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Abstract—FlexRay is a time-triggered protocol that is a 

standard for reliable high-speed communications network 

especially for automotive applications such as Advanced Driver 

Assistance Systems (ADAS). This paper implemented using 

field-programmable gate array (FPGA)-based communication 

controller with a reconfigured trailer segment for a faster data 

rate. The FlexRay's trailer segments that use enhanced error 

detections and corrections codes that provide better 

functionality. This paper is implemented and verified using a 

Xilinx Spartan 6 FPGA. Experimental results show that this 

proposed implementation performs better regarding data rate 

and reduction of resource utilisation. This implementation 

represents an advancement in the FPGA-based system for 

vehicular applications and other time-triggered devices. 

 

Index Terms—Configured FPGA; Enhanced Error-Detection 

and Correction Code; FlexRay; Time-Triggered Devices. 

 

I. INTRODUCTION 

 
Modularity in hardware architectures are the latest trends in 

automotive electronic systems [1], it aims to reduce the 

number of electronic control units (ECUs). The advanced 

driver-assistance systems (ADAS) domain as an example sets 

the fusion of central sensor along with its controller 

architecture for various applications. With all of these 

demands, a high-level protocol system like the FlexRay 

technology is required to cater the next-generation in-vehicle 

systems [2]. In Fujitsu of Next Generation Car Network, 

FlexRay features perform better against the event-triggered 

controller area network (CAN) and the set-up on network 

configurations is possible because the ECU can be easily 

accessed in a typical communication network set-up [3]. A 

versatile communication controller unit allows us to 

reconfigure, modify and enhance to resolve certain pitfalls 

and to maximise the hardware resources. A set-up like this 

can helps us to improve the overall quality and performance 

of any system. A reconfigurable platform like a field-

programmable gate array (FPGA) based system can make it 

possible to improve the controller that is suitable for any 

applications but maintaining the required protocol to function 

the system accurately. 

We present an enhanced FlexRay communication 

controller by a reconfigured trailer segment in the protocol 

engine module. This controller still functioning in regular 

mode but has an added features that augment beyond the 

capabilities of a conventional system. The trailer segment 

uses enhanced error detection and correction code instead of 

the original cyclic redundancy check (CRC) codes that hold 

a fixed 24-bits frame because of the CRC-24 polynomial 

generator. 

With the field-programmable gate array (FPGA)-based 

system, the architecture can be flexible and can help us to 

reconfigure the hardware that provides an enhanced quality 

to compare with the existing communication controllers. Our 

experimental results show better features, such as faster data 

rate, low-latency data handling, and error detection 

performance that can be more efficient against with the 

standard FlexRay communication controllers. 

The remainder of this paper is presented as follows. Section 

2 is the brief discussion of the FlexRay protocol and related 

works. Section 3 discusses the proposed enhanced FlexRay 

controller. Experimental results and implementations are 

provided in Section 4. Then, Section 5, concludes this paper 

and outline of future work. 

 

II. REVIEW OF RELATED WORKS 

 

FlexRay has the combined advantage of the time-triggered, 

and event-triggered protocol [4] superseded the CAN 

protocol regarding higher data rates, versatile in topology, 

and fault-tolerant operation that needs for today’s automotive 

industry. 

 

A. FlexRay Protocol 

The FlexRay protocol is developed and standardised by the 

FlexRay Consortium [5]. Also, it is designed to be? An 

efficient network between ECUs in vehicles embedded 

systems. The automobile manufacturers have developed the 

Automotive Open Systems Architecture (AUTOSAR) [6][7] 

to ECU architecture and software platform. Thus, the 

automotive industry depends on the reliability of its 

communication to be free from any flaws that may lead to 

inevitable fatalities. 

The communication cycle or timing hierarchy of FlexRay 

protocol is shown in Figure 1. The static segment guarantees 

of service based on ID and assurance of real-time 

transmission. Every ECU can send a frame of data in one or 

more slots assigned to it [8]. On the dynamic segment, the 

communication works similarly to a CAN protocol, and the 

mini-slot is adjustable based on the transmitted data frame. 

The symbol window is a time slot with fixed duration, and it 

is used to transmit special symbols that can be transmitted on 

the network such as the “wake-up” pattern to start-up the 

communication. The network idle time is a specific time 

window that maintains the clock synchronisation. 
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Figure 1: FlexRay Timing Hierarchy. 
 

The FlexRay communication frame is responsible for 

exchanging information. This frame format is composed of 

three segments: the header, the payload and the trailer 

segment [9] as shown in Figure 2. It shows that the header 

section serves for status information such as bits indicating if 

the frame is null or if the frame needs to synchronise [10].  It 

also indicates the variation of the information to be 

transmitted in this payload segment that varies from 0 to 254 

bytes. The payload contains the data to be transmitted. Finally, 

the trailer section contains the 24-bit CRC uses for error 

detection, and it is calculated between the payload and header 

sections [11]. In this scheme of the communication cycle, it 

leads to efficient bandwidth utilisation because the mode of 

transmission uses time division multiple access (TDMA). 

FlexRay can operate not only as a single channel system but 

also in dual channel mode [12]. 

 

B. FlexRay Scheduling 

A configured design can arrange the divided subsystem into 

scheduling hierarchy. One approach for FlexRay hierarchical 

scheduling has been presented in [13]. Also, an example of 

hierarchical scheduling techniques is shown in [14]. A time-

triggered schedule was generated analogously to the FlexRay 

protocol in [15]. Various approaches have been published to 

optimise the FlexRay’s static and dynamic segment [16]-[18]. 

These papers presented different strategies about FlexRay 

scheduling. Moreover, a proposed model for the Distribution 

Data Service Middleware and its various entities that can 

exchange Data Objects on the communication network is 

presented [19]. This proposed algorithm presented a new 

scheduling method by combining the two old scheduling 

methods dealing with the Time-Triggered and the Event-

Triggered Scheduling for FlexRay network. 

 

C. FlexRay Communication Controller Implementation 

The implementations on both [20],[21] described the 

application of FlexRay communication controller and 

description of language as the platform and translated into 

hardware. However, the developed hardware is not described 

in this paper. Another hardware set-up has also been 

discussed in reference [22]. Its communication controller 

node together with the finite state machine, including the 

simulation and the synthesised results on Xilinx tool, is 

presented here, but the discussion about the hardware 

configuration is not included. This paper provides a 

reconfigurable FlexRay communication controller, which 

features a modified version of the communication controller. 

The proposed method optimised the FlexRay communication 

controller regarding resource utilisation reduction includes 

the efficiency of the data rate by minimising the transmitted 

frame bits. 

 

 
 

Figure 2: FlexRay Frame Format. 

 

A running ECU hosts a normal FlexRay module on a pre-

defined algorithm. The ECU controls and manages the 

connected sensors and actuators to the networks. Also, it 

monitors the status of the communication controller and the 

bus drivers including some conformity when initially sending 

a data [23]. The bus driver segment provides the control of 

the bit streams between link levels. The FlexRay core should 

be configurable to maximise its efficiency. The Xilinx 

FlexRay controller architecture is shown in Figure 3, 

comprises of user interface (UI), controller host interface 

(CHI), and protocol engine (PE) unit. The UI module 

provides on-chip peripheral bus (OPB) connectivity to the 

FlexRay controller. Also, it performs OPB Read/Write 

transactions and interrupt management. 

The CHI manages the message to be received and to be 

transmitted, controls and configures the data flow between 

the host processor and the PE. This CHI module contains four 

major blocks namely Memory Map and Registers; Transmit 

Buffers; Receive Buffers, and Receive FIFO. The memory 

map and register module contain the control, status, and 

configuration memory map and registers. It allows read and 

writes access to control the following register sets such as the 

protocol and general CHI configuration, including its control 

and status registers.   The transmit (TX) buffers provide 

storage and control of message data to be transmitted over the 

FlexRay physical interface. The FlexRay controller provides 

up to 128 user-configurable TX buffers, each of which can 

store one FlexRay frame with a variable payload length. The 

Number of TX Buffers parameter can configure the number of 

TX buffers in the controller. The maximum Number of TX 

Buffers in the controller depends on the Maximum Payload 

Size parameter. Then, the receive buffers provide storage for 

received message data and perform the frame storage and 

filtering functions. The number of RX Buffers is user-
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configurable up to 128, each of which can store one FlexRay 

frame of variable payload length. The number of Receive 

buffers in the controller is configured using the Number of RX 

Buffers parameter. Each Receive Buffer has a filter that can 

be configured based on a set program to accept any 

combination of Frame ID, Cycle counter and Message-ID 

values for storage in the buffer. Four acceptance filter pairs 

are also provided to screen incoming messages from the 

Protocol Engine for storage into the RX FIFO. Each pair 

contains a mask and data pair for Frame ID, Cycle counter, 

and Message-ID. 

Moreover, the FlexRay controller provides a flexible, with 

a variable length FIFO buffer for storage of the received 

FlexRay frames under the Receive FIFO. The message 

storage space allocated to the Receive FIFO is configurable. 

The PE module composes of all function blocks that perform 

based on the prescribed specifications. These are the media 

access control (MAC), bitstream encoder (BSE), bitstream 

decoder (BSD), frame and symbol processing (FSP), protocol 

operation control (POC), wakeup and startup (WUS) and 

clock synchronisation process (CSP). 
 

 

 

 
 

Figure 3: FlexRay Controller Architecture. 

 

The MAC is assigned to maintain the timing within each 

communication cycle (static, dynamic, symbol window and 

network idle time). It manages the timing of static, dynamic 

slot duration and the node transmission operation. It also 

handles the assembled frames for transmission and asserts 

signals to other modules to indicate the static segment start, 

slot boundary, dynamic segment start, symbol window start 

and network idle start time. The BSE module handles 

encoding frames and symbols. The FSP is divided into frame 

and symbol encoder. The frame encoder takes the incoming 

bytes from the MAC and assembles the FlexRay bitstream 

like appending a transmit start sequence (TSS) to start of the 

bitstream or calculating frame CRC and appending it to the 

end of the frame. The symbol encoder can transmit three 

types of symbols such as collision avoidance symbol (CAS), 

media test symbol and wakeup symbol (WUS). The BSD 

block performs sampling and majority voting, bit clock 

alignments (BCA) and bit strobing, frame and symbol 

decoding, channel idle detection decoding error detection. 

The FSP checks the correct timing of frames and symbols 

concerning the TDMA scheme. This is done by applying 

further syntactical tests to received frames and verifies the 

semantics of the correctness of received frames. The results 

are then signalled to the host. Moreover, FSP provides status 

indicators to the host like the valid frame, valid symbol, 

syntax error, content error, boundary violation and TX 

conflict. 

The Protocol Operation Control (POC) is an interface 

between the host and FlexRay PE sub-modules. It determines 

the operational state of the controller. The POC state 

transitions are controlled synchronously and occur as a 

consequence of a host command or an error condition 

occurring. The state transitions indicate a change in the 

operation of the protocol engine. See Figure 4 for an 

illustration of the POC state machine. The wakeup procedure 

describes the transition of a node from sleep mode to 

operational mode. The startup procedure describes the 

integration of nodes into the cluster. The CHI triggers both 

Wakeup and Startup (WUS) procedures. The CSP handles the 

synchronisation of all nodes in a cluster ensuring a common 

time. This is done by using sync frames sent by nodes on the 

network. The two components of time adjustment that are 

handled by the CSP are Rate correction and Offset correction. 

Clock synchronisation process has two significant sub-

processes that perform the synchronisation functions, namely 

clock sync processing (CSP) and clock sync startup (CSS). 
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Figure 4: FlexRay Transition State. 

 

III. PROPOSED ARCHITECTURE 

 

A. Configured FlexRay Communication Controller 

Specific parameters are needed in optimising and 

configuring the communication controller like the removal of 

some unused hardware. In this paper, we configured the 

protocol engine module that contains the BSE. Since the BSE 

module handles the encoding of frames, it calculates the CRC 

frame and to be appended it to the end if the frame to be 

transmitted. We implemented alternative error detection 

instead of the conventional CRC. This proposed error 

detection is explained in the next section. 

 

B. Implementation of Enhanced Error Detection and 

Correction (EEDC) Code 

In the FlexRay frame format, the trailer segment contains a 

24-bit CRC that protects the complete frame from any 

unwanted errors. Cyclic Redundancy Checking code is an 

example of polynomial codes referring to the corresponding 

polynomial of a codeword [24]. It represents every codeword 

C(x) = Cn-1Cn-2…C0 as a polynomial of degree n-1 as shown 

in Eq (1). The key idea is to ensure that every valid code 

polynomial is a multiple of a generator polynomial g(x). 

 

𝐶(𝑥) = ∑ 𝐶𝑖𝑥
𝑖

𝑛−𝑖

𝑖=0

                                  (1) 

 

Although this polynomial code is the basis for robust error-

correction methods, still it has a fixed number of check bits 

because based on the nth degree of the generator polynomial 

that is needed to attach during transmission, like in FlexRay 

protocol, it uses a polynomial generator of CRC-24. With this, 

it reduces the transmission rate of the network. Moreover, 

CRC codes do not implement correction, and it only enforces 

retransmission whenever an error is detected. The encoding 

process is to construct a message polynomial m(x) from a 

given message using the same method as shown in Equation 

(1). 

On the other hand, Hamming code uses redundancy bits ‘r' 

or parity bits that are added to an n-bit data D, it forms a 

codeword D + r and follows the required number of ‘r’ in a 

condition shown in Equation (2). 

 

2r ≥ D + r + 1 (2) 

 

These redundancy bits are inserted at bit positions in power 

of 2 with the original data bits [25]. Then, all other bit 

positions are assigned to the data (i.e., 3, 5, 6, 7, 9, 11, etc.). 

As a result, an increase in overhead because of interspersing 

the redundancy bits both for the transmitter and receiver parts. 

This paper proposes an alternative error detection code that 

eliminates the drawbacks above which is name as the 

enhanced error detection and correction (EEDC) code. In 

EEDC, it shows that for every valid codeword C bits, it 

contains a valid input data bits Di., for every valid Di entity, 
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there are C bits that can be changed to give an invalid 

codeword. Therefore, the total number of codewords 

corresponds to a valid data entity is C + 1. 

As there are 2Di valid data patterns, the total number of 

codewords is (C + 1)2Di. In Di bit codewords, the possible 

number of patterns is 2C, and because of this, it limits the 

number of valid bits plus the invalid codes that can exist. Thus, 

Equation (3) shows that 

 

(C + 1)2Di ≤ 2C (3) 

 

then, it can be written as 

 

C = Di + r (4) 

 

and 

 

(Di + r + 1)2Di ≤ 2Di+r (5) 

 

and the total number of the required r should satisfy first the 

given condition of this inequality shown in Equation 6 

 

(Di + r + 1) ≤ 2r (6) 

 

The data information Di together with the required r will 

be constructed into a polynomial form with a degree of n-1 

such as a summation of D(x) and r(x). The degree of 

polynomial D(x) will increase the nth value of r in such that 

 

G(x) = D(x) • Xn (7) 

 

Therefore, to complete form of this proposed EEDC code, 

it follows Equation (8). 

 

EEDC codes = G(x) + r(x) (8) 

 

The proposed algorithm of this proposed EEDC code is 

shown in Figure 5. 

 

IV. EXPERIMENTAL TESTING AND RESULTS 

 

To validate our design, we implemented the design in 

Xilinx Spartan 6 (XC7Z020CLG484-1) FPGA. During the 

testing, we compared the detection of an error in three 

different error codes. Figure 6 shows the error detection 

performance of the enhanced error detection correction 

(EEDC) code is better especially in long runs of bits streams 

against the conventional CRC of FlexRay protocol and in 

using Hamming codes. Table 1 shows the resource utilisation 

using Xilinx Spartan 6 FPGA from the simulation. 

 
Table 1 

Hardware Utilization 

 
Resources Utilization Available 

LUT 6, 189 53,200 

LUTRAM 606 17,400 
FF 4,337 106,400 

DSP 2 220 

IO 152 200 
BUFG 2 32 

 

 

 
 

Figure 5: Proposed Algorithm of EEDC. 

 

 
 

Figure 6: Error Detection Performance. 

 

V. CONCLUSION 

 

In this paper, we have discussed the FlexRay protocol and 

some related works on scalable implementations. In order to 

design a customised communication controller, we 

determined the contents and functions of each module in the 

controller. We customised a FlexRay communication 

controller that has the edge over with other existing 

controllers since we used a different approach on the trailer 

segment using using enhanced error detection correction code. 

The results lead to the reduction of hardware utilisation. It 

also increases the required transmission rate. Moreover, the 

detection of errors is much higher compared with the two 

error codes. 

In the future, our enhanced FPGA can be useful to others 

regarding research about FlexRay. We also intend to use the 

enhanced error detection and correction code in other 

reconfigurable hardware for more advanced network setups. 
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