. This is because the 
unfairly distributions techniques may 
cause certain processors overloaded 
while other processors under loaded 
and waste its bandwidth to run jobs. The 
whole system wastes time on waiting jobs 
that are queued on overload processor 
while nothing done by other processors. 
Load balancing is therefore needed as it is 
usually achieved by relocating application 
tasks from busy nodes to lightly loaded 
or idle nodes [16]. It is one of the most 
challenging issues in attaining high 
performance in heterogeneous systems. 
Scheduling algorithms were devised to 
perform distributing loads from server to 
processors. Thus, high performance load 
balancing algorithm is an algorithm that 
could distribute loads fairly to processors 
and prevent overloaded condition. 

In order to employ distributed computing 
technique on distributed twayGenerator, 
the idea on Master Worker (MW) 
execution model (also known as Master 
Slave model) has been proposed. In 
this model, there are two distinct types 
of processes: Master and Workers. 
Master decomposes the problem into 
small tasks; distribute to Workers and 
correlating their output into a global 
results whereas Workers typically collect 
and execute the tasks and then sending 
back to the Master. It is proved that the 
Master Worker execution is efficient in 
developing applications with different 
degrees of granularity of parallelism 
(grain size) and is particularly useful 
when the dependencies between tasks 
are low [17]. This is favor to distributed 
twayGenerator as the distributing tasks 
are self-regulating from one another. 

Furthermore, daemon is integrated 
with our proposed strategy. The word 
“daemon” actually comes from the Greek 
language, meaning an “inner or attendant 
spirit” (Oxford American Dictionary). 
This is a fitting name, as a computer 
daemon is a constantly running program 

that triggers actions when it receives 
certain input. For example, a printer 
daemon spools information to a printer 
when a user decides to print a document. 
A daemon running on a mail server 
routes incoming mail to the appropriate 
mailboxes. Web servers use a Hyper Text 
Transfer Protocol Daemon (HTTPD) that 
sends data to users when they access Web 
pages [18].

tool based on the extension of AETG strategy to support t-way 
testing [14]. Even though these strategies are reported to be 
efficient as far as the number of test cases generated is 
concerned, most of them are sequentially implemented, which 
might be supportive for a system with limited number of 
inputs. With the rapid growth of software nowadays, they 
might encounter the bottom neck of insufficient memory and 
suffer with the retarded performance when there are massive 
of input variables to be taken into account. As a consequence, 
distributed system implementation appears to be a good 
avenue in this case.         

This paper proposes a distributed t-way test suite generator 
system by using Master Worker execution model. Specifically, 
a non-deterministic t-way strategy, twayGenerator [15] has 
been adopted in the implementation. Basically, the 
twayGenerator will be executed on multiple machines instead 
of single computer by utilizing distributed computing 
techniques. Nonetheless, several issues are to be concerned.  
For example, it is crucial to apply the load balancing algorithm 
for distributed shared memory processor. Next, the distributed 
program often deals with heterogeneous environments, 
network links of varying latencies, and unpredictable failures 
in the network or the computers. Therefore, the algorithm shall 
be designed to be scalable, portable and easy-to-use.  

This paper is structured as follows: Section I illustrates the 
introduction of t-way testing whereas Section II describes the 
implementation of distributed twayGenerator. Section III gives 
the expectation outcomes. Section IV shows the practical 
results. Section V gives the conclusion of this work and cites 
the possible future work to be carried on.    

II. METHODOLOGY 
Before we further discuss the implementation of Master 

Worker execution model in distributed twayGenerator, there is 
an issue arises to be emphasized, i.e. the problem of 
distributing workloads on multiprocessor in a network. 
Adequate fair dynamic load distribution techniques would be 
required to efficiently running parallel applications on 
distributed computing environments. This is because the 
unfairly distributions techniques may cause certain processors 
overloaded while other processors under loaded and waste its 
bandwidth to run jobs. The whole system wastes time on 
waiting jobs that are queued on overload processor while 
nothing done by other processors. Load balancing is therefore 
needed as it is usually achieved by relocating application tasks 
from busy nodes to lightly loaded or idle nodes [16]. It is one 
of the most challenging issues in attaining high performance in 
heterogeneous systems. Scheduling algorithms were devised 
to perform distributing loads from server to processors. Thus, 
high performance load balancing algorithm is an algorithm 
that could distribute loads fairly to processors and prevent 
overloaded condition.  

In order to employ distributed computing technique on 
distributed twayGenerator, the idea on Master Worker (MW) 
execution model (also known as Master Slave model) has been 
proposed. In this model, there are two distinct types of 
processes: Master and Workers. Master decomposes the 

problem into small tasks; distribute to Workers and correlating 
their output into a global results whereas Workers typically 
collect and execute the tasks and then sending back to the 
Master. It is proved that the Master Worker execution is 
efficient in developing applications with different degrees of 
granularity of parallelism (grain size) and is particularly useful 
when the dependencies between tasks are low [17]. This is 
favor to distributed twayGenerator as the distributing tasks are 
self-regulating from one another.  

Furthermore, daemon is integrated with our proposed 
strategy. The word "daemon" actually comes from the Greek 
language, meaning an "inner or attendant spirit" (Oxford 
American Dictionary). This is a fitting name, as a computer 
daemon is a constantly running program that triggers actions 
when it receives certain input. For example, a printer daemon 
spools information to a printer when a user decides to print a 
document. A daemon running on a mail server routes 
incoming mail to the appropriate mailboxes. Web servers use 
a Hyper Text Transfer Protocol Daemon (HTTPD) that sends 
data to users when they access Web pages [18]. 

Fig. 1 The Customized Master Worker Execution Model
 
Based on distributed twayGenerator, we have modified and 

customized the Master Worker execution model as depicted in 
Fig 1. The further details as shown below: 

Master
Firstly, the Master receives the inputs specifications 

(parameters, values and t-way) from the user. Based on that, 
the Master will manipulate in order to produce all the possible 
combinations of binary numbers.  

For example, giving the inputs which consisting of 5-valued 
parameter, 2-valued variables and 4-valued way of 
interactions. Adopting the twayGenerator algorithm, the 
Master then generates the following combinations of binary 
numbers: 01111, 10111, 11011, 11101 and 11110. We term 
each of these binary numbers as a “thread”. Then, the Master 
gets the status of the available Workers via tuple space 
(server) that has been created. Presume that four Workers are 
available in our discussion here.  

Fig. 1: The Customized Master Worker 
Execution Model

Based on distributed twayGenerator, we 
have modified and customized the Master 
Worker execution model as depicted in 
Fig 1. The further details as shown below:

Master

Firstly, the Master receives the inputs 
specifications (parameters, values and 
t-way) from the user. Based on that, 
the Master will manipulate in order to 
produce all the possible combinations of 
binary numbers. 

For example, giving the inputs which 
consisting of 5-valued parameter, 
2-valued variables and 4-valued way of 
interactions. Adopting the twayGenerator 
algorithm, the Master then generates 
the following combinations of binary 
numbers: 01111, 10111, 11011, 11101 
and 11110. We term each of these binary 
numbers as a “thread”. Then, the Master 
gets the status of the available Workers 
via tuple space (server) that has been 
created. Presume that four Workers are 
available in our discussion here. 



ISSN: 2180 - 1843     Vol. 3     No. 1     January - June 2011

Journal of Telecommunication, Electronic and Computer Engineering

10

The Master starts to distribute the tasks 
to the available Workers by sending 
the tuples which each consisting of a 
binary number (thread) and selected 
Worker’s Internet Protocol (IP) address 
to appointed Workers respectively. The 
processes for the Master to allocate the 
threads to the Workers are known as 
multithreading. After the multithreading 
process, the Master waits for the replies 
from the Workers which indicating the 
completion of the given tasks. 

There are still left of one unprocessed 
binary number. It will be assigned to 
a Worker that has completed the first 
task faster than the residues. Note that 
the results (generated tests sets) from 
the Workers, some are repetitions; thus, 
eliminating the repetitions are required. 
Hence, Master will filter out the results 
(from the Workers) to generate a final 
output (i.e., test sets without repetitive).

Worker Process

The Workers initialize their tasks by 
sending their status into tuple space (to 
show their availability). By using the 
matching algorithm, the Workers scan on 
tuple space to detect their own tasks. The 
working of this algorithm is based on the 
unique IP address for each node from the 
Master and the four Workers. 

Daemon is then integrated into the Worker 
process as it will trigger out the execution 
of another program when accepting 
certain key words from the received tuple. 
In short, a program which consisting 
of t-way algorithm (twayGenerator) is 
initialized and executed based on the 
binary number obtained from the Master. 
Upon the completion of executing the 
program, the results are sending into 
tuple space. Workers are then turning 
into ready mode again for incoming tuple 
if any. The customized MW model of the 
example mentioned above is illustrated at 
Fig 1.

Based on the proposed strategy, several 
assumptions would be made here. 
First, the tuple space server has to 

been initiated before the user enters 
the inputs to the Master. Next, we 
presume that there is no occurrence 
of network congestion.  Congestion or 
disconnecting of networking may cause 
the server error. All the approaches and 
methods as described in this section can 
be implemented via Java programming 
language attached with International 
Business Machines, IBM tuple space 
library. This research proposed the 
designation and implementation of load 
balancing algorithm on twayGenerator 
in real network. Next section stating 
the expected outcomes for distributed 
twayGenerator.

III.	EX PECTED RESULTS 

In this section, we propose the expected 
results as the research is in the progression. 
Speedup performance is the major aspect 
of our research. Ideally, the degree of 
growth of this feature is predicted to be 
directly proportional to the number of 
computers been used to run the test data 
sets generation. 

In ideal case, it could be stated that the 
time required to complete the tasks 
is expecting to reduce by half if two 
computers are utilized in generating the 
test set. Then, the same goes to getting 
one third required time by using three 
computers and so on. Hence we could 
generalize that the speedup feature can 
be improved by N factors (reducing the 
time required by N times) if there are N 
units of computers have been used. These 
could be clear shown at Fig 2. Notes that 
a in the graph is representing the portion 
of time required for the single computer 
to run a specific test sets generation. It is 
forecasting that we need a/N of time to 
run the same program by using N units of 
computers for ideal case.



ISSN: 2180 - 1843     Vol. 3     No. 1     January - June 2011

Distributed t-way Test Suite Generator System Using Master Worker Execution Model

11

The Master starts to distribute the tasks to the available 
Workers by sending the tuples which each consisting of a 
binary number (thread) and selected Worker’s Internet 
Protocol (IP) address to appointed Workers respectively. The 
processes for the Master to allocate the threads to the Workers 
are known as multithreading. After the multithreading process, 
the Master waits for the replies from the Workers which 
indicating the completion of the given tasks.  

There are still left of one unprocessed binary number. It will 
be assigned to a Worker that has completed the first task faster 
than the residues. Note that the results (generated tests sets) 
from the Workers, some are repetitions; thus, eliminating the 
repetitions are required. Hence, Master will filter out the 
results (from the Workers) to generate a final output (i.e., test 
sets without repetitive). 

Worker Process 
The Workers initialize their tasks by sending their status 

into tuple space (to show their availability). By using the 
matching algorithm, the Workers scan on tuple space to detect 
their own tasks. The working of this algorithm is based on the 
unique IP address for each node from the Master and the four 
Workers.  

Daemon is then integrated into the Worker process as it will 
trigger out the execution of another program when accepting 
certain key words from the received tuple. In short, a program 
which consisting of t-way algorithm (twayGenerator) is 
initialized and executed based on the binary number obtained 
from the Master. Upon the completion of executing the 
program, the results are sending into tuple space. Workers are 
then turning into ready mode again for incoming tuple if any. 
The customized MW model of the example mentioned above 
is illustrated at Fig 1. 

Based on the proposed strategy, several assumptions would 
be made here. First, the tuple space server has to been initiated 
before the user enters the inputs to the Master. Next, we 
presume that there is no occurrence of network congestion.  
Congestion or disconnecting of networking may cause the 
server error. All the approaches and methods as described in 
this section can be implemented via Java programming 
language attached with International Business Machines, IBM 
tuple space library. This research proposed the designation and 
implementation of load balancing algorithm on twayGenerator 
in real network. Next section stating the expected outcomes 
for distributed twayGenerator. 

III. EXPECTED RESULTS  
In this section, we propose the expected results as the 

research is in the progression. Speedup performance is the 
major aspect of our research. Ideally, the degree of growth of 
this feature is predicted to be directly proportional to the 
number of computers been used to run the test data sets 
generation.  

In ideal case, it could be stated that the time required to 
complete the tasks is expecting to reduce by half if two 
computers are utilized in generating the test set. Then, the 
same goes to getting one third required time by using three 

computers and so on. Hence we could generalize that the 
speedup feature can be improved by N factors (reducing the 
time required by N times) if there are N units of computers 
have been used. These could be clear shown at Fig 2. Notes 
that a in the graph is representing the portion of time required 
for the single computer to run a specific test sets generation. It 
is forecasting that we need a/N of time to run the same 
program by using N units of computers for ideal case. 

 

Fig 2. Expected Results of Distributed twayGenerator 
 
However, all these aforementioned deductions are hard to 

attain as certain practical considerations have been excluded. 
In the practical case, time required for multithreading process 
has to be taken into account as well. That is the time 
consumed for the Master to distribute the threads to the 
Workers as well as the moments of the Workers spent on 
sending the results to the Master.  The amount of time, termed 
as b is denoted as the grey colored region in Fig 2.  

The effect of value b could be ignored if compared with the 
value of a, provided that the time for generating the test sets 
by single computer is long as shown at Fig 2. Nevertheless, 
there is a tradeoff of implementing our approach. This can be 
described as if it is requested to generate the smaller number 
of test sets (with less parameters and variables, saying 5 
parameters 2 variables combinations), then give rise to the 
smaller value of a so that it is smaller or equal to the value of 
b. In this case, it shows that our strategy consumes more time 
on multithreading process rather than generating test sets. 
Thus, single computer is said to perform better for fewer test 
sets. However, our aim is to deal with mass volume of 
computational tasks derived from the combinations of large 
numbers on parameters and variables. The performance 
regarding to lesser test sets shall be negligible.  

There is another important factor worth to be mentioned. 
The speedup gain is actually also dependent on the fraction of 
an algorithm that could be parallelize and executed into 
distributed system. However, rare distributed software could 
be solely executed in parallel. Therefore, twayGenerator also 
hinders its speedup performance by the fraction of sequential 
fraction of the algorithm, denoted as c (the black colored area)  

Fig 2: Expected Results of Distributed 
twayGenerator

However, all these aforementioned 
deductions are hard to attain as certain 
practical considerations have been 
excluded. In the practical case, time 
required for multithreading process has 
to be taken into account as well. That 
is the time consumed for the Master to 
distribute the threads to the Workers as 
well as the moments of the Workers spent 
on sending the results to the Master.  The 
amount of time, termed as b is denoted as 
the grey colored region in Fig 2. 

The effect of value b could be ignored if 
compared with the value of a, provided 
that the time for generating the test sets 
by single computer is long as shown at 

Fig 2. Nevertheless, there is a tradeoff of 
implementing our approach. This can be 
described as if it is requested to generate 
the smaller number of test sets (with 
less parameters and variables, saying 5 
parameters 2 variables combinations), 
then give rise to the smaller value of a so 
that it is smaller or equal to the value of 
b. In this case, it shows that our strategy 
consumes more time on multithreading 
process rather than generating test sets. 
Thus, single computer is said to perform 
better for fewer test sets. However, 
our aim is to deal with mass volume 
of computational tasks derived from 
the combinations of large numbers 
on parameters and variables. The 
performance regarding to lesser test sets 
shall be negligible. 

There is another important factor worth 
to be mentioned. The speedup gain is 
actually also dependent on the fraction 
of an algorithm that could be parallelize 
and executed into distributed system. 
However, rare distributed software could 
be solely executed in parallel. Therefore, 
twayGenerator also hinders its speedup 
performance by the fraction of sequential 
fraction of the algorithm, denoted as c 
(the black colored area)

Table 1. Generation Time (in second, s) and Speedup Gain for 5 to 10 5-Valued Parameters of 
4-way (t=4) Testing



ISSN: 2180 - 1843     Vol. 3     No. 1     January - June 2011

Journal of Telecommunication, Electronic and Computer Engineering

12

in Fig 2. Nonetheless, this portion is 
predicted to be miniature as distributed 
twayGenerator could be distribute most 
of the computational loads via Master 
Worker execution model.     

According to our proper and supportive 
justifications based on several important 
practical features, it is predicted our 
strategy is capable to increase the speed 
up performance as illustrated at Fig 2. 

IV.	 PRACTICAL RESULTS

In this section, the practical results 
of distributed twayGenerator will be 
discussed. In this case, the generation 
time (practical results) is referring to the 
time required for master to distribute 
tasks and workers generate the test cases. 
Note that, the time required for master 
to remove the repetitive test cases (as 
discussed in Section II) are excluded as 
this research is under progression. In 
order to demonstrate the effectiveness 
of distributed twayGenerator against 
sequential twayGenerator, there are 5 
to 10 parameters (where each of which 
is 5-valued) have been executed. In 
this case, t is set to 4 and the number of 
workers is varying from 1 to 6. Table 1 
shows the results in terms of generation 
time and the speedup gain. Here, speed 
up is defined as the ratio of the time taken 
by sequential twayGenerator to the time 
taken by distributed tway Generator.

By referring to Table 1, the number of 
test cases is increased as the number 
of parameters increases from 5 to 10. 
This is also in line with the time to 
generate the test cases (i.e., longer time 
is needed to generate more test cases) 
for each particular number of workers 
employed. Besides that, the test cases 
will be generated faster with the higher 
number of workers employed for a 
typical input. As far as generation time 
is concerned, distributed twayGenerator 
shows appreciable speedup gain against 
sequential twayGenerator. It gives higher 
speedup gain with more workers are 

employed. However, an exceptional 
issue has been discovered. The undesired 
speedup gains (where the gain less than 
unity) were obtained when only one 
worker is employed in the system. In 
general, the distributed twayGenerator 
improves the time performance from 
sequential twayGenerator. Though, it 
exhibits non-ideal speedup gain as pre-
described in previous section.

V.	 CONCLUSION

To conclude, sequential approach t-way 
strategies will encounter the conflicts of 
overloaded memory as the combinatorial 
testing are always deal with heavy 
computational tasks in generating test 
sets. Withstanding of that, the constraint 
from the aspect of limited memories 
in the single computer could be solved 
by utilizing distributed computing 
technique. This paper proposed an 
implementation strategy of distributed 
twayGenerator by using Master Worker 
execution model. Based on the expected 
outcomes and the practical results 
that accomplished with reasonable 
discussions been stated, Master Worker 
execution model could be favorable to 
substitute the sequential execution in 
order to support higher loads of inputs 
in t-way testing. As this research is under 
progress, more experimental data and 
analysis would be justified in the future 
work. It is hypothesized that our strategy 
would contribute to the positive impacts 
on current research of t-way testing by 
further enhancing the test data generation 
time performance of twayGenerator.

ACKNOWLEDGMENT

The authors appreciate the ideas and 
concepts provided by Mohammed I. 
Younis.

REFERENCES
[1]	 J. Pan, “Software Testing (18-849b 

Dependable Embedded Systems),” 



ISSN: 2180 - 1843     Vol. 3     No. 1     January - June 2011

Distributed t-way Test Suite Generator System Using Master Worker Execution Model

13

Topics in Dependable Embedded Systems, 
Electrical and Computer Engineering 
Department, Carnegie Mellon 
University, 1999. 

[2]	 Y. Cui, L. Li and S. Yao, “A New Strategy 
for Pairwise Test Case Generation,” 
in IITA 2009: Third International 
Symposium on Intelligent Information 
Technology Application, 2009, vol.3, , 21-
22 Nov. 2009, pp.303-306.

[3]	 J. Gao and Y. Hu, “A Novel Generation 
Algorithm of Pair-Wise Testing Cases,” 
in PRDC ‘09:15th IEEE Pacific Rim 
International Symposium on Dependable 
Computing, 2009, 16-18 Nov. 2009, 
pp.43-48.

[4]	 M. I. Younis, K. Z. Zamli, and N. 
A. M. Isa, “Generating Pairwise 
Combinatorial Test Set Using Artificial 
Parameters and Values,” in ITSim 2008: 
International Symposium on Information 
Technology 2008, pp. 1-8. 

[5]	 M. I. Younis, K. Z. Zamli, and N. A. M. 
Isa, “Algebraic Strategy to Generate 
Pairwise Test Set for Prime Number 
Parameters and Variables,” in ITSim 
2008: International Symposium on 
Information Technology 2008, pp. 1-4. 

[6]	 P. J. Schroeder, P. Bolaki and V. Gopu, 
“Comparing the fault detection 
effectiveness of n-way and random 
test suites,” in ISESE ‘04: Proceedings. 
International Symposium on Empirical 
Software Engineering, 2004, 19-20 Aug. 
2004, pp. 49- 59.

[7]	 R. Abdullah, M. F. J. Klaib, K. Z. Zamli, 
N. A. M. Isa, and M. I. Younis, “G2Way- 
A Backtracking Strategy for Pairwise 
Test Data Generation,” in APSEC 
’08: 15th IEEE Asia-Pacific Software 
Engineering Conference, 2008. Beijing, 
China, 03-05 December 2008, pp. 463-
470. 

[8]	 K. C. Tai, Y. Lei, “A test generation 
strategy for pairwise testing,” in IEEE 
Transactions on Software Engineering, 
vol.28, no.1, Jan 2002, pp.109-111.

[9]	 J. D. McCaffrey, “Generation of 
pairwise test sets using a simulated 
bee colony algorithm,” in IEEE 
International Conference on Information 
Reuse & Integration 2009: IRI ‘09, 10-12 
Aug. 2009, pp.115-119. 

[10]	 J. D. McCaffrey, “Generation of Pairwise 
Test Sets Using a Genetic Algorithm,” 
in 33rd Annual IEEE International 
Computer Software and Applications 
Conference 2009: COMPSAC ‘09, vol.1, 
20-24 July 2009, pp.626-631. 

[11]	 M. I. Younis, K. Z. Zamli, and N. A. 
M. Isa, “IRPS-An Efficient Test Data 
Generation Strategy for Pairwise 
Testing.” in 12th International Conference 
on Knowledge-Based Intelligent 
Information & Engineering Systems: KES 
2008, Zagreb, Croatia, Springer-Verlag, 
Berlin, Heidelberg, pp. 493-500. 

[12]	 W. B. Mugridge, D. M. Cohen, P. 
B. Gibbons, and C. J. Colbourn, 
“Constructing Test Suites for 
Interaction Testing,” in 25th International 
Conference on Software Engineering, 
Portland, Oregon, USA, 2003,  pp. 38-48. 

[13]	 D. M. Cohen, S. R. Dalal, M. L. 
Fredman, and G. C. Patton, “The AETG 
System: An Approach to Testing Based 
on Combinatorial Design,” in IEEE 
Transactions on Software Engineering 
23(7), July 1997, pp. 437-444. 

[14]	 J. Arshem, Test Vector Generator 
Tool (TVG), Available from http://
sourceforge.net/projects/tvg/, last 
accessed on December, 2009.

[15]	 K. Z. Zamli, “Non-Deterministic T-Way 
Strategy for Systematic Combinatorial 
Test Data Reduction,” in MySEC’08: 
The 4th Malaysian Software Engineering 
Conference: Empowering Software towards 
the Development of Human Capital, Kuala 
Terengganu, Malaysia, 16-17 December 
2008.

[16]	 P. Yi, and T. Y. Laurence, Parallel and 
distributed scientific and engineering 
computing, Nova Science Publishers, 
Inc. US, 2004. 

[17]	 C. Gabriela, and I. Daniel, Scientific 
computing in electrical engineering, 
Springer, Berlin, Heidelberg, New 
York, 2007, pp. 412.  

[18]	 Daemon. (2009). The Tech Terms 
Computer Dictionary. Retrieved from: 
http://www.techterms.com/definition/
daemon, last accessed on Feb, 2010




