

 e-ISSN: 2289-8131 Vol. 10 No. 1-9 161

Implementation of EEDC for Trailer Segment in

Enhanced FPGA-based FlexRay Controller

Ronnie O. Serfa Juan1,2, Hi Seok Kim1
1Department of Electronic Engineering, Cheongju University, Cheongju City 28503, South Korea

2ECE Department, College of Engineering, Technological University of the Philippines - Manila 1000, Philippines

ronnieserfajuan@cju.ac.kr

Abstract—FlexRay is a time-triggered protocol that is a

standard for reliable high-speed communications network

especially for automotive applications such as Advanced Driver

Assistance Systems (ADAS). This paper implemented using

field-programmable gate array (FPGA)-based communication

controller with a reconfigured trailer segment for a faster data

rate. The FlexRay's trailer segments that use enhanced error

detections and corrections codes that provide better

functionality. This paper is implemented and verified using a

Xilinx Spartan 6 FPGA. Experimental results show that this

proposed implementation performs better regarding data rate

and reduction of resource utilisation. This implementation

represents an advancement in the FPGA-based system for

vehicular applications and other time-triggered devices.

Index Terms—Configured FPGA; Enhanced Error-Detection

and Correction Code; FlexRay; Time-Triggered Devices.

I. INTRODUCTION

Modularity in hardware architectures are the latest trends in

automotive electronic systems [1], it aims to reduce the

number of electronic control units (ECUs). The advanced

driver-assistance systems (ADAS) domain as an example sets

the fusion of central sensor along with its controller

architecture for various applications. With all of these

demands, a high-level protocol system like the FlexRay

technology is required to cater the next-generation in-vehicle

systems [2]. In Fujitsu of Next Generation Car Network,

FlexRay features perform better against the event-triggered

controller area network (CAN) and the set-up on network

configurations is possible because the ECU can be easily

accessed in a typical communication network set-up [3]. A

versatile communication controller unit allows us to

reconfigure, modify and enhance to resolve certain pitfalls

and to maximise the hardware resources. A set-up like this

can helps us to improve the overall quality and performance

of any system. A reconfigurable platform like a field-

programmable gate array (FPGA) based system can make it

possible to improve the controller that is suitable for any

applications but maintaining the required protocol to function

the system accurately.

We present an enhanced FlexRay communication

controller by a reconfigured trailer segment in the protocol

engine module. This controller still functioning in regular

mode but has an added features that augment beyond the

capabilities of a conventional system. The trailer segment

uses enhanced error detection and correction code instead of

the original cyclic redundancy check (CRC) codes that hold

a fixed 24-bits frame because of the CRC-24 polynomial

generator.

With the field-programmable gate array (FPGA)-based

system, the architecture can be flexible and can help us to

reconfigure the hardware that provides an enhanced quality

to compare with the existing communication controllers. Our

experimental results show better features, such as faster data

rate, low-latency data handling, and error detection

performance that can be more efficient against with the

standard FlexRay communication controllers.

The remainder of this paper is presented as follows. Section

2 is the brief discussion of the FlexRay protocol and related

works. Section 3 discusses the proposed enhanced FlexRay

controller. Experimental results and implementations are

provided in Section 4. Then, Section 5, concludes this paper

and outline of future work.

II. REVIEW OF RELATED WORKS

FlexRay has the combined advantage of the time-triggered,

and event-triggered protocol [4] superseded the CAN

protocol regarding higher data rates, versatile in topology,

and fault-tolerant operation that needs for today’s automotive

industry.

A. FlexRay Protocol

The FlexRay protocol is developed and standardised by the

FlexRay Consortium [5]. Also, it is designed to be? An

efficient network between ECUs in vehicles embedded

systems. The automobile manufacturers have developed the

Automotive Open Systems Architecture (AUTOSAR) [6][7]

to ECU architecture and software platform. Thus, the

automotive industry depends on the reliability of its

communication to be free from any flaws that may lead to

inevitable fatalities.

The communication cycle or timing hierarchy of FlexRay

protocol is shown in Figure 1. The static segment guarantees

of service based on ID and assurance of real-time

transmission. Every ECU can send a frame of data in one or

more slots assigned to it [8]. On the dynamic segment, the

communication works similarly to a CAN protocol, and the

mini-slot is adjustable based on the transmitted data frame.

The symbol window is a time slot with fixed duration, and it

is used to transmit special symbols that can be transmitted on

the network such as the “wake-up” pattern to start-up the

communication. The network idle time is a specific time

window that maintains the clock synchronisation.

Journal of Telecommunication, Electronic and Computer Engineering

162 e-ISSN: 2289-8131 Vol. 10 No. 1-9

Figure 1: FlexRay Timing Hierarchy.

The FlexRay communication frame is responsible for

exchanging information. This frame format is composed of

three segments: the header, the payload and the trailer

segment [9] as shown in Figure 2. It shows that the header

section serves for status information such as bits indicating if

the frame is null or if the frame needs to synchronise [10]. It

also indicates the variation of the information to be

transmitted in this payload segment that varies from 0 to 254

bytes. The payload contains the data to be transmitted. Finally,

the trailer section contains the 24-bit CRC uses for error

detection, and it is calculated between the payload and header

sections [11]. In this scheme of the communication cycle, it

leads to efficient bandwidth utilisation because the mode of

transmission uses time division multiple access (TDMA).

FlexRay can operate not only as a single channel system but

also in dual channel mode [12].

B. FlexRay Scheduling

A configured design can arrange the divided subsystem into

scheduling hierarchy. One approach for FlexRay hierarchical

scheduling has been presented in [13]. Also, an example of

hierarchical scheduling techniques is shown in [14]. A time-

triggered schedule was generated analogously to the FlexRay

protocol in [15]. Various approaches have been published to

optimise the FlexRay’s static and dynamic segment [16]-[18].

These papers presented different strategies about FlexRay

scheduling. Moreover, a proposed model for the Distribution

Data Service Middleware and its various entities that can

exchange Data Objects on the communication network is

presented [19]. This proposed algorithm presented a new

scheduling method by combining the two old scheduling

methods dealing with the Time-Triggered and the Event-

Triggered Scheduling for FlexRay network.

C. FlexRay Communication Controller Implementation

The implementations on both [20],[21] described the

application of FlexRay communication controller and

description of language as the platform and translated into

hardware. However, the developed hardware is not described

in this paper. Another hardware set-up has also been

discussed in reference [22]. Its communication controller

node together with the finite state machine, including the

simulation and the synthesised results on Xilinx tool, is

presented here, but the discussion about the hardware

configuration is not included. This paper provides a

reconfigurable FlexRay communication controller, which

features a modified version of the communication controller.

The proposed method optimised the FlexRay communication

controller regarding resource utilisation reduction includes

the efficiency of the data rate by minimising the transmitted

frame bits.

Figure 2: FlexRay Frame Format.

A running ECU hosts a normal FlexRay module on a pre-

defined algorithm. The ECU controls and manages the

connected sensors and actuators to the networks. Also, it

monitors the status of the communication controller and the

bus drivers including some conformity when initially sending

a data [23]. The bus driver segment provides the control of

the bit streams between link levels. The FlexRay core should

be configurable to maximise its efficiency. The Xilinx

FlexRay controller architecture is shown in Figure 3,

comprises of user interface (UI), controller host interface

(CHI), and protocol engine (PE) unit. The UI module

provides on-chip peripheral bus (OPB) connectivity to the

FlexRay controller. Also, it performs OPB Read/Write

transactions and interrupt management.

The CHI manages the message to be received and to be

transmitted, controls and configures the data flow between

the host processor and the PE. This CHI module contains four

major blocks namely Memory Map and Registers; Transmit

Buffers; Receive Buffers, and Receive FIFO. The memory

map and register module contain the control, status, and

configuration memory map and registers. It allows read and

writes access to control the following register sets such as the

protocol and general CHI configuration, including its control

and status registers. The transmit (TX) buffers provide

storage and control of message data to be transmitted over the

FlexRay physical interface. The FlexRay controller provides

up to 128 user-configurable TX buffers, each of which can

store one FlexRay frame with a variable payload length. The

Number of TX Buffers parameter can configure the number of

TX buffers in the controller. The maximum Number of TX

Buffers in the controller depends on the Maximum Payload

Size parameter. Then, the receive buffers provide storage for

received message data and perform the frame storage and

filtering functions. The number of RX Buffers is user-

Implementation of EEDC for Trailer Segment in Enhanced FPGA-based FlexRay Controller

 e-ISSN: 2289-8131 Vol. 10 No. 1-9 163

configurable up to 128, each of which can store one FlexRay

frame of variable payload length. The number of Receive

buffers in the controller is configured using the Number of RX

Buffers parameter. Each Receive Buffer has a filter that can

be configured based on a set program to accept any

combination of Frame ID, Cycle counter and Message-ID

values for storage in the buffer. Four acceptance filter pairs

are also provided to screen incoming messages from the

Protocol Engine for storage into the RX FIFO. Each pair

contains a mask and data pair for Frame ID, Cycle counter,

and Message-ID.

Moreover, the FlexRay controller provides a flexible, with

a variable length FIFO buffer for storage of the received

FlexRay frames under the Receive FIFO. The message

storage space allocated to the Receive FIFO is configurable.

The PE module composes of all function blocks that perform

based on the prescribed specifications. These are the media

access control (MAC), bitstream encoder (BSE), bitstream

decoder (BSD), frame and symbol processing (FSP), protocol

operation control (POC), wakeup and startup (WUS) and

clock synchronisation process (CSP).

Figure 3: FlexRay Controller Architecture.

The MAC is assigned to maintain the timing within each

communication cycle (static, dynamic, symbol window and

network idle time). It manages the timing of static, dynamic

slot duration and the node transmission operation. It also

handles the assembled frames for transmission and asserts

signals to other modules to indicate the static segment start,

slot boundary, dynamic segment start, symbol window start

and network idle start time. The BSE module handles

encoding frames and symbols. The FSP is divided into frame

and symbol encoder. The frame encoder takes the incoming

bytes from the MAC and assembles the FlexRay bitstream

like appending a transmit start sequence (TSS) to start of the

bitstream or calculating frame CRC and appending it to the

end of the frame. The symbol encoder can transmit three

types of symbols such as collision avoidance symbol (CAS),

media test symbol and wakeup symbol (WUS). The BSD

block performs sampling and majority voting, bit clock

alignments (BCA) and bit strobing, frame and symbol

decoding, channel idle detection decoding error detection.

The FSP checks the correct timing of frames and symbols

concerning the TDMA scheme. This is done by applying

further syntactical tests to received frames and verifies the

semantics of the correctness of received frames. The results

are then signalled to the host. Moreover, FSP provides status

indicators to the host like the valid frame, valid symbol,

syntax error, content error, boundary violation and TX

conflict.

The Protocol Operation Control (POC) is an interface

between the host and FlexRay PE sub-modules. It determines

the operational state of the controller. The POC state

transitions are controlled synchronously and occur as a

consequence of a host command or an error condition

occurring. The state transitions indicate a change in the

operation of the protocol engine. See Figure 4 for an

illustration of the POC state machine. The wakeup procedure

describes the transition of a node from sleep mode to

operational mode. The startup procedure describes the

integration of nodes into the cluster. The CHI triggers both

Wakeup and Startup (WUS) procedures. The CSP handles the

synchronisation of all nodes in a cluster ensuring a common

time. This is done by using sync frames sent by nodes on the

network. The two components of time adjustment that are

handled by the CSP are Rate correction and Offset correction.

Clock synchronisation process has two significant sub-

processes that perform the synchronisation functions, namely

clock sync processing (CSP) and clock sync startup (CSS).

Journal of Telecommunication, Electronic and Computer Engineering

164 e-ISSN: 2289-8131 Vol. 10 No. 1-9

Figure 4: FlexRay Transition State.

III. PROPOSED ARCHITECTURE

A. Configured FlexRay Communication Controller

Specific parameters are needed in optimising and

configuring the communication controller like the removal of

some unused hardware. In this paper, we configured the

protocol engine module that contains the BSE. Since the BSE

module handles the encoding of frames, it calculates the CRC

frame and to be appended it to the end if the frame to be

transmitted. We implemented alternative error detection

instead of the conventional CRC. This proposed error

detection is explained in the next section.

B. Implementation of Enhanced Error Detection and

Correction (EEDC) Code

In the FlexRay frame format, the trailer segment contains a

24-bit CRC that protects the complete frame from any

unwanted errors. Cyclic Redundancy Checking code is an

example of polynomial codes referring to the corresponding

polynomial of a codeword [24]. It represents every codeword

C(x) = Cn-1Cn-2…C0 as a polynomial of degree n-1 as shown

in Eq (1). The key idea is to ensure that every valid code

polynomial is a multiple of a generator polynomial g(x).

𝐶(𝑥) = ∑ 𝐶𝑖𝑥
𝑖

𝑛−𝑖

𝑖=0

 (1)

Although this polynomial code is the basis for robust error-

correction methods, still it has a fixed number of check bits

because based on the nth degree of the generator polynomial

that is needed to attach during transmission, like in FlexRay

protocol, it uses a polynomial generator of CRC-24. With this,

it reduces the transmission rate of the network. Moreover,

CRC codes do not implement correction, and it only enforces

retransmission whenever an error is detected. The encoding

process is to construct a message polynomial m(x) from a

given message using the same method as shown in Equation

(1).

On the other hand, Hamming code uses redundancy bits ‘r'

or parity bits that are added to an n-bit data D, it forms a

codeword D + r and follows the required number of ‘r’ in a

condition shown in Equation (2).

2r ≥ D + r + 1 (2)

These redundancy bits are inserted at bit positions in power

of 2 with the original data bits [25]. Then, all other bit

positions are assigned to the data (i.e., 3, 5, 6, 7, 9, 11, etc.).

As a result, an increase in overhead because of interspersing

the redundancy bits both for the transmitter and receiver parts.

This paper proposes an alternative error detection code that

eliminates the drawbacks above which is name as the

enhanced error detection and correction (EEDC) code. In

EEDC, it shows that for every valid codeword C bits, it

contains a valid input data bits Di., for every valid Di entity,

Implementation of EEDC for Trailer Segment in Enhanced FPGA-based FlexRay Controller

 e-ISSN: 2289-8131 Vol. 10 No. 1-9 165

there are C bits that can be changed to give an invalid

codeword. Therefore, the total number of codewords

corresponds to a valid data entity is C + 1.

As there are 2Di valid data patterns, the total number of

codewords is (C + 1)2Di. In Di bit codewords, the possible

number of patterns is 2C, and because of this, it limits the

number of valid bits plus the invalid codes that can exist. Thus,

Equation (3) shows that

(C + 1)2Di ≤ 2C (3)

then, it can be written as

C = Di + r (4)

and

(Di + r + 1)2Di ≤ 2Di+r (5)

and the total number of the required r should satisfy first the

given condition of this inequality shown in Equation 6

(Di + r + 1) ≤ 2r (6)

The data information Di together with the required r will

be constructed into a polynomial form with a degree of n-1

such as a summation of D(x) and r(x). The degree of

polynomial D(x) will increase the nth value of r in such that

G(x) = D(x) • Xn (7)

Therefore, to complete form of this proposed EEDC code,

it follows Equation (8).

EEDC codes = G(x) + r(x) (8)

The proposed algorithm of this proposed EEDC code is

shown in Figure 5.

IV. EXPERIMENTAL TESTING AND RESULTS

To validate our design, we implemented the design in

Xilinx Spartan 6 (XC7Z020CLG484-1) FPGA. During the

testing, we compared the detection of an error in three

different error codes. Figure 6 shows the error detection

performance of the enhanced error detection correction

(EEDC) code is better especially in long runs of bits streams

against the conventional CRC of FlexRay protocol and in

using Hamming codes. Table 1 shows the resource utilisation

using Xilinx Spartan 6 FPGA from the simulation.

Table 1

Hardware Utilization

Resources Utilization Available

LUT 6, 189 53,200

LUTRAM 606 17,400
FF 4,337 106,400

DSP 2 220

IO 152 200
BUFG 2 32

Figure 5: Proposed Algorithm of EEDC.

Figure 6: Error Detection Performance.

V. CONCLUSION

In this paper, we have discussed the FlexRay protocol and

some related works on scalable implementations. In order to

design a customised communication controller, we

determined the contents and functions of each module in the

controller. We customised a FlexRay communication

controller that has the edge over with other existing

controllers since we used a different approach on the trailer

segment using using enhanced error detection correction code.

The results lead to the reduction of hardware utilisation. It

also increases the required transmission rate. Moreover, the

detection of errors is much higher compared with the two

error codes.

In the future, our enhanced FPGA can be useful to others

regarding research about FlexRay. We also intend to use the

enhanced error detection and correction code in other

reconfigurable hardware for more advanced network setups.

Journal of Telecommunication, Electronic and Computer Engineering

166 e-ISSN: 2289-8131 Vol. 10 No. 1-9

REFERENCES

[1] R. Hedge, G. Mishra, K. S. Gurumurthy. Software and Hardware

design Challenges in Automotive Embedded System. International
Journal of VLSI design and Communication System. 2 (3) (2011) 165-

174.

[2] FlexRay Consortium. FlexRay Communications Systems – Protocol
Specifications. Version 2.1 Revision A. (2005) [Online]. Available:

http://www.flexray.com

[3] Fujitsu. Next Generation Car Network – FlexRay.
 [Online]. Available:

http://www.fujitsu.com/downloads/CN/fmc/lsi/FlexRay-EN.pdf

[4] J. Kotz, S. Poledna. Making FlexRay a Reality in a Premium Car. SAe
International Conference of the Convergence Transportation

Electronics Association. (2008) 391-395.

[5] M. Grenier, L. Havet, N. Navet. Configuring the communication on
FlexRay – The Case of the Static Segment. 4th European Congress on

Embedded Real – Time Software. (2008) 1-18.

[6] R. Shaw, B. Jackman. An Introduction to FlexRay as an Industrial
Network. IEEE International Symposium on Industrial Electronics.

(2008) 1849-1854.

[7] S. Choosang, R. Taburan, S. Gordo. A formal model of an AUTOSAR
in vehicle in vehicle communication protocol. International

Conference on Information and Communication Technology for

Embedded System. (2010).
[8] M. Lukasiewycz, M. Glab, J. Teich, P. Milbredt. FlexRay Schedule

Optimization of the Static Segment. 7th IEEE/ACM International

Conference on Hardware/Software Codesign and System Synthesis.
(2009) 363-372.

[9] Rishvanth, D. Valli, K. Ganesan. Design of an In-Vehicle Network

(Using LIN, Can and FlexRay), Gateway and its Diagnostics Using
Vector CANoe. Americal Journal of Signal Processing. 1 (2) (2011)

40-45.

[10] D. C. Liaw, I. C. Liu, K. L. Chang. The FlexRay Implementation of By-
Wire System for Electric Vehicle. World Electric Vehicle Journal. 5

(2012) 610-616.

[11] A. Joseph. Reliable FlexRay Communication Controller for
Automotive Systems. International Conference on Engineering

Innovations and Solutions. (2016) 107-112.

[12] B. Vermeulen, J. Staschulat, M. Struck, S. Lorenz. FlexRay Switch,
More bandwidth and better robustness in FlexRay networks. Springer

Automotive Media. (2010) 32-36.

[13] A. Easwaran, I. Shin, O. Sokolsky, I. Lee. Incremental schedulability

analysis of hierarchical real-time components. 6th AMC & IEEE
International Conference on Embedded Software. (2006) 272-281.

[14] M. Anand, S. Fischmeister, I. Lee. A comparison of compositional

schedulability analysis techniques for hierarchical real-time systems.
ACM Transactions on Embedded Computer System. 13 (1) (2013) 1-

37.

[15] P. Mundhenk, F. Sagstetter, S. Chakraborty. Policy-based Message
Scheduling using FlexRay. International Conference on

Hardware/Software Codesign and System Synthesis. (2014).

[16] Texas Instrument. FlexRay Module Training. (2015).
 [Online]. Available: http://www.ti.com/lit/ml/sprt718/sprt718.pdf

[17] K. Schmidt, E. G. Schmidt. Message scheduling for the FlexRay

Protocol: The Static Segment. IEEE Transactions on Vehicle
Technology. 58 (5) (2009) 2170-2179.

[18] E. G. Schmidt, K. Schmidt. Message scheduling for the FlexRay

Protocol: The Dynamic Segment. IEEE Transactions on Vehicle
Technology. 58 (5) (2009) 2160-2169.

[19] W. N. Rabai, R. Bouhouch, H. Jaouani, S. Hasnaoui. Static and

Dynamic Scheduling for FlexRay Network using the Combined
Method. International Journal of Information Technology and System.

1 (1) (2012) 16-24.

[20] Y. N. Xu, Y. E. Kim, K. J. Cho, J. G. Chung, M. S. Lim. Implementation

of FlexRay Communication Controller Protocol with Application to a

Robot System. 15th IEEE International Conference on Electronics

Circuits and Systems. (2008) 994-997, 2008.
[21] J. H. Park, C. W. Moon. Implementation of an Integrated Controller for

a Robot Hand Base on a Vehicle Communication System. International
Journal of Control and Automation. 7 (11) (2014) 287-298.

[22] M. Khanapurkar, J. Hande, P. Bajaj. Approach for VHDL and FPGA

Implementation of Communication Controller. Second International
Conference on Emerging Trends in Engineering and Technology.

(2009) 397-401.

[23] M. Heinz, M. Hillenbrand, P. Brunn, K. Mueller-Glaser. A FlexRay
parameter calculation methodology based on electric/electronic

architecture of vehicles. 6th IFAC Symposium Advances in Automotive

Control. (2010) 407-412.
[24] P. Koopman, T. Chakravarty. Cyclic redundancy code (CRC)

polynomial selection for embedded networks.

 [Online]. Available:
https://users.ececmu.edu/~koopman/roses/dsn04/koopman04_crc_pol

y_embedded.pdf, accessed August 2016

[25] Wang, Hongli. "A kind of performance improvement of Hamming
code." Information and Management Engineering. Springer, Berlin,

Heidelberg, (2011) 315-318.

