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Abstract—Previously numerous equations were developed 

using conventional methods to estimate vegetal drag coefficient 

by treating submerged and emergent vegetation independently, 

there is need to derive a generalized relationship that can be 

applied irrespective of the vegetation submergence with respect 

to flow depth. In this regard, the present study uses artificial 

neural network (ANN) as an advanced tool for prediction of 

drag coefficient in flexible vegetated channels. The training and 

testing patterns of the proposed ANN model were based on 

experimental results from the field and laboratory studies that 

combined both the submerged and emergent grass. A functional 

relation based on flow parameters and vegetation properties was 

derived through the use of dimensional analysis. The ANN 

model developed herein showed significantly better results in 

several model performance criteria when applied for 

verification. 

 

Index Terms—Artificial Neural Network; Dimensional 

Analysis; Drag Coefficient; Flexible Vegetated Channels. 

 

I. INTRODUCTION 

 

The flow resistance in open channel are usually derived from 

the viscous and drag force over the wetted perimeter [1]. This 

drag is categorized into three comprising – soil grain 

roughness, form roughness, and vegetative roughness. The 

vegetation drag is the most significant compared to others, as 

it has the utmost flow resistance that eventually decreases the 

average flow in vegetated channels [2, 3]. Thus, this will lead 

to rise in flow depth and residence time of sediments in the 

channel due to drag of vegetation [4]. Drag coefficient is an 

important parameter, this is because the drag enhanced the 

tendency for trapping, deposition, and stabilization of 

sediments, and its increases flow resistance and decreases the 

bed shear stress, which results in reduction of bed load 

transport capacity and erosion rate. Several procedures were 

proposed by researchers to model flow - vegetation 

interactions and sediment transport in open-channel [5-10]. 

Also, vegetation-induced drag force has been systematically 

studied by Kothyari, Tang, Wu and others [1, 11, 12]. 

However, with these investigations, it was deduced that there 

are discrepancies for the derivations of vegetation drag which 

necessitate for a general formula in evaluation of drag 

coefficient [13]. In addition, conventional regression has been 

used to develop mathematical equations in estimating 

hydraulic variables, such as drag coefficient, in vegetated 

channels. This approach of regression was found to either 

over or under-estimate the hydraulic variables. Thus, for a 

better and accurate predictions, soft computing techniques 

such as artificial neural network (ANN) are nowadays 

employed in water resources engineering to estimate 

hydraulic and hydrologic variables [14-16].  

Therefore, the main objective of this paper is to develop 

ANN model that will compute the vegetal drag coefficient in 

natural grassed channels irrespective of the grass 

submergence in relation to flow depth. Thus, field and 

laboratory experiments were conducted to collect hydraulic 

data to establish the ANN model.  

 

II. FUNCTIONAL RELATIONSHIP 

 

A functional relationship was formulated based on the 

criteria of Wu et al. [1],  Tang et al. [11], Kothyari et al. [12] 

and Wilson et al. [17] that the drag coefficient CD is depended 

on Reynolds number Rh, vegetation density, λ measured as 

per unit meter; submergence ratio S, and length of vegetation 

reach, Lv. Also, theoretically, CD depends on the channel 

slope, So. Thus, CD could be expressed as follows:  

 

𝐶𝐷 = 𝑓(𝑅ℎ, 𝜆, 𝐿𝑣 , 𝑆, 𝑆𝑜) (1) 

 

It follows that (1) can be expressed as (2) based on 

dimensional homogeneity: 

 

𝐶𝐷 = 𝑓′(Rℎ, 𝜆𝐿𝑣 , 𝑆 𝑆𝑜⁄ ) (2) 

 

The value of Rh , can be determined based on the vegetation 

height, hv [11] as expressed by (3): 

 

𝑅ℎ =
𝑉ℎ𝑣
𝜈

 (3) 

 

Also, the submergence ratio, S, can be expressed as follows 

[11]:  

 

𝑆 =
ℎ

ℎ𝑣
 (4) 

 

And the vegetation density, λ, based on the idea of Xia and 

Nehal (2013): 

 



Journal of Telecommunication, Electronic and Computer Engineering 

100 e-ISSN: 2289-8131   Vol. 10 No. 1-12  

𝜆 =
𝐴𝑣

𝑉𝑤
 (5) 

 

where, hv, = vegetation height, h is the water depth, Av = Area 

of vegetation, Av = B*Lv, B = width of the channel and Vw  = 

volume of water, Vw= Av*h. 

However, CD is determined depending on whether the 

vegetation is emergent or submerged condition. For the case 

of emergent vegetation (6) is used, while for the case when 

the vegetation was submerged (7) was applied: 

 

𝐶𝐷 =
2. 𝑔. 𝑆𝑜
𝑈2𝜆

 (6) 

𝐶𝐷 = (
𝐻

ℎ𝑣
)
2. 𝑔. 𝑆𝑜
𝑈2𝜆

 (7) 

 

where, U is the mean velocity of flow (m/s), g = gravity 

constant (m2/s), H = depth of water above the vegetation.  

 

III. DEVELOPING THE ARTIFICIAL NEURAL NETWORK 

 

ANN is a powerful mathematical modelling tool that has 

the ability to process complex input-output relationships, 

similar to the human brain [17]. This means ANNs are based 

on the concepts of biological nervous system [18]. They are 

mostly applied to predict or forecasting the value of an output 

(depended variable) based on known values of independent 

variables in an input layer, particularly where the 

relationships between these variables are not simple linear.  

Levenberg - Marquardt (LM) back propagation algorithm 

was used in training the network. This is because LM is an 

effective training algorithm for training smaller networks 

[19]. The algorithm uses Newton method that approximate 

the network error using second order relationship. To execute 

the process, program algorithm of the LM was developed 

using Matlab version 2015a, where the values of CD, was set 

as the target, while Rh, λ.Lv and S/So were set as the input as 

expressed by (2). The ANN model for predicting the value of 

CD, the optimum number of hidden neuron was selected to be 

11 for best performance. 70% of the experimental data set 

was randomly selected for training the ANN model network. 

The remaining 30% of the data set were used for model 

validation and testing. 

The performances of the regression equation and ANN 

were evaluated using the statistical parameters like 

coefficient of determination (R2) and mean square error 

(MSE). 

 

IV. EXPERIMENTAL PROCEDURE  

 

A. Field Data Acquisition  

Figure 1 shows the study area which is located at Universiti 

Sains Malaysia (USM) Engineering Campus, Nibong Tebal, 

Penang, Malaysia. In USM three basic types of swale can be 

distinguished as Type A, Type B and Type C swales with 

single, double and triple subsurface modules respectively 

[20]. However, hydraulic and hydrologic data were obtained 

in grassed swale Type B in this study. All hydraulic data were 

obtained using an installed automatic flow meter (American 

Sigma InSight 4.200), this flow meter recorded the flow level 

(depth), velocity and discharge at every 15 minutes interval. 

The swale has a bed slope of 1 in 500. The average grass 

height in the swale varied from 25 to 40 mm. Axonopus 

Compressus commonly known as Cow grass was used within 

the channel bed of the swale Type B, where the grass may be 

submerged or unsubmerged depending on the flow depth and 

the grass height. This grass was chosen been commonly 

available in Malaysia which is currently adopted in the 

ecological swale of USM for the management of runoff. The 

technical details of swale components have been discussed by 

Ghani et al. [20]. Also, using the techniques of surveying the 

average cross-sectional area of the grassed swale was 

determined as presented in Figure 2. 

 

 
 

Figure 1: Flow through the Grassed Swale Type B 
 

 
 

Figure 2: Cross Section of Swale Type B 

 

B. Laboratory Experiments 

Experiments were conducted in a concrete channel of 

working dimension 12 m x 1.5 m x 1 m, at the physical 

modelling laboratory of River Engineering and Urban 

Drainage Research Center (REDAC), Universiti Sains 

Malaysia. The overall length of the channel is 16 m and 

comprises inlet sump, test flume and the outlet sump. Figure 

3 shows test channel with Cow grass planted over a length of 

10 m, under a bed slope of 1 in 1000. A grass height of 50 

mm was maintained throughout the experiments. Three (3) 

different flow depths of y = 0.15 m, y = 0.20 m and y = 0.40 

m, were used to create flow over the grass under submerged 

condition. Flow velocity was measured using Acoustic 

Doppler Velocimeter (ADV). Velocity distributions were 

determined at five (5) different vertical points, measured 

along 7 – cross sections, starting from the inlet 3.0 m, 4.5 m, 

5.5 m, 6.0 m, 6.5 m, 8.5 m and up to 11.5 m, respectively. At 

each vertical point, 8 different depths were measured in 

fractions of the flow depths, that is, 0.2y, 0.25y, 0.3y, 0.4y, 

0.5y, 0.6y, 0.7y and 0.8y, respectively. Hence, average 

vertical velocities were calculated and used for developing 

the ANN model. 
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Figure 3. Laboratory test channel 

 

V. RESULTS AND DISCUSSION 

Figure 4 and 5 show the respective readings obtained in 

grassed swale Type B for the flow depth, and velocity 

variations due to different rainfall events in September 2009. 

The readings were taken continuously at 15 minutes intervals 

using the automatic flow meter. 

 

 
 

Figure 4: Variation of Flow Depth with Rainfall Events for September 2009 
 

 
 

Figure 5: Variation of Flow Velocity with Rainfall Events for September 

2009 

 

Using the above data in Figures 4 to 5, Figures 6 and 7, 

were produced to indicate the relationship between the CD 

with Rh and S.  From this figure, it shows that the drag CD, has 

a fair correlation coefficient because it combines both 

submerged and unsubmerged vegetation. However, the 

correlation coefficient for CD versus S was quite high, 

indicating strong relationship. 

 

 

 

 
 

Figure 6: Variation of Drag Coefficient with Reynolds Number for Grassed 

Swale 
 

 
 

Figure 7: Variation of Drag Coefficient with Submergence Ratio for 

Grassed Swale 

 

While Table 1 shows the hydraulic flow parameters 

obtained for the laboratory experiments. Using this table, 

Figure 8 was plotted to illustrate the respective variations of 

CD with Reynolds number, Rh.  From this figure, it shows that 

the drag CD with Rh as the correlation coefficient R2 is more 

than 80%.  These results obtained under laboratory conditions 

are approximately similar to the earlier results presented for 

the grassed swale selected for field study that combines both 

the submerged and unsubmerged vegetation. However, the 

laboratory experiment was mainly focused only on 

submerged vegetation. 
 

Table 1  

Summary of laboratory flow parameters 
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Figure 8: Variation of Drag Coefficient with Reynolds Number for 

Laboratory Experiment 
 

VI. ANN MODELLING OF VEGETATIVE ROUGHNESS 

 

Table 2 illustrates the summary of statistical analysis for 

the prediction of the ANN model with R2 value close to unity. 

It follows that ANN model performed very good in predicting 

the drag coefficient of both submerged and emergent 

vegetation respectively using published data of Cantalice et 

al. [21], to serve as verification of the developed ANN model. 
 

Table 2 

Summary of statistical analysis on for Drag Coefficient Prediction by 

ANN 
 

 
MSE Mean Square Error; R2 Coefficient of Determination 

 

VII. CONCLUSION 

 

The results obtained from this study show that the drag 

coefficient depends on the Reynolds number, vegetation 

density and submergence ratio. The drag coefficient, CD, 

generally decreases with increase in vegetation density and 

Reynolds number, whereas it increases with increase in the 

grass submergence. The ANN model developed shows 

excellent performances when applied for verification, 

irrespective of the grass submergence with the flow depth. 
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