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Abstract 

In this paper, the effect of overlapping spread 
value for Radial Basis Function Neural Network 
(RBFNN) in face detection is presented. The 
reason for taking the overlapping factor into 
consideration is to optimize the results for 
using variance spread value. Face detection 
is the first step in face recognition system. 
The purpose is to localize and extract the face 
region from the background that will be fed into 
the face recognition system for identification. 
General preprocessing approach was used 
for normalizing the image and a Radial Basis 
Function (RBF) Neural Network was used to 
distinguish between face and non-face images. 
RBFNN offer several advantages compared to 
other neural network architecture such as they 
can be trained using fast two stages training 
algorithm and the network possesses the 
property of best approximation. The output of 
the network can be optimized by setting suitable 
values of the center and spread of the RBF. 
The performance of the RBFNN face detection 
system will be based on the False Acceptance 
Rate (FAR) and the False Rejection Rate (FRR) 
criteria.

Keywords: Face detection, Radial Basis 
Function, Neural Network.

I.	 INTRODUCTION

Face can be defined as the front part of 
head from the forehead to the chin [1]. 
Biometrics deals with the identification 
of individuals based on their biological 
or behavioral characteristics [2]. A 
number of biometrics have been 
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proposed, researched and evaluated for 
identification applications. Face is one of 
the most acceptable biometrics because 
it is one of the most common methods 
of identification which humans use in 
their interactions [2]. Face detection is 
the first step in face recognition system. 
Face detection can be regarded as a more 
general case of face localization. In face 
localization, the task is to find the locations 
and sizes of a known number of faces. 
One of the methods for face detection is 
Neural Networks which lies under the 
category of image based approach. In 
this paper, we focus on optimizing the 
RBF Neural Network for face detection. 
RBFNN is used to distinguish face and 
non-face images. 

 
II.	 RADIAL BASIS FUNCTION 

NEURAL NETWORK

The RBFNN offers several advantages 
compared to the Multilayer Perceptrons. 
Two of these advantages are:

1.	 They can be trained using fast 2 
stages training algorithm without 
the need for time consuming non-
linear optimization techniques.

2.	 ANN RBF possesses the property 
of ‘best approximation’ [9]. This 
means that if in the set A of 
approximating functions (for 
instance the set F(x, w) spanned by 
parameters w), then the RBFNN 
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has the minimum distance from 
any given function of a larger set, 
H.

RBFNN had been successfully used in face 
detection such as in Mikami, et.al., 2003[3]. 
Figure 1 illustrates the architecture of the 
RBFNN used in this work.
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advantages compared to other neural network architecture 
such as they can be trained using fast two stages training 
algorithm and the network possesses the property of best 
approximation. The output of the network can be optimized by 
setting suitable values of the center and spread of the RBF. 
The performance of the RBFNN face detection system will be 
based on the False Acceptance Rate (FAR) and the False 
Rejection Rate (FRR) criteria. 
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parameters w), then the RBFNN has the minimum 
distance from any given function of a larger set, . 
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The network consists of three layers: an input layer, a 

hidden layer and an output layer. Here, R denotes the number 
of inputs while Q the number of outputs. For Q = 1, the output 
of the RBFNN in Figure 1 is calculated according to 
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Figure 1:  RBF Neural Network

The network consists of three layers: an 
input layer, a hidden layer and an output 
layer. Here, R denotes the number of 
inputs while Q the number of outputs. 
For Q = 1, the output of the RBFNN in 
Figure 1 is calculated according to
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where where 
1Rxx   is an input vector, (.) is a basis function, 

||.|| denotes the Euclidean norm, w1k  are the weights in the 
output layer, S1 is the number of neurons ( and centers) in the 

hidden layer and 
1Rx

kc  are the RBF centers in the input 
vector space. Equation (1) can also be written as  
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where β is the spread parameter of the RBF. For training, 

the least squares formula was used to find the second layer 
weights while the centers are set using the available data 
samples. 

  

III. NETWORK TRAINING 
The image that to be fed into the network whether for 

training or testing will be normalized using a preprocessing 
step, adapted from [4]. 

In this project, image is first converted into double class in 
matrix form. The matrix is the converted into column matrix 1 
x n. This input will be fed into the RBF network for the next 
process. Figure 2 and 3 show the conversion of image into 
matrix form. 
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number of desired centers, K, must be decided in advance. 

In [11] the spread values are the same for all centers. In this 
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will be the spread 

value given by: 
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For the training, supervised learning is used where training 

patterns are provided to the RBFNN together with a teaching 
signal or target. As for the input of face will be given the value 
of 1 while the input of non-face will be given the value of -1.  

 

IV. TESTING 
In [11], 999 face data and 899 non-face data taken from the 

CBCL train datasets used as the input. Different centers are 
chosen ranging from 2 to 200 with the spread value from 1 to 
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where β is the spread parameter of 
the RBF. For training, the least squares 
formula was used to find the second layer 
weights while the centers are set using the 
available data samples.
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adapted from [4].

In this project, image is first converted into 
double class in matrix form. The matrix 
is the converted into column matrix 1 
x n. This input will be fed into the RBF 
network for the next process. Figure 2 
and 3 show the conversion of image into 
matrix form.

where 
1Rxx   is an input vector, (.) is a basis function, 

||.|| denotes the Euclidean norm, w1k  are the weights in the 
output layer, S1 is the number of neurons ( and centers) in the 

hidden layer and 
1Rx

kc  are the RBF centers in the input 
vector space. Equation (1) can also be written as  

 
wxwx T )(),(                                            (2) 

where 
 

||)](||||)(||[)( 111 SS
T cxcxx        (3) 

and 
 

][ 111211 S
T wwww         (4) 
 
The output of the neuron in a hidden layer is a nonlinear 

function of the distance given by: 
 

2

2

)( 
x

ex


                                                           (5) 
 
where β is the spread parameter of the RBF. For training, 

the least squares formula was used to find the second layer 
weights while the centers are set using the available data 
samples. 

  

III. NETWORK TRAINING 
The image that to be fed into the network whether for 

training or testing will be normalized using a preprocessing 
step, adapted from [4]. 

In this project, image is first converted into double class in 
matrix form. The matrix is the converted into column matrix 1 
x n. This input will be fed into the RBF network for the next 
process. Figure 2 and 3 show the conversion of image into 
matrix form. 

 
 
 

 
Figure 2  Convert Image to Matrix 

 

 
Figure 3  Convert Matrix to Column Matrix 

 
The network is trained using 2429 face data and 4548 non-

face data from the CBCL (Center For Biological and 
Computation Learning) train datasets [5].  

The simplest procedure for selecting the basis function 
centers ck is to set the center equal to the input vectors or a 
random subset of the input vectors from the training set but 
this is not an optimal procedure since it leads to the use of 
unnecessarily large number of basis function [6]. Broomhead 
et al. [8] suggested strategies for selecting RBF centers 
randomly from the training data. The centers of RBF can 
either be distributed uniformly within the region of input space 
for which there is data. In this paper we use K-means 
clustering. 

 K-means clustering is one of the techniques that was used 
to find a set of centers where the technique is more accurately 
reflects the distribution of the data points [6]. It is used in 
research such as in [3] and [7]. In k-means clustering, the 
number of desired centers, K, must be decided in advance. 

In [11] the spread values are the same for all centers. In this 
paper, the value of vector that is the closest to all vectors in 
the cluster will be the spread value. The difference between 

two n-dimensional vectors, iV  and  jV
will be the spread 

value given by: 
 

 


n

k jkikkij vvwE
1

2)(
    (6) 

 
For the training, supervised learning is used where training 

patterns are provided to the RBFNN together with a teaching 
signal or target. As for the input of face will be given the value 
of 1 while the input of non-face will be given the value of -1.  

 

IV. TESTING 
In [11], 999 face data and 899 non-face data taken from the 

CBCL train datasets used as the input. Different centers are 
chosen ranging from 2 to 200 with the spread value from 1 to 
40. Apart from the previous testing, the system will also detect 
many faces in large image. If 100 centers are chosen, each will 
have the same spread value.  

 
 

 

Matrix Form 

 

Column Matrix  

Form 

 

Matrix  

Form 

 

Grayscale 
Image 

Figure 2:  Convert Image to Matrix

where 
1Rxx   is an input vector, (.) is a basis function, 

||.|| denotes the Euclidean norm, w1k  are the weights in the 
output layer, S1 is the number of neurons ( and centers) in the 

hidden layer and 
1Rx

kc  are the RBF centers in the input 
vector space. Equation (1) can also be written as  

 
wxwx T )(),(                                            (2) 

where 
 

||)](||||)(||[)( 111 SS
T cxcxx        (3) 

and 
 

][ 111211 S
T wwww         (4) 
 
The output of the neuron in a hidden layer is a nonlinear 

function of the distance given by: 
 

2

2

)( 
x

ex


                                                           (5) 
 
where β is the spread parameter of the RBF. For training, 

the least squares formula was used to find the second layer 
weights while the centers are set using the available data 
samples. 

  

III. NETWORK TRAINING 
The image that to be fed into the network whether for 

training or testing will be normalized using a preprocessing 
step, adapted from [4]. 

In this project, image is first converted into double class in 
matrix form. The matrix is the converted into column matrix 1 
x n. This input will be fed into the RBF network for the next 
process. Figure 2 and 3 show the conversion of image into 
matrix form. 

 
 
 

 
Figure 2  Convert Image to Matrix 

 

 
Figure 3  Convert Matrix to Column Matrix 

 
The network is trained using 2429 face data and 4548 non-

face data from the CBCL (Center For Biological and 
Computation Learning) train datasets [5].  

The simplest procedure for selecting the basis function 
centers ck is to set the center equal to the input vectors or a 
random subset of the input vectors from the training set but 
this is not an optimal procedure since it leads to the use of 
unnecessarily large number of basis function [6]. Broomhead 
et al. [8] suggested strategies for selecting RBF centers 
randomly from the training data. The centers of RBF can 
either be distributed uniformly within the region of input space 
for which there is data. In this paper we use K-means 
clustering. 

 K-means clustering is one of the techniques that was used 
to find a set of centers where the technique is more accurately 
reflects the distribution of the data points [6]. It is used in 
research such as in [3] and [7]. In k-means clustering, the 
number of desired centers, K, must be decided in advance. 

In [11] the spread values are the same for all centers. In this 
paper, the value of vector that is the closest to all vectors in 
the cluster will be the spread value. The difference between 

two n-dimensional vectors, iV  and  jV
will be the spread 

value given by: 
 

 


n

k jkikkij vvwE
1

2)(
    (6) 

 
For the training, supervised learning is used where training 

patterns are provided to the RBFNN together with a teaching 
signal or target. As for the input of face will be given the value 
of 1 while the input of non-face will be given the value of -1.  

 

IV. TESTING 
In [11], 999 face data and 899 non-face data taken from the 

CBCL train datasets used as the input. Different centers are 
chosen ranging from 2 to 200 with the spread value from 1 to 
40. Apart from the previous testing, the system will also detect 
many faces in large image. If 100 centers are chosen, each will 
have the same spread value.  

 
 

 

Matrix Form 

 

Column Matrix  

Form 

 

Matrix  

Form 

 

Grayscale 
Image 
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The network is trained using 2429 face data 
and 4548 non-face data from the CBCL 
(Center For Biological and Computation 
Learning) train datasets [5]. 
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The simplest procedure for selecting 
the basis function centers ck is to set 
the center equal to the input vectors or 
a random subset of the input vectors 
from the training set but this is not an 
optimal procedure since it leads to the 
use of unnecessarily large number of 
basis function [6]. Broomhead et al. [8] 
suggested strategies for selecting RBF 
centers randomly from the training 
data. The centers of RBF can either be 
distributed uniformly within the region 
of input space for which there is data. In 
this paper we use K-means clustering.

K-means clustering is one of the 
techniques that was used to find a set 
of centers where the technique is more 
accurately reflects the distribution of the 
data points [6]. It is used in research such 
as in [3] and [7]. In k-means clustering, 
the number of desired centers, K, must be 
decided in advance.

In [11] the spread values are the same 
for all centers. In this paper, the value of 
vector that is the closest to all vectors in 
the cluster will be the spread value. The 
difference between two n-dimensional 

vectors,  
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In this paper, the overlapping factor 
for RBFNN spread value is taken into 
consideration. Different overlapping 
values are chosen from 2 to 10 and the 
results were analyzed.
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Figure 8 Error rate using various centers 
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In Figure 9, the system can detect all faces 
in the image but there are 2 false accept. 
Using overlapping value equal to 5 for 300 
centers gives 4 false accept as in Figure 10. 
Increasing the overlapping value to 10 for 
200 centers will still give 2 false accept but 
all face are detected. Increasing the center 
to 300 for overlapping value equal to 10 
will ensure all faces are detected without 
any false accept as shown in Figure 12.
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VI.	 DISCUSSIONS

The results in [11] and [12] shows that using 
fixed spread gives better result compare to 
variance spread. As the overlapping factor 
is taken into consideration, the result for 
using variance spread is improved. The 
best setting for the RBFNN in this paper 
is using 300 centers with overlapping 
value equal to 10. It gives 97.29% face 
detection and 97.99% non-face detection 
rate. The FAR and FRR are also low with 
this setting that is FAR = 0.027 and FRR 
= 0.020. Compare with the results in [12], 
this is much better. As we can see in Figure 

9 to Figure 12, the result for detection of 
many faces in single image also improves. 
The system can detect all faces in the 
image with no false accept at all. This 
shows that taking the overlapping value 
of spread into consideration increases the 
performance on the system in [12].

VII.	 CONCLUSION

The result shows that taking the 
overlapping factor of RBFNN spread 
value into consideration improve the 
performance of face detection. The best 
setting for the RBFNN in this paper is 
using 300 centers with overlapping value 
equal to 10 where it gives 97.29% face 
detection and 97.99% non-face detection 
rate while the FAR and FRR are also low 
with this setting that is FAR = 0.027 and 
FRR = 0.020.
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