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Abstract— Linear Discriminant Analysis (LDA) is a 

supervised classification technique concerned with the 

relationship between a categorical variable and a set of 

interrelated variables. The main objective of LDA is to create a 

rule to distinguish between populations and allocating future 

observations to previously defined populations. The LDA yields 

optimal discriminant rule between two or more groups under 

the assumptions of normality and homoscedasticity. 

Nevertheless, the classical estimates, sample mean and sample 

covariance matrix, are highly affected when the ideal conditions 

are violated. To abate these problems, a new robust LDA rule 

using high breakdown point estimators has been proposed in 

this article. A winsorized approach used to estimate the location 

measure while the multiplication of Spearman’s rho and the 

rescaled median absolute deviation were used to estimate the 

scatter measure to replace the sample mean and sample 

covariance matrix, respectively. Simulation and real data study 

were conducted to evaluate the performance of the proposed 

model measured in terms of misclassification error rates. The 

computational results showed that the proposed LDA is always 

better than the classical LDA and were comparable with the 

existing robust LDAs. 

 

Index Terms— Linear Discriminant Analysis; 

Misclassification Error Rates; Robust Estimator, 

Winsorization. 

 

I. INTRODUCTION 

 

LDA is a multivariate technique which is apt when the 

dependent variable is a categorical variable and the predictor 

variables are numerical variables. It focuses on separating 

distinct sets of objects into two or more groups and allocates 

new observations to previously defined groups. Generally, 

LDA is the process of constructing rules to assign a new 

individual observation point into one of the known 

populations via discriminant rules. This discriminant rules are 

constructed based on information (such as variables and 

groups) in the training data. Classification is done by 

allocating new observations into this discriminant rule and 

obtaining the group membership to which the new 

observation belongs [1]. A good discriminant rule is when it 

can provide low misclassification error rates. 

The Linear Discriminant Rule (LDR) performs well for 

data that follow normal distribution with identical population 

covariance matrices. However, this rule is deemed unstable 

when any of these assumptions is violated [2]. This is due to 

the fact that the classical estimators, the mean and covariance, 

are known to be sensitive to deviation from the assumptions. 

The performance of the classical estimators can be 

dramatically affected if the data deviate from normality [3]. 

Unfortunately, ideal data set having normal distribution is 

hardly attainable in real life situation. To circumvent this 

problem, some works that are related to the robustness issues 

of LDA are addressed by several authors.  

A number of Robust LDRs (RLDRs) which can deal with 

non-normality have been developed by replacing the classical 

mean and covariance matrix with some robust estimators of 

location and scatter respectively. Robust estimators such as 

M-estimators [4], S-estimators [5, 6, 7], Minimum 

Covariance Determinant (MCD) estimators [5, 8, 9], 

Minimum Volume Ellipsoid (MVE) estimators [10], 

Coordinatewise Trimming (CT) estimators [3], Feasible 

Solution Algorithm (FSA) [11] and automatic trimmed mean 

estimators [12] were used to alleviate the sensitivity problem 

of discrimination analysis rules. However, these robust 

estimators cannot guarantee the precision of the performance 

in all situations. Some estimators are good on certain 

conditions only but perform badly on other conditions.  

In this paper, we propose winsorization approach paired 

with robust covariance matrix in an effort to create a 

discriminant rule that is robust to the violation of 

assumptions. Winsorization is a strategy that pays more 

attention to the central portion of a distribution by 

transforming the tails of the distribution [13]. This 

winsorization approach was chosen based on their great 

performance in constructing robust Hotelling’s T2 control 

chart [14]. This paper is the extended study from Lim, Syed 

Yahaya and Ali [15], which considers RLDR in higher 

dimension and compare the performance (misclassification 

error rates) with RLDR using S-estimator as well as MCD 

estimators.   

The performance of the proposed RLDR was observed 

through simulation and real data. A comparison among the 

classical LDR, existing RLDR with S-estimators, existing 

RLDR with MCD estimators and proposed RLDR was done 

to evaluate the classification efficiency of these rules. This 

study focuses on two-group discrimination problem with 

particular interest in the influence of outliers towards 

classification error. 

This paper is structured as follows. Section II contains a 

brief review of classical LDR and proposed RLDR. Then 

simulation and real data study are described and presented in 

Section III and Section IV, respectively. Finally, the 

conclusion is provided in Section V. 

 

II. LDR 

 

A brief description of a statistical discriminant analysis 

problem is presented in this section. In a two-group 

discrimination problem, suppose that n observations of a 

training data with d-dimensional features where the n 

observations are obtained from two different populations, π1 

and π2, with the corresponding sample sizes, n1 and n2. The 

Classical LDR (CLDR) with plug in method is given in 

equation (1) [16]. 
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where p1 and p2 are the prior probability that an individual 

comes from population π1 and π2 respectively. This CLDR is 

built to be optimal in classifying the new observation x0 under 

the assumptions that π1 and π2 are both multivariate normal 

distributions with different location but equal covariance 

matrices [2]. In particular, π1 and π2 are Nd(µ1, Σ1) and Nd(µ2, 

Σ2) respectively and under the assumption that Σ1 = Σ2 = Σ. 

It is a known fact that this CLDR is not robust. Glèlè Kakaï, 

Pelz and Palm (2010) proved that non-normality and/or 

heteroscedasticity will negatively impacted the performance 

of the CLDR [17]. 

As a solution to the sensitivity of the LDA, a RLDR is 

constructed using robust estimators with highest breakdown 

point. The proposed RLDR used the winsorization approach 

to obtain robust location measure and then paired with the 

robust covariance matrix. A robust location estimator namely 

Winsorized Modified One-step M-estimators (WMOM), is 

proposed in this study. Basically, WMOM follows an 

automatic trimming approach which takes into consideration 

the shape of data distribution during the trimming process. 

This location estimator gives more attention to the centre 

rather than weighted in the tails of a data distribution. Only 

outliers will be trimmed away through this automatic 

trimming approach [12]. However, the trimmed values will 

be then replaced by the lowest and highest remaining data, 

rather than just omitting them. The problem of losing 

information due to trimming process can be reduced since 

winsorization always retain the original sample size. WMOM 

estimate of location for each population can be defined as 

equation (2).  
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where Wij is the winsorization of a random sample. The 

construction of the winsorized sample is based on an 

automatic trimmed mean proposed by Wilcox and Kelseman 

[18], and then follows the winsorization process introduced 

by Wilcox [13]. The detail equation of automatic trimmed 

mean can be referred in Syed Yahaya et al. [12]. Meanwhile, 

the covariance is replaced by the multiplication of spearman 

correlation coefficients (ρ) and rescaled median absolute 

deviation (MADn). The robust covariance matrix is 

represented by equation (3). 
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The robust location (2) and robust covariance matrix (3) 

will replace the classical mean, µ and covariance matrix, Σ, 

to form a new robust discriminant rule denoted as RLDRW. 

 

III. SIMULATION STUDY 

 

Since the main assumptions of LDA are normality and 

homoscedasticity, therefore manipulating a few variables that 

would likely influence the two assumptions is a good way to 

investigate on the optimality of the proposed RLDR against 

the CLDR and the existing RLDRs. The performance in terms 

of misclassification error rate for the proposed RLDRW was 

assessed on various simulation settings and compared to 

CLDR, RLDR with S-estimators and RLDR with MCD 

estimators. Various conditions generated from manipulating 

the variables, which are deemed capable of highlighting the 

strengths and weaknesses of the discriminant rule are 

presented in Table 1. The training data were generated from 

normal distribution, but differ in the means and the shape of 

group populations. The data were contaminated as in equation 

(4). 
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The combination of various variable settings produced 612 

different data distributions (36 uncontaminated, 144 location 

contamination, 144 shape contamination and 288 location 

and shape contamination). The simulation started off by 

generating training samples of the given sizes which were 

used to formulate the discrimination rules. Testing sample of 

size 2000 from each uncontaminated population was then 

generated and the misclassification error rates determined by 

calculating the proportion of misclassified testing sample 

observations in each population. This process was repeated 

2000 times for each condition. 

 
Table 1 

Simulation settings 

 

Variable Settings Parameters 

Dimensions, d 2, 6, 10 

Percentage of Contamination, ε 0, 0.1, 0.2 

Sample Size of Training Data, (n1, n2) (20,20), (50,50), (100, 100) 

Shift in Location of the Populations, μ 0, 3, 5 

Shift in Shape of the Populations, κ 0, 9, 25 

 

Figure 1 presents the average of the misclassification error 

rates for each rule under the clean (uncontaminated) data. The 

misclassification error rates for each rule seem to decrease 

when the dimensional of variables as well as the sample sizes 

increase. In short, all the LDR perform equally well but 

CLDR always provide the lowest misclassification error rates 

in the case of clean data, such that ε = 0, μ = 0 and κ = 0. 

These results concur with the theory that the optimality of 

CLDR can be guaranteed once all the assumptions of LDA 

are met. Figure 1 reveals that all the RLDRs closely follow 

CLDR under different dimensions and sample sizes. 

Moreover, the misclassification error rates of the proposed 

RLDRW are almost overlapping the CLDR across various 

dimensions and sample sizes. The average misclassification 

error rates for each LDR with various simulation conditions 

are recorded in Table 2 – Table 4 
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Figure 1: Average of misclassification error rates for clean data in different dimensions and sample sizes 

 

Table 2 
Average of the misclassification error rates for various linear discriminant rules with d=2. 

ε μ κ 
n1 = 20   n2 = 20 n1 = 50   n2 = 50 n1 = 100   n2 = 100 

CLDR RLDRM RLDRS RLDRW CLDR RLDRM RLDRS RLDRW CLDR RLDRM RLDRS RLDRW 

0.1 3 0 0.3389 0.2621 0.2670 0.2866 0.2960 0.2468 0.2508 0.2646 0.2741 0.2431 0.2455 0.2542 

0.1 5 0 0.4987 0.2577 0.2539 0.2862 0.4986 0.2455 0.2449 0.2658 0.5010 0.2425 0.2424 0.2566 

0.1 0 9 0.3178 0.2579 0.2533 0.2579 0.2759 0.2457 0.2449 0.2472 0.2587 0.2426 0.2423 0.2438 

0.1 0 25 0.4205 0.2577 0.2530 0.2579 0.3863 0.2456 0.2448 0.2474 0.3447 0.2425 0.2424 0.2439 

0.1 3 9 0.3884 0.2578 0.2532 0.2602 0.3610 0.2456 0.2449 0.2487 0.3270 0.2426 0.2425 0.2446 

0.1 3 25 0.4527 0.2577 0.2529 0.2587 0.4441 0.2456 0.2448 0.2479 0.4234 0.2425 0.2423 0.2441 

0.1 5 9 0.4548 0.2581 0.2535 0.2631 0.4732 0.2457 0.2449 0.2502 0.4804 0.2426 0.2424 0.2455 

0.1 5 25 0.4755 0.2577 0.2529 0.2593 0.4870 0.2456 0.2448 0.2483 0.4917 0.2425 0.2423 0.2444 

0.2 3 0 0.5770 0.2870 0.4409 0.4753 0.6202 0.2615 0.4011 0.5297 0.6542 0.2504 0.3698 0.5772 

0.2 5 0 0.6530 0.2562 0.5471 0.4442 0.6911 0.2455 0.5870 0.5179 0.7124 0.2425 0.6150 0.6010 

0.2 0 9 0.3624 0.2560 0.2584 0.2628 0.3055 0.2459 0.2468 0.2499 0.2745 0.2428 0.2433 0.2451 

0.2 0 25 0.4637 0.2552 0.2547 0.2622 0.4277 0.2455 0.2457 0.2499 0.3929 0.2425 0.2427 0.2454 

0.2 3 9 0.5083 0.2559 0.2590 0.2735 0.5334 0.2459 0.2471 0.2561 0.5678 0.2427 0.2434 0.2489 

0.2 3 25 0.5041 0.2550 0.2551 0.2652 0.5062 0.2455 0.2457 0.2515 0.5237 0.2425 0.2427 0.2461 

0.2 5 9 0.6039 0.2561 0.2597 0.2865 0.6795 0.2458 0.2474 0.2665 0.7158 0.2427 0.2435 0.2565 

0.2 5 25 0.5310 0.2551 0.2550 0.2678 0.5590 0.2454 0.2456 0.2530 0.6061 0.2426 0.2427 0.2469 

Unlike in the case of clean data, the misclassification error 

rates of CLDR inflate considerably above the other RLDRs 

when contamination occurs. Across Table 2 to Table 4, the 

result reveals that misclassification error rates have negative 

relationship with dimensional (d) of variables under most of 

the simulation conditions. As the number of variables 

increase, the misclassification error rates decrease. The 

performance of the robust rules; RLDRM, RLDRS and 

RLDRW, are directly affected by the sample sizes. The 

performance of robust rules improves when sample sizes of 

training data increase. Nonetheless, this pattern changes 

when the shift in location for groups differ especially under 

20% contamination. The misclassification error rates for 

RLDRW ranging from 6.66% to 60.10% as compared to 

RLDRM (6.59% to 52.80%) and RLDRS (6.42% to 62.70%). 

Although the range for the proposed RLDRW is wider than 

RLDRM but it is narrower than RLDRS, not to mention the 

range for the CLDR is 10.78% to 76.69%. 

At d = 2 and ε = 0.1, although RLDRM and RLDRS seems 

to perform better than RLDRW irrespective of shift in location 

and/or shape, the disparities among these robust rules are 

quite small, that is not more than 0.04. When number of 

variables d increases to 6, combined with shift in location, the 

performance for RLDRM is the best followed by RLDRW and 

RLDRS. Overall, RLDRM produces constant 

misclassification error rates irrespective to the contamination 

percentage, shift in location and/or shape for n1 = n2 = 50, 

100. Besides, RLDRS also yields almost constant 

discrimination performance at n1 = n2 = 50, 100 with 10% 

contamination, but not including the cases of location 

contamination. This pattern continues at d = 10 for both 

RLDRM and RLDRS. Meanwhile, RLDRW performs well 

with smaller misclassification error rates at most of the 

conditions for small sample sizes, n1 = n2 = 20 with d = 10 

and ε = 0.2. 
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Table 3 

Average of the misclassification error rates for various linear discriminant rules with d = 6 

ε μ κ 
n1 = 20   n2 = 20 n1 = 50   n2 = 50 n1 = 100   n2 = 100 

CLDR RLDRM RLDRS RLDRW CLDR RLDRM RLDRS RLDRW CLDR RLDRM RLDRS RLDRW 

0.1 3 0 0.3915 0.1670 0.3394 0.2733 0.3286 0.1277 0.2612 0.2123 0.2740 0.1175 0.2069 0.1759 

0.1 5 0 0.4998 0.1587 0.3927 0.2758 0.5004 0.1277 0.3516 0.2184 0.4991 0.1174 0.3170 0.1855 

0.1 0 9 0.2108 0.1584 0.1452 0.1529 0.1812 0.1277 0.1230 0.1276 0.1505 0.1175 0.1164 0.1189 

0.1 0 25 0.2543 0.1584 0.1446 0.1535 0.2696 0.1277 0.1230 0.1280 0.2252 0.1174 0.1164 0.1192 

0.1 3 9 0.2679 0.1584 0.1453 0.1631 0.2757 0.1277 0.1230 0.1338 0.2414 0.1174 0.1164 0.1224 

0.1 3 25 0.2655 0.1584 0.1445 0.1557 0.3288 0.1277 0.1230 0.1298 0.3142 0.1174 0.1164 0.1201 

0.1 5 9 0.3253 0.1584 0.1449 0.1754 0.3809 0.1277 0.1230 0.1412 0.4000 0.1175 0.1164 0.1267 

0.1 5 25 0.2783 0.1584 0.1445 0.1581 0.3812 0.1277 0.1230 0.1313 0.4072 0.1174 0.1164 0.1210 

0.2 3 0 0.5365 0.2874 0.5214 0.4659 0.5611 0.1329 0.5293 0.5070 0.5866 0.1176 0.5380 0.5399 

0.2 5 0 0.5668 0.1719 0.5575 0.4436 0.6101 0.1256 0.5917 0.4896 0.6526 0.1175 0.6270 0.5459 

0.2 0 9 0.2514 0.1487 0.1878 0.1603 0.1980 0.1256 0.1368 0.1321 0.1587 0.1175 0.1205 0.1212 

0.2 0 25 0.3613 0.1486 0.1723 0.1607 0.3534 0.1256 0.1250 0.1327 0.2921 0.1175 0.1173 0.1218 

0.2 3 9 0.3933 0.1487 0.2173 0.1842 0.4948 0.1256 0.1438 0.1507 0.5381 0.1175 0.1217 0.1330 

0.2 3 25 0.4204 0.1486 0.1769 0.1657 0.4977 0.1256 0.1250 0.1366 0.5044 0.1175 0.1173 0.1242 

0.2 5 9 0.4956 0.1486 0.2502 0.2167 0.6776 0.1256 0.1508 0.1805 0.7669 0.1175 0.1217 0.1554 

0.2 5 25 0.4625 0.1486 0.1807 0.1711 0.5911 0.1256 0.1249 0.1407 0.6490 0.1175 0.1173 0.1266 

 
Table 4 

Average of the misclassification error rates for various linear discriminant rules with d = 10 

ε μ κ 
n1 = 20   n2 = 20 n1 = 50   n2 = 50 n1 = 100   n2 = 100 

CLDR RLDRM RLDRS RLDRW CLDR RLDRM RLDRS RLDRW CLDR RLDRM RLDRS RLDRW 

0.1 3 0 0.4202 0.1692 0.4064 0.3042 0.3629 0.0791 0.3270 0.2214 0.3102 0.0661 0.2620 0.1675 

0.1 5 0 0.4996 0.1179 0.4839 0.3076 0.5003 0.0790 0.4756 0.2321 0.4995 0.0661 0.4601 0.1829 

0.1 0 9 0.1421 0.1112 0.1155 0.1089 0.1426 0.0790 0.0724 0.0765 0.1078 0.0661 0.0642 0.0666 

0.1 0 25 0.1521 0.1112 0.1114 0.1095 0.2256 0.0790 0.0724 0.0769 0.1745 0.0661 0.0642 0.0668 

0.1 3 9 0.1979 0.1112 0.1360 0.1256 0.2392 0.0790 0.0724 0.0856 0.2223 0.0662 0.0642 0.0720 

0.1 3 25 0.1616 0.1112 0.1135 0.1132 0.2563 0.0790 0.0724 0.0789 0.2549 0.0661 0.0642 0.0681 

0.1 5 9 0.2581 0.1112 0.1563 0.1460 0.3294 0.0790 0.0725 0.0982 0.3637 0.0662 0.0642 0.0799 

0.1 5 25 0.1747 0.1112 0.1158 0.1171 0.2869 0.0790 0.0724 0.0810 0.3404 0.0662 0.0642 0.0694 

0.2 3 0 0.5237 0.5046 0.5197 0.4643 0.5436 0.1438 0.5311 0.4967 0.5616 0.0664 0.5413 0.5231 

0.2 5 0 0.5432 0.5280 0.5409 0.4431 0.5787 0.0749 0.5713 0.4777 0.6115 0.0659 0.5997 0.5220 

0.2 0 9 0.1977 0.1277 0.1503 0.1175 0.1470 0.0747 0.1004 0.0806 0.1083 0.0659 0.0706 0.0692 

0.2 0 25 0.2575 0.1309 0.1447 0.1180 0.2858 0.0747 0.0987 0.0814 0.2469 0.0659 0.0653 0.0698 

0.2 3 9 0.3049 0.1498 0.2022 0.1535 0.4063 0.0747 0.1333 0.1067 0.4972 0.0659 0.0737 0.0865 

0.2 3 25 0.2798 0.1336 0.1474 0.1252 0.4314 0.0747 0.1019 0.0866 0.4937 0.0659 0.0653 0.0731 

0.2 5 9 0.3826 0.1796 0.2573 0.2003 0.5863 0.0747 0.1778 0.1501 0.7423 0.0659 0.0763 0.1219 

0.2 5 25 0.3030 0.1395 0.1566 0.1338 0.5366 0.0747 0.1072 0.0920 0.6630 0.0659 0.0653 0.0770 

 

Generally, the simulation study indicates that the robust 

rules outperform CLDR. The performance for all robust rules 

are quite equivalent except under location contamination. 

Their differences in misclassification error rates are small, i.e. 

not more than 0.08. Under the location contamination, 

RLDRM provides the lowest misclassification error rate 

which slightly outperforms RLDRW. Meanwhile, RLDRS 

shows the worst performance among the three robust rules 

under the influence of location contamination. 

An advantage of RLDRW over RLDRS and RLDRM is the 

computational time. The average computational time (in 

seconds) for each LDR with d = 2, 6, 10 are presented in 

Figure 2 to Figure 4, respectively.  

On average, the computing time for RLDRW is very much 

smaller than RLDRS and RLDRM for all the investigated 

conditions. Although the computational time for CLDR is the 

lowest among all the models, the performance in terms of 

misclassification error rates of CLDR is the worst when 

contamination occurs. 
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Figure 2: Average computational time (in seconds) for each LDR with d = 
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Figure 3: Average computational time (in seconds) for each LDR with d = 6 
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IV. REAL DATA STUDY 

 

Real data was also used to evaluate the optimality of the 

proposed RLDRW. All the discriminant rules were tested 

using the real data items namely bank level, profit and loss of 

banking institutions to classify financially distressed and non-

distressed banking institutions in Malaysia. The financial data 

were extracted from selected balance sheet in the annual 

report of 27 commercial banks from year 1988 to 1999. 

Among the 27 commercial banks, 17 of them are classified as 

non-distressed bank while 10 are classified as distressed 

bank. Two independent variables, namely ratio of total 

shareholder’s fund to total assets (CA) and ratio of total 

shareholder’s fund to total equity (EQ) were used to capture 

variation in financial crisis. Table 5 displays the results of 

normality test for both variables in each group and the results 

indicate that normality assumption is violated when p-value 

< 0.05.  
Table 5 

Results of the Lilliefor normality test 

 

Group 
p-value 

CA EQ 

Distress 0.0066 0.0214 

Non-distress 0.1321 0.0011 

 

Two types of error rates, Apparent Error Rate (AER) and 

estimate error rate using leave-one-out Cross Validation (CV) 

were calculated to evaluate the performance of each rule and 

documented in Table 6. The real data results indicate that the 

proposed RLDRW, existing RLDRS and RLDRM are able to 

detect and eliminate outliers, then provide smaller 

misclassification error rates as compared to the CLDR. 

Moreover, the proposed RLDRW and the existing RLDRM 

which produce similar results are found to be the best with 

smallest misclassification error rates via AER as well as CV. 

The findings from the simulation and real data study prove 

that the proposed RLDRW is able to provide a comparable or 

sometimes better performance in classification problems. 

 
Table 6 

Misclassification error rates for the each discriminant rule 

 

Discriminant Rules AER CV 

CLDR 0.1111 0.1111 

RLDRS 0.0741 0.1111 

RLDRM 0.0370 0.0741 

RLDRW 0.0370 0.0741 

 

V. CONCLUSION 

 

In this paper, winsorization approach was used to eliminate 

the outliers of the data and then paired with robust covariance 

to form a robust discriminant rule, RLDRW, in order to 

alleviate the sensitivity problem in classification. The 

simulation and real data study show that the proposed 

RLDRW is comparable or sometimes better when compared 

to the existing RLDRS, not to mention the CLDR. The 

proposed RLDRW produces low misclassification error rates 

as well as computational time. Thus, the findings suggested 

that RLDRW can be an alternative to solve the classification 

problems even under the influence of non-normality and 

various cases of contamination in data sets. In general, this 

study will contribute towards knowledge development in 

classification problems especially when dealing with 

supervised data. Frequent users of LDA are aware that the 

LDR depends on assumption of normality. However, in the 

real world, data are not always normally distributed. 

However, with this new finding, researchers will not be 

constrained to the assumption of normality and can instead 

work with the original data without having to worry about the 

shape of the distributions and still be able to achieve accurate 

and appropriate classification rule, thus safeguarding the 

quality of the end results. 
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