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Abstract—Electroencephalogram (EEG)-based emotion 

classification is rapidly becoming one of the most intensely 

studied areas of brain-computer interfacing (BCI). The ability 

to passively identify yet accurately correlate brainwaves with 

our immediate emotions opens up truly meaningful and 

previously unattainable human-computer interactions such as 

in forensic neuroscience, rehabilitative medicine, affective 

entertainment and neuro-marketing. One particularly useful yet 

rarely explored areas of EEG-based emotion classification is 

preference recognition [1], which is simply the detection of like 

versus dislike. Within the limited investigations into preference 

classification, all reported studies were based on musically-

induced stimuli except for a single study which used 2D images. 

We present two EEG-based preference classification studies: 

using (1) kNN for a 10-subject EEG classification problem; (2) 

deep learning for an expanded 16-subject EEG classification 

problem. We show that inter-subject variability introduces 

significant classification problems when larger cohorts of test 

subjects are used and that deep learning shows promising 

results in terms of addressing this inter-subject variability 

problem in EEG-based preference classification. 

 

Index Terms—Deep Learning; Electroencephalography; 

Emotion Classification; Preference Recognition; Visual 

Aesthetics. 

 

I. INTRODUCTION 

 

Being emotional is a crucial part of what makes us human. 

Indeed, it has been argued that human consciousness evolved 

from the primordial emotions of early man [2]. Having the 

ability to sense our immediate situation and respond with 

the corresponding emotion is what human brains have been 

evolved to perform on a predominantly subconscious level 

[3]. The human brain constantly processes the sensory inputs 

coming in from around us and provides us with the 

subsequent emotional output arising from that particular 

experience. One of the most effective approaches to human 

emotion classification is based on the analysis and 

interpretation of electroencephalograms [4]. Feelings of 

anger, sadness, happiness, surprise and fear are some of the 

more commonly studied emotions in EEG-based 

classifications [5, 6, 7, 8]. 

As part of the diverse emotions that humans feel, one of the 

most basic emotions that we experience is the feeling of like 

versus dislike. Everyday experiences such as tasting a 

new dish, watching a new movie or visiting a new shop will 

all certainly evoke some preference response. Although being 

one of the most frequently encountered emotions, 

surprisingly few attempts have been made to investigate the 

use of EEG as a means to recognize human preferences. 

Moreover, in the limited studies that have been reported on 

EEG-based preference classification, EEG-based preference 

classification studies have predominantly relied on the use of 

music as the primary stimuli [9, 10, 11, 12, 13, 14] with only 

a solitary study which uses 2D images [15]. 

In our ongoing investigations on EEG-based preference 

classification, we used novel stimuli in the form of 3D 

rotating objects [1]. Our ultimate goal is to create a thought-

based 3D computer-aided design (CAD) system to assist 

designers in rapid prototyping of 3D objects for 3D printing, 

hence the novel use of 3D rotating objects as the visual 

stimuli in our experiments. Our early work reported 

promising results of up to 80%. However, these preliminary 

experiments involved only a small test group of 5 subjects. In 

order to test its generalizability, scaling the study up to a 

larger cohort of test subjects would be required. It is well-

known that EEG-based studies involving larger cohorts 

generally tend to have significantly reduced accuracies due to 

inter-subject variability [16] in addition to intra-subject 

variability [17]. Therefore, the main objective of the current 

study is to expand the investigation to larger cohorts of 10 

and 16 subjects respectively and attempt to maintain the level 

of classification accuracy. 

This paper is organized as follows: Section 2 presents some 

background material on machine learning and deep learning 

in EEG-based emotion classification; Section 3 explains the 

setup of our EEG system for classification of aesthetic 

preference; Section 4 discusses the classification results 

obtained from the various machine learning techniques 

investigated; and finally Section 5 summarizes the main 

findings of our work and suggests some useful avenues to 

pursue as future work. 

 

II. RELATED MATERIAL 

 

EEG-based classification of human emotions using 

machine learning techniques can be broadly classified into 

three categories: those that employ features from the (1) time, 

(2) frequency, and (3) a combination of time and frequency 

domains. Emotion classification based on the time domain 

relies on the detection of event-related potentials (ERPs), 

which can be further classified into signals that manifest with 

a short, medium and long latency post exposure to the stimuli. 

ERPs were used to automatically identify the test subjects' 

preferences based on valence and arousal, obtaining average 

classification rates of 55.7% for arousal and 58.8% for 

valence [13]. 

Emotion classification based on the frequency domain 

relies on the analysis of spectral power from the delta, theta, 

alpha, beta and gamma bands. Music preference was 

classified using features extracted with the Common Spatial 
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Patterns (CSPs) method, obtaining an accuracy of 74.8% with 

linear support vector machines (SVMs) [10]. Similarly, 

music preference was also successfully classified with an 

accuracy rate of 85.7% using SVMs with features extracted 

using a standard Fast Fourier Transform (FFT) [12]. In a more 

recent and only study which uses non-musically-based 

stimuli, radial SVMs were able to achieve 88.5% 

classification accuracy for 2D image preference using 

spectral analysis [15]. 

Finally, emotion classification using both the time and 

frequency (TF) domains relies on the analysis of spectral 

power at specific time windows that span the entire duration 

of the measurement period. Three different TF analysis 

techniques were tested in conjunction with a number of 

machine learning algorithms to classify music preference 

where it was found that the k-nearest neighbors (kNN) 

classifier performed the best with 86.5% accuracy [9]. A 

follow-up study by the same researchers using a finer grained 

model which grouped the stimuli into familiar versus 

unfamiliar music obtained a higher accuracy of 91.0%, also 

using a kNN classifier [11]. A TF study utilizing Short-Time 

Fourier Transform (STFT) reported classification rates of 

98.0% for music preference using a kNN classifier [14]. 

Deep learning in the form of Deep Belief Networks 

(DBNs) was used to classify the preferences of 32 subjects 

when viewing short music videos [18]. Deep learning is 

achieved in DBNs by stacking a number of Restricted 

Boltzmann Machines (RBMs) on each other, then using the 

output from a lower-level RBM to serve as the input to a 

higher-level RBM and so on within the multi-layer stack of 

RBMs. It was found to outperform a range of different SVMs 

and standard RBMs achieving an average of 77.8% 

classification accuracy. DBNs were also used to classify the 

emotions of 6 subjects when viewing short video clips that 

were either eliciting positive or negative emotions [19]. A 

novel critical selection method was employed to identify and 

use only the top 5 EEG channels for the classification tasks. 

It was reported that DBN's with the critical channel selection 

approach achieved accuracies of 87.6%, which were slightly 

better than Extreme Learning Machines (ELMs) and SVMs 

while significantly better than kNNs. In these two studies, it 

is worth noting that the training and prediction tasks were 

done on a per-subject basis and not over the entire cohort. 

This means that the classification process requires retraining 

for each new subject before prediction can take place. This 

approach effectively removes the challenge of dealing with 

inter-subject variability and only caters for intra-subject 

variability. 

In the only deep learning preference classification study 

which attempts to perform classification over the entire 

cohort, a combination of unsupervised learning in the form of 

stacked autoencoders (AEs) with supervised learning of 

softmax classifier was used to predict the emotional states of 

32 subjects based on valence and arousal. Despite using a 

very large number of neurons for the deep learner, which 

were reported by the authors to result in an extended amount 

of computational time required for training, and further 

augmenting the system with additional Principal Component 

Analysis (PCA) and covariate shift adaptation (CSA) to 

preprocess the features, the best prediction rates using leave-

one-out cross-validation (LOOCV) were very low at 53.4% 

for valence and 52.0% for arousal [20]. This shows that inter-

subject variability significantly adds to the difficulty of EEG-

based preference classification in addition to intra-subject 

variability. 

 

III. METHODS 

 

10 subjects (5 female and 5 male, mean age 22.40) and 16 

subjects (8 female and 8 male, mean age = 22.44) respectively 

participated in this study. The subjects do not have any known 

history of psychiatric illnesses and had normal or corrected-

to-normal vision. The subjects are briefed on the data 

acquisition process before the experiments commenced. The 

ABM B-Alert X10 with 9 electrode channels (POz, Fz, Cz, 

C3, C4, F3, F4, P3 and P4) was used as the EEG acquisition 

device. A subject wearing the headset is as shown in Figure 

1(a). The programming languages used to develop this 

system were MATLAB, Java and R: Java was used for 

displaying the visual stimuli; MATLAB was used for the 

integration with the B-Alert X10's SDK; and signal 

preprocessing, feature extraction, and classification were 

carried out using R. 
 

 
 

(a) 
 

 
(b) 

 

Figure 1: (a) A user fitted with the EEG acquisition device; (b) Process 
flow of data acquisition. 

 

Figure 1(a) shows the process ow for data acquisition. At 

the beginning of the data acquisition process, a blank screen 

of 3s is displayed as a resting state in order to avoid any brain 

activities related to the previous trial. This is followed by 5 to 

15s of viewing the 3D stimuli with the minimum and 

maximum time of 5s and 15s respectively. After the 

minimum time, the subject is able to proceed to the rating 

state based on their free will while at the maximum time, the 

system will automatically proceed to the rating state. The 

purpose of enabling the subject to decide on their viewing 

time for the stimuli is to avoid the subject from becoming 

bored and fatigued during the data acquisition process. 

Asking the user to view repetitively at fixed intervals and rate 

the stimuli could lead boredom [21] which may then further 

cause fatigue [22]. Hence, allowing the user to have the 

option to move to the next stimuli could save time and avoid 

fatigue since the subject no longer needs to wait until the 

maximum time in order to conduct the rating and moving on 

to the next stimuli. At the end of the shape viewing process, 

a rating with a scale from 1-5 (1: like very much, 2: like, 3: 

undecided, 4: do not like, 5: do not like at all) is displayed to 

the subject, which is adopted from related studies [9, 11]. 

A 3D shape in the form of a bracelet-like object generated 
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using the Gielis Superformula [23] as described in Equation 

1 was used as the stimuli in this study. Our motivation for 

using this shape as the 3D visual stimuli is to assess the 

aesthetics of jewellery-type objects since visual aesthetics is 

the key motivating factor for the decision to purchase such 

items.  

Modification of the parameters of the superformula allows 

the generation of various natural and elegant-looking 3D 

shapes. 60 bracelet models as shown in Figure 2(a) were 

generated by assigning the various superformula parameters 

with randomly generated values. Various ranges were 

selected for the different parameters in order to be able to 

generate shapes that appear closest to a bracelet-like object. 

These bracelet-like 3D shapes were then displayed virtually 

on a computer and with rotations on different axes of the 

presented stimuli so that it could be viewed at different angles 

in order for the subject to fully visualize the generated 3D 

bracelet-like object. 

In the data processing stage, the collected signals are 

processed according to the steps as shown in Figure 2(b) to 

conduct the preference classification. Firstly, the EEG signals 

are decontaminated from environmental and physiological 

artifacts. These artifacts are removed automatically using the 

SDK provided by ABM for the B-Alert X10 headset in 

MATLAB. Environmental artifacts are removed by applying 

a 50 Hz notch filter. 5 different physiological artifacts 

(electromyography (EMG), eye blinks, excursions, 

saturations, and spikes) are also automatically removed in 

real-time, where the excursions, saturations, and spikes are 

replaced by zero values. Spline interpolation was later used 

to fill in the zero values generated by the automatic artifact 

removal system. 

 

 
 

(a) 
 

 
(b) 

 

Figure 2: (a) 60 bracelet-like shapes generated using the Gielis 

superformula; (b) Process flow of signal processing. 

 

 

The cleaned EEG signals are then transformed into the TF 

domain using an STFT as per the method suggested by [9, 

11]. The STFT process decomposes each of the 9 acquisition 

channels into five bands: delta (1-3Hz), theta (4-6 Hz), alpha 

(7-12 Hz), beta (13-30 Hz) and gamma (31-64Hz); thereby 

giving a total of 45 input features. From the 960 observations 

obtained during the data acquisition of 16 subjects each 

viewing 60 of the 3D visual stimuli, only 208 observations 

which recorded the strongest ratings on each end of the 

preference spectrum scale were used for the classification 

process, which were the ratings of 1 (like very much) and 5 

(do not like at all). Therefore a matrix of 47 columns 

consisting of the observation ID, rating, and each of the 45 

input TF features, and 208 rows of observations served as the 

input to the respective classifiers. Additionally, all the 

subjects' baseline readings obtained during the resting state 

were first subtracted from the viewing state values prior to 

the classification process. 

 

IV. EXPERIMENTAL RESULTS & DISCUSSION 

 

A. 10-subject EEG Preference Classification 

In this first study, a cohort size of 10 was used. Here only 

the k-nearest neighbor (kNN) classifier was used to classify 

2 preference classes and the nearest neighbor parameter (k) 

from 1 to 9 was tested. In conjunction with the kNN approach, 

two different power spectral density (PSD) signal transforms 

were used here in this first study, which were the Burg and 

Welch methods. 

A brute-force search is applied to the classifier to test all 

the combinations of the obtained features. However, to search 

through all the combinations would require a long period of 

time to complete, so all the combinations of the features are 

tested for 1 to 5 features and Table I shows the accuracies at 

68.67% and above on either method of PSD. The features in 

Table II with occurrence higher than 1 are used to train and 

test the classifier. 

The accuracy of different combinations on features is as 

shown below, where the accuracy of 71% and above using 

Burg method is as shown in Table 2 while Welch method is 

shown in Table 3. The highest accuracy for Burg methods is 

73% with nearest neighbor set to 1 along with features 

Czgamma, C3beta, C3gamma, C4gamma, C4 theta, F3beta, 

F3gamma, F3deltam F4beta and P3alpha whereas the highest 

accuracy for the Welch methods is 74% with nearest neighbor 

set to 1 along with features Fzdelta, C3beta, C3gamma,  

C4gamma, C4theta, F3beta, F3delta, F4alpha, F4beta, 

F4gamma, and P3alpha, also with Fzdelta, Czgamma, 

C3beta, C3gamma, C4gamma, C4theta, F3beta, F3delta, 

F4alpha, F4beta, F4gamma and P3alpha. 

Table 4 shows the confusion matrix for the best accuracy 

(74%) obtained. Through the use of features Fzdelta, C3beta, 

C3gamma, C4gamma, C4theta, F3beta, F3delta, F4alpha, 

F4beta, F4gamma, and P3alpha, the true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) 

were 52, 59, 24 and 15 respectively. Meanwhile for the 

features with Fzdelta, Czgamma, C3beta, C3gamme, 

C4gamma, C4theta, F3beta, F3delta, F4alpha, F4beta, 

F4gamma and P3alpha, the TP, TN, FP and FN were 53, 58, 

24 and 14 respectively. The total testing data were 150. The 

confusion matrix for both combinations of features which 

obtained 74% accuracy are similar whereby there is only one 

feature difference between both combination of features. 
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Table 1 
Classification accuracy obtained using brute force search based on 1-5 

features combination 

 
Combination of features Accuracy 

Fzbeta,C3beta,C4gamma,P3alpha 

68.67% 

Czgamma,C3beta,F3delta,P3delta 

POztheta,Fzbeta,C4gamma,F3delta,P3delta 

POzdelta,C3beta,F4alpha,F4beta,F4gamma 

Fzalpha,Czalpha,F3beta,F3delta,F4beta 

Fzbeta,C4gamma,C4theta,F3delta,F4alpha 

Fzgamma,Fzdelta,C3alpha,C3beta,C4theta 

Fztheta,Fzdelta,F3beta,F4alpha,F4beta 

C4gamma,F3gamma,F3delta,F4gamma 

69.33% 

C4gamma,F3delta,F4gamma,P3theta 

POztheta,Czbeta,C4gamma,F3delta,P3delta 
POztheta,C3gamma,C3theta,F3delta,F4alpha 

Fzbeta,Czgamma,C3beta,C4gamma,P3alpha 

Fzbeta,C3beta,C4gamma,P3alpha,P4gamma 

Fzdelta,C4gamma,F4alpha,F4gamma,F4theta 

Fzdelta,F3beta,F4alpha,F4beta,P3alpha 

Czalpha,C3gamma,C4theta,F3delta,F4gamma 

Cztheta,C4gamma,F4gamma,P3alpha,P3beta 

Fztheta,Fzdelta,F3beta,F4alpha,F4beta 70.00% 

POztheta,Fzbeta,C3gamma,F3delta,P3delta 70.67% 

C3gamma,C4gamma,F3gamma,F3delta,F4gamma 72.67% 

 
Table 2 

Accuracy of different combination of features using the burg method 
 

 

α indicates alpha, β indicates beta, θ indicates theta, γ indicates gamma, and δ indicates delta rhythm. 

 

Table 3 
Accuracy of different combination of features using Welch method 

 
Features k Acc. 

Fzδ,C3β,C3γ,C4γ,C4θ,F3β,F3δ,F4α,F4β,F4γ,P3α 1 74% 

Fzδ,Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3δ,F4α,F4β,F4γ,P3α 1 74% 

Fzδ,Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1 73% 

Fzδ,Czγ,C3β,C4γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1 73% 

Fzδ,C3β,C3γ,C4γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1 73% 

Fzδ,C3β,C4γ,C4θ,F3β,F3δ,F4α,F4β,F4γ,P3α 1 73% 

Fzβ,Fzδ,C3β,C4γ,C4θ,F3β,F3δ,F4α,F4β,F4γ,P3α 1 73% 

Fzδ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 1 73% 
Fzβ,Fzδ,Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3δ,F4α,F4β,F4γ,P3α 1 73% 

Fzβ,Fzδ,C3β,C4γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1 72% 

Fzβ,Fzδ,C3β,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 2 72% 

Fzβ,Fzδ,C3β,C3γ,C4γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1 72% 

Fzβ,Fzδ,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 1,2 71% 

Fzδ,Czγ,C3β,C3γ,C4γ,F3β,F3γ,F3δ,F4α,F4β,P3α 2 72% 
Fzδ,Czγ,C3β,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 2 72% 

Fzδ,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,F4γ,P3α 1 72% 

Fzβ,Fzδ,Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1 72% 

Fzβ,Fzδ,Czγ,C3β,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 2 72% 

Fzδ,Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 1 72% 

Fzβ,Fzδ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,F4γ,P3α 1 72% 

Fzθ,Fzδ,F3β,F4α,F4β,F4γ 6 71% 

POzθ,Fzβ,C3β,C3γ,F3δ,F4γ,P3δ 1 71% 
Fzβ,Fzδ,C3β,C4γ,C4θ,F3β,F4α,F4β,P3α 2 71% 

Fzβ,Fzδ,C4γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1 71% 

Fzδ,C3β,C3γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1,2 71% 

Fzδ,C3β,C4γ,C4θ,F3β,F3δ,F4α,F4β,P3α 1,2 71% 

Fzβ,Fzδ,C3γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 2 71% 

Fzδ,C3β,C3γ,C4γ,F3β,F3γ,F3δ,F4α,F4β,P3α 1 71% 

Fzδ,C3β,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 1 71% 
Fzδ,C3β,C4θ,F3β,F3γ,F3δ,F4α,F4β,F4γ,P3α 2 71% 

Fzβ,Fzδ,Czγ,C3β,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 2 71% 

Fzβ,Fzδ,C3β,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 2 71% 

Fzδ,Czγ,C3β,C4γ,C4θ,F3β,F3δ,F4α,F4β,F4γ,P3α 1 71% 

Fzδ,C3β,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,F4γ,P3α 1 71% 

Fzβ,Fzδ,Czγ,C3β,C4γ,C4θ,F3β,F3δ,F4α,F4β,F4γ,P3α 1 71% 
Fzβ,Fzδ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 1,2 71% 

Fzβ,Fzδ,C3β,C3γ,C4γ,C4θ,F3β,F3δ,F4α,F4β,F4γ,P3α 1 71% 

Fzδ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,F4γ,P3α 1 71% 

Fzβ,Fzδ,Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,P3α 1,2 71% 

Fzδ,Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,F4γ,P3α 1 71% 

Fzβ,Fzδ,Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4α,F4β,F4γ,P3α 1 71% 

 
α indicates alpha, β indicates beta, θ indicates theta, γ indicates gamma, and δ indicates delta rhythm. 

 

 

Table 4 

Confusion matrix for best accuracy 

 

Fzδ, C3β, C3γ, 

C4γ, C4θ, F3β, 

F3δ, F4α, F4β, 
F4γ, P3α 

Actual/Predicted Like Dislike 

Like 52 15 

Dislike 24 59 

Fzδ, Czγ, C3β, 
C3γ, C4γ, C4θ, 

F3β, F3δ, F4α, 

F4β, F4γ, P3α 

Actual/Predicted Like Dislike 

Like 53 14 

Dislike 25 58 
α indicates alpha, β indicates beta, θ indicates theta, γ indicates gamma, and δ indicates delta rhythm. 
   

Moreover, the Welch method performed better than the 

Burg method especially using a nearest neighbor of one and 

two.  Meanwhile, the features in the combination obtained 

accuracy of 71% and above are mostly from channels Fz, C3, 

C4, F3, F4 and P3.  

Left parietal (P3) is believed to be involved in mental 

rotation, which corresponds to the subjects mentally 

observing the rotating objects being shown on the screen. 

Meanwhile, the left and right central strip (C3 and C4) are 

believed to be active during visualization of movements. 

Additionally, the frontal lobe (Fz, F3 and F4) is believed to 

be involved in decision making, memory processing and 

attention. Dorsolateral prefrontal cortex (F3) in the frontal 

lobe is also related to aesthetic perception. 

 

B. 16-subject EEG Preference Classification 

In this second study, a number of different classifiers were 

used and as the results show, most of the classifiers performed 

poorly due to inter-subject variability for the EEG-based 

preference classification. As such, we proceeded to include 

deep learning as a potential approach to overcome these poor 

learning outcomes from the commonly found classifiers. 

Ten-fold cross-validation was used to test the different 

algorithms for the classification task. Deep neural networks 

were initialized with 200 hidden neurons with 2 hidden layers 

using the uniform adaptive method [24] for the initialization 

of the weight matrix. The rectified linear activation function 

[25] was used with an adaptive learning rate method [26]. The 

deep neural networks were run for 10 epochs using cross-

entropy as the error function. The deep neural networks were 

tested against 10 state-of-the-art classifiers provided in the R 

package known as “caret” comprising support vector 

machines, random forests, Naïve Bayes, various decision tree 

as well as k-nearest neighbor classification models. The 

default settings for the parameters that were used are as listed 

in the parentheses of the corresponding classifiers. 

Table 5 shows the results of the experimental runs. Based 

on 10-fold cross-validation, only two classifiers were able to 

obtain classification rates of above 60%, with the deep neural 

networks performing the best at almost 64% while the linear 

SVM was only able to achieve 60.19% accuracy. The other 9 

classifiers were only able to achieve classification rates of 

between 56-59% with the radial SVM achieving 59.67% and 

k-nearest neighbor performing the worst at 56.29%. 

As can be seen clearly from this experiment, with a larger 

cohort size of 16 subjects, the inter- and intra-subject 

variability in terms of EEG-based preference classification is 

indeed very significant and resulting in low classification 

accuracy rates. Also shown here is the promise of deep neural 

networks as machine learning algorithms that are able to 

perform better than any of the other 10 commonly used 

classifiers in this highly challenging task. 

In conclusion, we have shown through this systematic and 

Features k Accuracy 

Czγ,C3β,C3γ,C4γ,C4θ,F3β,F3γ,F3δ,F4β,P3α 2 73% 
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comprehensive empirical comparison, deep neural networks 

are a highly promising approach in terms of dealing with 

large-scale EEG datasets that comprise of significant noise 

arising from variations between and within subjects. Further 

investigations into the different deep learning neural network 

activation functions and their corresponding architectures 

would be beneficial in further improving the performance of 

deep learning in EEG-based applications such as preference 

classification.  
 

Table 5 
Classification results for preference classification using ten-fold cross-

validation 

 
Classifier Accuracy 

Deep Net 63.99% 

SVM Linear (C = 1) 60.19% 

SVM Radial (sigma = 0.04, C = 1) 59.67% 
OneR 59.00% 

Adaboost 58.65% 

Random Forest (mtry = 14) 57.74% 

NNet (decay = 0, size = 3) 57.71% 

JRip (NumOpt = 2) 57.21% 

Naive Bayes (usekernel = true,  fl = 0) 56.79% 

C5.0 (type = tree, winnow = true, trials = 1) 56.74% 
kNN (k = 5) 56.29% 

 

V. CONCLUSION 

 
In conclusion, we have shown through this systematic and 

comprehensive empirical comparison; deep neural networks 

are a highly promising approach in terms of dealing with 

large-scale EEG datasets that comprise of significant noise 

arising from variations between and within subjects. An 

initial study using kNN provided sufficiently good results in 

a 10-subject study. However, when expanded to a larger 

cohort size of 16 subjects, the results were not encouraging. 

However, the use of deep learning was able to observably 

overcome some of the difficulties presented by inter-subject 

variability posed by larger cohort sizes in EEG-based 

preference classification. Further investigations into the 

different deep learning neural network activation functions 

and their corresponding architectures would be beneficial in 

further improving the performance of deep learning in EEG-

based applications such as preference classification. 
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