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Abstract 

One new type of filter is presented in this 
paper. The propose filter is a transmission mode 
bandstop filter utilizing substrate-integrated-
waveguide cavity resonators to provide the 
required resonance. The bandstop operated at 
X band frequencies with 450 MHz bandwidth. 
Stop band is from 8.7 GHz to 9.2 GHz. Insertion 
loss achieved is less than 0.5 dB and return loss 
of more than 15 dB. 3D simulator was used 
to model the structure and simulation results 
showed very good response. To date, this is the 
first time such bandstop substrate-integrated-
waveguide filter has been reported

Keywords: Component, Substrate Integrated 
Waveguide, Bandstop Filter, Inverse Chebychev 
and Lumped Element

I.	 INTRODUCTION

In 2001, Wu [1] proposed a new technique 
for high density integration microwave 
and millimeter wave systems. Using this 
technique, image guides, non-radiative 
dielectric waveguides were synthesized 
inside a dielectric substrate, using rows 
of dielectric or metal holes. The idea to 
integrate waveguide inside a dielectric 
substrate was first proposed in [2]. This 
was a very useful platform to design 
high performance microwave circuits 
such as filters, resonators and antennas. 
One of the advantages of this type of 
integration was that it could lead to other 
planar microwave transmission lines by 
simple transitions and it preserved the 
advantages of a waveguide. This paper 
has introduced new methods to produce 
a bandstop filter characteristic. 
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This idea of coupling a   line with SIW 
rectangular cavities originates from 
classical bandstop designs (see [3] and 
[4]). The approach that needs to be taken 
when designing a bandstop filter differs 
from that used for bandpass filters. In 
the bandpass case we retain realizable 
element values by scaling the network 
so that the couplings become relatively 
weak. However, in the bandstop case the 
impedance inverters must remain at unity 
impedance so that the filter has a broad 
passband. 

Here, a new SIW cavity resonators 
separated by unity impedance inverters 
are proposed. Theoretically, they will 
give a bandstop response with a broad 
pass band. The size of the resonator can 
be determined from a set of equation. 
The length of the SIW resonator is about 
a quarter guide wavelength long at the 
center frequency. 

II.	 DESIGN OF TRANSMISSION 
MODE SUBSTRATE 
INTEGRATED WAVEGUIDE 
BANDSTOP FILTER

Idea of producing a transmission 
mode substrate-integrated-waveguide 
bandstop filter originated from [3] and 
[4]. This paper describes how a series 
of stub stripline resonators are directly 
coupled to the main stripline to give 
a bandstop response. The resonator is 
separated by a quarter wavelength to 
avoid inter resonance coupling. The 
design method adopted for this work is 
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based on the inverse Chebychev bandstop 
characteristics. The principles behind the 
theory are explained in detail in [3]. The 
element values for this filter have been 
obtained from the method by Rhodes, 
[5]. 

A three-stage lumped element inverse 
Chebychev bandstop filter has been 
designed and the values calculated as 
shown in Figure 1. Using the reactance 
slope method, the reactance for each 
lumped and distributed resonator is 
equated to give an equivalent length of 
the resonators. The distance separating 
the resonators is a quarter of a wavelength 
long. The resonator length is about half a 
wavelength. The transmissions zeros that 
occur at infinity in the original prototype 
are mapped to odd multiples of the 
quarter wave frequencies. This explains 
why there is one transmission zero at 
the lower side, and one at the higher side 
of the frequency band. The resonators 
have been designed using the empirical 
equations of [6].	

A three-stage lumped element inverse 
Chebychev bandstop filter has been 
designed and the values calculated as 
shown in Figure 1. Using reactance slope 
method, the reactances for each lumped 
and distributed resonator are equated 
to give an equivalent length of the 
resonators.

For a lumped resonator
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a bandstop response with a broad pass band. The size of the 
resonator can be determined from a set of equation. The length  
of the SIW resonator is about a quarter guide wavelength long 
at the center frequency.  
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Idea of producing a transmission mode substrate-integrated-
waveguide bandstop filter originated from [3] and [4]. This 
paper describes how a series of stub stripline resonators are 
directly coupled to the main stripline to give a bandstop 
response. The resonator is separated by a quarter wavelength 
to avoid inter resonance coupling. The design method adopted 
for this work is based on the inverse Chebychev bandstop 
characteristics. The principles behind the theory are explained 
in detail in [3]. The element values for this filter have been 
obtained from the method by Rhodes, [5].  

A three-stage lumped element inverse Chebychev bandstop 
filter has been designed and the values calculated as shown in 
Figure 1. Using the reactance slope method, the reactance for 
each lumped and distributed resonator is equated to give an 
equivalent length of the resonators. The distance separating the 
resonators is a quarter of a wavelength long. The resonator 
length is about half a wavelength. The transmissions zeros that 
occur at infinity in the original prototype are mapped to odd 
multiples of the quarter wave frequencies. This explains why 
there is one transmission zero at the lower side, and one at the 
higher side of the frequency band. The resonators have been 
designed using the empirical equations of [6].  

A three-stage lumped element inverse Chebychev bandstop 
filter has been designed and the values calculated as shown in 
Figure 1. Using reactance slope method, the reactances for 
each lumped and distributed resonator are equated to give an 
equivalent length of the resonators. 
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Figure 1   Inverse Chebychev three stage lumped element bandstop filter. 

 
 

r

rr

r

ro

v
l

v
lZ

d
jdZ 

 2sec             (4) 

 

By equating lumped and distributed 

 

 
r

rr

r

ro
r

rr v
l

v
lZ

L
Cd

jdZ 


 2
2 sec1

       (5) 

 

The solution of these equations will give the length of the 
resonator 
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The equivalent distributed circuit directly coupled with a 
uniform quarter wavelength main line is shown in Figure 2. 
 

 
 

 
 
Figure 2 Equivalent circuit for inverse Chebychev three-stage substrate-
integrated-waveguide bandstop filter. 
 

The frequency response for the distributed element inverse 
Chebychev filter is shown in Figure 3, centered at 9 GHz, with 
8.7 GHz, lower cut-off frequency, 9.2 GHz upper cut-off 
frequency, and a bandwidth of 450 MHz. The distance 

separating the resonators is a quarter of a wavelength long. 
The resonator length is about half a wavelength. The 
transmission zeros that occur at infinity in the original 
prototype are mapped to odd multiples of the quarter wave 
frequencies. This explains why there is one transmission zero 
at the lower side, and one at the higher side of the frequency 
band. Then, each substrate-integrated-waveguide resonator is 
realized to directly couple with the substrate-integrated-
waveguide main line. 

 

8.5 9.0 9.5 10.08.0 10.5

-60

-40

-20

-80

0

freq, GHz

L
os

s 
(d

B
)

 
 
Figure 3  Resonance for a three-stage lumped resonator bandstop filter. 
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Figure 4  Three-stage transmission substrate-integrated-waveguide bandstop 
filter (a=18.8 mm, b=17.4 mm, c=10.5 mm, d=9.7 mm, e=9.2 mm, f=58.5 
mm, diameter of via hole=0.5mm, distance between adjacent via holes=1.0 
mm). 
 

Fig. 3 shows the simulated and measured frequency 
responses for the three stages of the substrate-integrated-
waveguide resonator. There is a slight shift in the frequency 
and this is caused by the variation in the dielectric permittivity 
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Figure 1   Inverse Chebychev three stage lumped element bandstop filter. 
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The equivalent distributed circuit directly coupled with a 
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Figure 3  Resonance for a three-stage lumped resonator bandstop filter. 
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Figure 4  Three-stage transmission substrate-integrated-waveguide bandstop 
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Figure 1   Inverse Chebychev three stage lumped element bandstop filter. 
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Figure 3  Resonance for a three-stage lumped resonator bandstop filter. 
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Figure 4  Three-stage transmission substrate-integrated-waveguide bandstop 
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Figure 1:  Inverse Chebychev three stage 
lumped element bandstop filter.
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Figure 1   Inverse Chebychev three stage lumped element bandstop filter. 
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Figure 3  Resonance for a three-stage lumped resonator bandstop filter. 
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Figure 4  Three-stage transmission substrate-integrated-waveguide bandstop 
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Figure 1   Inverse Chebychev three stage lumped element bandstop filter. 
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Figure 3  Resonance for a three-stage lumped resonator bandstop filter. 
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Figure 4  Three-stage transmission substrate-integrated-waveguide bandstop 
filter (a=18.8 mm, b=17.4 mm, c=10.5 mm, d=9.7 mm, e=9.2 mm, f=58.5 
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frequencies. This explains why there is one transmission zero 
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The frequency response for the distributed 
element inverse Chebychev filter is shown 
in Figure 3, centered at 9 GHz, with 8.7 
GHz, lower cut-off frequency, 9.2 GHz 
upper cut-off frequency, and a bandwidth 
of 450 MHz. The distance separating the 
resonators is a quarter of a wavelength 
long. The resonator length is about half 
a wavelength. The transmission zeros 
that occur at infinity in the original 
prototype are mapped to odd multiples 
of the quarter wave frequencies. This 
explains why there is one transmission 
zero at the lower side, and one at the 
higher side of the frequency band. Then, 
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each substrate-integrated-waveguide 
resonator is realized to directly couple 
with the substrate-integrated-waveguide 
main line.
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Figure 3  Resonance for a three-stage lumped 
resonator bandstop filter.

The length of the substrate-integrated-
waveguide resonator is varied to give the 
same response as that of the distributed 
and lumped resonators, and the separation 
between the first and the second, and the 
second and third resonators are optimized 
to give correct couplings between 
adjacent resonators. Size and distance 
between via holes have been calculated 
by following the simple design rule in [7], 
and the transition between the substrate-
integrated-waveguide and the microstrip 
line is realized by simple step impedance. 
Fig. 2 shows the dimension of the filter.
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Figure 4  Three-stage transmission substrate-
integrated-waveguide bandstop filter (a=18.8 
mm, b=17.4 mm, c=10.5 mm, d=9.7 mm, e=9.2 
mm, f=58.5 mm, diameter of via hole=0.5mm, 
distance between adjacent via holes=1.0 mm).

Fig. 3 shows the simulated and measured 
frequency responses for the three stages 
of the substrate-integrated-waveguide 
resonator. There is a slight shift in the 
frequency and this is caused by the 
variation in the dielectric permittivity of 

the substrate. However laser trimming 
would be needed to achieve optimum 
results. 

The separation between each resonator 
is 3 quarters of a guide wavelength in 
order to avoid inter resonator coupling. 
The two transmission zeros that have 
occurred are the result of the mappings 
of the odd multiples of the quarter wave 
frequency from the original prototypes. 
This filter has been realized by using a 
standard PCB process. It uses a substrate 
with 0.5 mm thickness; and the thickness 
of the metal is 35 um.
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Figure 6  Simulated and measured responses of the transmission mode 
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Figure 7  Measured insertion loss at the pass band of the bandstop filter. 

 

From Figure 7, the average loses = 2.7 dB 

 

SIW Bandstop losses = Average Loss – Transition Loss  

                 = 2.75 – 1.5 = 1.25 dB 

The SIW bandstop losses may come from a few factors:  

a) dielectric losses; 

b) losses through via holes; 

c) copper losses.  

But these losses are still small compared with the transition 

loss. 

IV. CONCLUSION 
This paper has presented a new structure to the design of 
substrate-integrated-waveguide bandstop filter. The design is a 
transmission mode substrate-integrated-waveguide bandstop 
filter. This filter has been manufactured and the measured 
results are in line with the simulated results. 
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Figure 7  Measured insertion loss at the pass 
band of the bandstop filter.

From Figure 7, the average loses = 2.7 dB

SIW Bandstop losses 
	 = Average Loss – Transition Loss 
	 = 2.75 – 1.5 = 1.25 dB

The SIW bandstop losses may come from 
a few factors:	

a)	 dielectric losses;
b)	 losses through via holes;
c)	 copper losses. 

But these losses are still small compared 
with the transition loss.

IV.	 CONCLUSION

This paper has presented a new structure 

to the design of substrate-integrated-
waveguide bandstop filter. The design is a 
transmission mode substrate-integrated-
waveguide bandstop filter. This filter has 
been manufactured and the measured 
results are in line with the simulated 
results.
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