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Abstract—While receiving more and more attention from 

scientists and engineers, the Dual Reciprocity Boundary 

Element Method (DRBEM) is known to face many factors and 

one of which is the choice of the Radial Basis Functions (RBFs) 

used. Amongst the popular choices of RBFs, the Multiquadric 

form is known to yield reliable solutions and yet, finding the 

optimal value of what is called ‘shape parameter’ noted, is 

known not to be straightforward. Nevertheless, it is well-known 

that the choice of the fixed value of is difficult to pinpoint and 

highly depends on the problem at hand.  In this work, therefore, 

we propose a shape parameter that is a variable which can 

locally adapt itself correspondingly to the local change of the 

physics of the problem under investigation. For this reason, the 

convection-diffusion type of PDEs is focused on when the shape 

parameter is linked to the local Peclet number via the proposed 

formula. The results produced in this work show that the 

proposed shape variable is promising in producing satisfactory 

numerical solutions, particularly when compared with the fixed 

ones.  

 

Index Terms—Boundary Element Method; Multiquadric; 

Variable Shape Parameter. 

 

I. INTRODUCTION 

 

Appearing as an alternative numerical method over the last 

two decades, the boundary element method (BEM) has 

become an important tool for solving a wide range of applied 

sciences and engineering that involve linear as well as 

specific types of nonlinear partial differential equations 

(PDEs). Amongst its appealing figures over the traditional 

methods of finite element, finite volume, and finite difference, 

BEM itself was facing the most challenging task when 

applied to nonlinear and/or time-dependence. An improved 

version of this scheme was proposed by Nardini and Brebbia 

[1] in 1982, and they named it as ‘Dual Reciprocity Boundary 

Element Method (DRBEM). In the process of DRBEM, the 

solution is divided into two parts: complementary solutions 

of its homogeneous form and the particular solutions of the 

inhomogeneous counterpart. Since the particular solutions 

are not always available especially in complex problems, the 

inhomogeneous term of the PDE is approximated by a series 

of simple functions and transformed to the boundary integrals 

employing particular solutions of the considered problem. 

The most widely used approximating functions in DRBEM 

are radial basis functions (RBFs) for which particular 

solutions can be easily determined [2].  

The Radial Basis Functions (RBF),  , are commonly 

found as multivariate functions whose values are dependent 

only on the distance from the origin and commonly assumed 

to be strictly positive definite. This means that/with  

and  ; or, in other words, on the distance from the point 

of a given set  , and  where can 

normally define as follows; 

 

 
(1) 

 

For some fixed points . Nevertheless, in this work, 

is the Euclidean distance and the radial basis 

function, , is chosen to be the Multiquadric type as firstly 

proposed by Hardy [3], defined as; 

 

 (2) 

 

where  is the so-called ‘shape parameter’ and is known to 

play a crucial role in determining the quality of the final 

results and has always been an open topic for decades. Hardy 

[3] suggests that by fixing the shape at  , 

where , and   is the distance from the node 

to its nearest neighbour, good results should be anticipated. 

Also, in the work of Franke [4] where the choice of a fixed 

shape of the form    where  is the diameter of 

the smallest circle containing all data nodes, can also be a 

good alternative.   

Some recent attempts to pinpoint the optimal value of  

involve the work of Zhang et al. [5] where they demonstrated 

and concluded that the optimal shape parameter is problem 

dependent. In 2002, Wang and Lui [6] pointed out that by 

analysing the condition number of the collocation matrix, a 

suitable range of derivable values of  can be found. Later 

in 2003, Lee et al. [7] suggested that the final numerical 

solutions obtained are found to be less affected by the method 

when the approximation is applied locally rather than globally.  

While the study of providing crucial and useful information 

of this shape parameter based on numerical aspect alone 

and/or fixed values is growing, it then appears that it may be 
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more useful to take into consideration also the physical aspect 

of the problem at hand. This idea is the initiative of this work 

and led to two primary objectives. Firstly, we implemented 

and applied the methodology of DRBEM to a problem 

containing a sudden change in local physical property and, 

for this, the convection-diffusion type is focused on. Secondly, 

we have proposed a new form of Multiquadric RBF shape 

parameter which behaves local-adaptively based on local 

changes in the Peclet number; the ratio of the contributions to 

mass transport by convection to those by diffusion. The 

results obtained from this investigation were validated 

against other alternative numerical works in literature when 

available.  

 

II. THE DUAL RECIPROCITY BEM FOR CONVECTION-

DIFFUSION PROBLEMS 

 

The work aims to investigate two-dimensional convection-

diffusion problems governed by the following equation 

numerically; 

 

 (3) 

 

where   are convection coefficients, and    are 

diffusion coefficients. The last two terms;  and the source 

term  , are additional and needed only in specific 

cases.  

By setting   , we obtain; 

  

  (4) 

 

Leading to;  

 

  (5) 

 

subject to the initial condition  with

  and the boundary condition . 

Where  and  is a domain of the problem, 

 is its boundary,  and  are known functions. 

The mathematical construction of the dual reciprocity 

boundary element method (DRBEM) can start with the 

Poisson equation as follows; 

 

 (6) 

 

which its equivalent integral form, given by Nardini and 

Brebbia [1], is as follows; 

  

   (7) 

 

where   is the fundamental solution and the term   is 

defined as   , where  is the unit outward normal 

to its boundary  , and can be written as follows; 

 

  (8) 

 

Next, we apply the boundary element method as explained 

in Chanthawara et al. [8], and with   and  is the number 

of boundary and internal nodes respectively,  can be now 

approximated by;  

 

  (9) 

 

Here, the function  is the radial basis function which is, 

in this work, the multiquadric type and is to be detailed in the 

next section. With this radial basis function, we then have;  

 

  (10) 

 

For some particular solution,  .  

Applying Green’s theorem, the boundary element 

approximation to Equation (7), then it becomes, at node ith; 

 

  (11) 

 

For  . 

After introducing the interpolation function and 

integrating over each boundary elements, the above Equation 

(11) can be re-written regarding nodal values as; 

 

 (12) 

 

where the definition of the terms    and     can be 

found in Toutip [9]. The index 𝑘  is used for the boundary 

nodes which are the field points. After application to all 

boundary nodes, using a collocation technique, Equation (12) 

can be compactly expressed in matrix form as follows;  

 

  (13) 

 

By substituting   from Equation (9), into 

Equation (13) making the right-hand side of Equation (13) a 

known vector. Therefore, it can be rewritten as; 
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where Applying boundary condition(s) 

to Equation (14), then it can be seen as the simple form as 

follow;  

 

  (15) 

 

where  𝐱  contains  𝑁 unknown boundary values of and 

 .  

After Equation (15) is solved using standard techniques 

such as Gaussian elimination, the values at any internal node 

can be calculated from Equation (15), i.e.   as 

expressed in Equation (12) where each one involves a 

separate multiplication of known vectors and matrices.  

 

  (16) 

 

We first substitute Equation (18) into Equation (17) to get 

the equation system matrix which is expressed as; 

 

  (17) 

 

Setting; 

 

  (18) 

 

Then Equation (17) becomes; 

 

  (19) 

 

Now, getting back to the convection-diffusion governing 

equation, Equation (3), as described in Nee and Duan [10],

   are approximated similarly, that is;  

 

  (20) 

 

From Equation (20) and  

 

  (21) 

 

For the time derivative, the forward difference method is 

expressed as  . Substituting Equation (20) 

and Equation (21) to Equation (19) and then; 

  

 (22) 

and then; 

 

       (23) 

 

with setting; 

 

  (24) 

 

Substituting Equation (24) in Equation (23). The following 

expressions are obtained. 

 

  (25) 

 

Let  , 

 

  (26) 

 

and then; 

 

  (27) 

 

Note that the elements of matrices    and  

depend only on geometrical data. Thus, they can all be 

computed once and stored. 

 

III. THE PROPOSED LOCALLY ADAPTIVE-MULTIQUADRIC 

SHAPE  

 

Regarding the studies in the search for the optimal choice 

of the shape parameter, many outstanding and well-known 

forms proposed in the past are listed in Table 1. 

  
Table 1 

Some Choices Proposed in Literature 

 

Reference Formulation of/for jth-element 

Kansa [11]  
,  
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Kansa and Carlson 

[12]  

, 

with   

Sarra [13]   

Sarra and Sturgill 
[14]  

 

 

Here, the command ‘rand’ is the MATLAB function that 

returns uniformly distributed pseudo-random numbers on the 

unit interval. It was proven in Sarra and Sturgill [14] that the 
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especially when the scheme includes the information about 

the minimum distance of a centre to its nearest neighbour, 

 , with also a user input value .  

In this work, we propose a new form of variable shape 

parameter where both linear and exponential manners are 

taken into consideration, expressed as in Equations (28)-(30). 

 

 (28) 

 

where; 

 

 (29) 

 (30) 

 

and  is set to correspond to the local Peclet number defined 

as follows;   

 

 
 

(31) 

 

And the dimensionless number called the Péclet 

number (Pe), which is the ratio of the contributions to mass 

transport by convection to those by diffusion is expressed as; 

   

  (32) 

 

where L is a characteristic length scale and taken as the 

distance between the centre node   and the pointing node 

. U is the local velocity magnitude, and D is a characteristic 

diffusion coefficient, i.e.   and    in Equation (3) and

. The automatically self-adjusted parameter 

is introduced and act as a weight function leading  to equal 

to the exponential manner when . This weight then sets  

 to become its linear mode when . This proposed 

variable shape is referred to as ‘Var’ throughout the work. 

 

IV. NUMERICAL EXPERIMENT AND GENERAL DISCUSSION   

 

In this section, we applied the method explained above to 

the steady state of the problem, the time-dependence term in 

Equation (3) is omitted. The domain is a unit square 

 and   with 

constants   and   and the source term are 

omitted. All four sides of the domain are set with the same 

boundary condition as , 

leading to the exact solution as the following form, Gu and 

Liu [15]; 

 

   (33) 

 

 

For error analysis, the two error indicators, over the domain, 

are adopted in this work and are given by; 

 

Relative Error   (34) 

 

Root Mean Square (RMS) error =  

 

(35) 

 

Table 2 and Table 3 show the RMS produced by using 

optimal    for each value of  at different node densities, 

100 and 441 respectively. Moreover, in both tables, we show 

the influence of the wideness of the interval or the distance 

between the maximum and minimum of . The results from 

all the cases carried out here interestingly reveal that the 

optimal shape parameter is within the interval . 

To emphasise the effectiveness of the proposed formula, not 

being influenced by the range , we expanded the range 

from  to   and from  

to .  It is interestingly found that the optimal 

values still occur at nearly the same area of the value curve.  

All numerical solutions also behave in the same tendency 

when the value of  gets smaller where the RMS is found to 

increase slightly. The relative error norm, Equation (34) is 

depicted in Figure 1 and clearly shows the optimal values of 

 for both numbers of nodes involved.  

 
Table 2 

Numerical Solution Computed with 100 nodes (N+L), at Two Intervals of 

and , and at Different Values of . 

 

 

 

Optimal Value RMS 

50 1.43E+00 3.01E-09 

10 1.51E+00 6.59E-09 
5 1.50E+00 6.25E-08 

1 1.52E+00 2.03E-08 

0.5 1.64E+00 2.56E-08 

 

 

Optimal Value RMS 

50 1.50E+00 4.41E-09 

10 1.54E+00 7.25E-09 

5 1.39E+00 4.78E-08 
1 1.45E+00 3.02E-08 

0.5 1.55E+00 4.23E-07 

 

 

Optimal Value RMS 

50 1.55E+00 5.21E-09 
10 1.64E+00 5.20E-09 

5 1.59E+00 4.12E-08 

1 1.55E+00 4.42E-08 
0.5 1.65E+00 6.02E-07 
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Table 3 

Numerical Solution Computed with 441 nodes (N+L), at Two Intervals of 

and , and at Different Values of . 

 

 

 

Optimal Value RMS 

50 1.47E+00 5.01E-09 
10 1.45E+00 6.05E-09 

5 1.56E+00 5.32E-09 

1 1.51E+00 2.02E-08 
0.5 1.62E+00 5.02E-08 

 

 

Optimal Value RMS 

50 1.54E+00 3.01E-09 

10 1.46E+00 5.88E-09 
5 1.39E+00 5.98E-09 

1 1.52E+00 1.26E-08 

0.5 1.70E+00 2.47E-08 

 

 

Optimal Value RMS 

50 1.49E+00 5.23E-09 

10 1.58E+00 6.55E-09 

5 1.42E+00 5.02E-08 
1 1.58E+00 8.22E-08 

0.5 1.68E+00 3.23E-07 

 

 
Figure 1: Relative error norm, Equation (34); above) computed with 100 

nodes, and below) computed with 441 nodes (N+L) for . 

 

In order to compare the results obtained in this study to one 

of the benchmarks in literature namely Gu and Liu [15], and 

also to some of our previous works, a new error indicator 

(Err), is adopted and defined as;  

 

Err   (36) 

 

In one of our previous investigations, Chanthawara et al. 

[16], it was found that other kinds of radial basis functions 

rely on different values of optimal shape parameters. Here, 

we compare the error norm, Err, of the results obtained from 

this work to some other RBFs, with fixed . It is found that 

by using our proposed form of variable shape, Equation (28)- 

(30), satisfactory results can also be obtained. It is to be also 

mentioned that when the convection force becomes 

dominant, , the numerical method loses their 

effectiveness and this figure is known as normal, see Table 4.  

 
Table 4 

Comparison of Err at Different Levels of Convection Force, Computed at 

400 Nodes (N+L) 

 

  
Gu and 
Liu15 

NAA* 

( =10) 

IMQ* 

( =0.01) 

Var 

(Opt.  ) 

100 0.245 0.435 0.990 
0.448  

( =1.48) 

10 0.255 0.371 0.912 
0.901 

( =1.56) 

1 0.346 0.589 3.849 
1.525 

( =1.59) 

0.1 1.276 38.307 15.417 
8.769 

( =1.61) 

0.01 15.832 1970.006 67.072 
22.015 

( =1.68) 

*Adopted from Chanthawara et al. [16] 

 

Velocity solution profiles are plotted in Figure 2, and it can 

be seen that the solution obtained by using the locally-

adaptive shape proposed in this work outperforms the one 

with fixed value.  

 

V. CONCLUSION 

 

In this work, we have studied the effectiveness of the fixed 

values of shape parameter contained in the Multiquadric type 

of RBFs, , in conjunction with the method 

of DRBEM. The investigation began with applying DRBEM 

to one of the most complicated PDEs namely convection-

diffusion type. We then proposed a new form of shape 

parameter that behaves locally-adaptive, i.e. it varies 

accordingly to the local change of the physics of the problem 

which, here, is the Peclet number (Pe). The proposed variable 

shape form also contains both linear and exponential aspects 

based on the distance between the centre node   and pointed 

node   in the RBF-collocation numerical method adopted. 

Some important conclusions can now be drawn from the 

investigation, and they are as follows: 

• DRBEM has successfully been applied to convection-

diffusion using multiquadric radial basis function at a 

wide range of convection force.  

• It is found from all the results obtained in this work 

that the proposed shape parameter can outperform the 

fixed ones and certainly deserves further investigation.   
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Figure 2: Numerical solution obtained from nodes; (a) obtained 

with fixed shape  = 10, (b) optimal shape found in this work, and (c) 

Exact solution, measured at  

 

• When compared with other numerical works, the 

accuracy lies at an acceptable level but gets lower 

when the convection force is greater.  
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