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Abstract—Most evolutionary based classifiers are built based 

on generated rules sets that categorize the data into respective 

classes. This research work is a preliminary work which 

proposes an evolutionary-based classifier using a simplified 

Cartesian Genetic Programming (CGP) evolutionary algorithm. 

Instead on using evolutionary generated rule sets, the CGP 

generates i) a reference coordinate ii) projection functions to 

project data into a new 3 Dimensional  Euclidean space. 

Subsequently, a distance boundary function of the new 

projected data to the reference coordinates is applied to classify 

the data into their respective classes. The evolutionary 

algorithm is based on a simplified CGP Algorithm using a 1+4 

evolutionary strategy. The data projection functions were 

evolved using CGP for 1000 generations before stopping to 

extract the best functions. The Classifier was tested using three 

PROBEN 1 benchmarking datasets which are the PIMA Indians 

diabetes dataset, Heart Disease dataset and Wisconsin Breast 

Cancer (WBC) Dataset based on 10 fold cross validation dataset 

partitioning. Testing results showed that data projection 

function generated competitive results classification rates: 

Cancer dataset (97.71%), PIMA Indians dataset (77.92%) and 

heart disease (85.86%). 

 

Index Terms—Cartesian Genetic Programming (CGP); 

Evolutionary-based Classifier; Clustering.  

 

I. INTRODUCTION 

 

Evolutionary-based classifiers have been applied in various 

methods. Although Artificial Neural Network (ANN) and 

Support Vector Machines (SVM) have dominated the 

classification algorithm research, the full potential of 

evolutionary classifier can be further explored. Most 

evolutionary classifier uses a set of Bayesian rules to classify 

into either of the classes. The advantage of rule-based 

classifier is that it is easily readable and transferable to other 

platform as it is not as complex compared to ‘black box’ 

classifier such as Back propagation Neural Network. Rule-

based classifier could (but not necessarily) be lighter in terms 

of computation power consumption as compared to SVM or 

Neural Network although training using Evolutionary 

Strategy (ES) would take more time to generate the rule 

functions. The rule-based classifier can also be highly 

complex equation but also as simple a function with two 

operands dependant on the data set. Thus, this makes it ideal 

for application in embedded systems power due to portability, 

readability of classifier rules and possibly lower 

computational cost.  

An ideal classifier algorithm would also be required to have 

feature pruning capabilities to eliminate noisy and non-

discriminating features. This may be a universal advantage 

for most evolutionary rule-based classifier as ES generates 

the functions based on selected features. The objective of this 

paper is to introduce and evaluate a new type of feature 

creation and projection mechanism for binary classification 

using Cartesian Genetic Programming (CGP) by projecting 

the feature data into new Euclidian space and classify based 

on Euclidean distance from selected point.   

This paper will be organized as follows: Section 2 of this 

paper will discuss some of the research work relevant to this 

research.  Section 3 will briefly explain the algorithms and 

parameters setting. The results of training and testing on 

benchmarking datasets are shown and discussed in Section 4. 

Lastly, the conclusion and future work are discussed in 

Section 5. 

 

II. LITERATURE REVIEW 

 

In this section, several related works and the fundamental 

concepts of these methods will be briefly discussed. CGP is a 

form of Genetic Programming or evolution based generation 

of computer programs/ functions which uses a directed graph 

to represent a program/function. Each node in the program 

represents a module of the program/function. CGP was 

initially proposed to be a solution finding algorithm for 

electronic circuit in [1] but was later expanded to other 

problem [2]. Variations of CGP such as the SMCGP [3] and 

Embedded CGP [4] were later proposed showing faster 

solution finding on benchmark problems. Due to the 

capability of CGP to be able to generate complex function, it 

has been applied to generate Artificial Neural Networks 

(ANN) [5] and other classification functions using generated 

rule sets.  CGP may be used to generate complex functions 

by mutating the chromosome and therefore suitable to be 

applied in generating complex classification rules.  Unlike 

conventional genetic algorithm, CGP does not apply 

crossover functions in as they were shown not contributing to 

solution finding. Hence, only mutation function was applied, 

most commonly a 1+ n mutation strategy as discussed in [1].    

Various Feature dimension reduction algorithms have been 

proposed in various research works. Principal Component 

Analysis (PCA), Independent Component Analysis (ICA) 

and Multidimensional Scaling (MDS) are several methods 

that are often applied for feature dimension reduction. MDS 

is a type of non-linear data projection in which the distance 

of the original high dimension feature space is preserved.  

PCA is a linear projection method that finds orthogonal 

combination of input feature space which accounts for most 

variation in the data.  

These feature reduction methods are usually combined 

with clustering algorithms or Bayesian algorithms that 

classifies the projected data sets in either of the class.  The 
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research work in [6] applied MDS with genetic algorithm for 

projection onto a lower dimension data. For classification 

purposes, [7] applied MDS with SVM as the classification 

algorithm. The results yielded feasible solutions using 

benchmark datasets.  

A similar concept of using a spherical method to bound 

data was developed in [8] as Support vector Data Descriptor 

(SVDD). The method is known to be a single class training 

set, i.e. only the target set is required for training.  This is 

highly useful for dataset with highly unbalanced dataset or 

only the target class is available. The algorithm defers from 

SVM where a plane is used to separate the target and outlier 

class. In SVDD, a spherical boundary is used to classify the 

classes of data.  

 

III.   METHODOLOGY 

 

Three datasets are used as benchmark test for the 

evolutionary classifier which is the cancer datasets, heart 

disease dataset, and Pima Indian Diabetes dataset. These 

benchmark datasets are usually used to gauge performance of 

classifiers specifically neural networks. The details can be 

found in [20].  The datasets are tested on 10 fold cross 

validation which means 90% of the data are applied for 

training procedure and 10% is reserved for testing. The 

details of the classifier are shown in Table 1. As shown, the 

dataset contains missing values. The missing values are 

replaced with 0. Various research works have excluded the 

missing value instances from training and testing. However, 

for this research work, all the instances will be included to 

test the robustness of the algorithm with regards to noisy data. 

The values are normalized using min-max normalization 

where values are normalized to [0, 1] 

 
Table 1 

Details of benchmark test sets 
 

Dataset No. of Features Instances Missing values 

Cancer 9 699 Yes 

Diabetes 8 768 Yes 
Heart Disease 35 920 Yes 

 

Similar to conventional CGP, the algorithm does not 

include crossover and only involves the 1+4 mutation 

strategy. The equations for each dimension were generated 

based on 100 nodes where each node represents two inputs 

and a function operator. The key parameters are shown in 

Table 2. 

 
Table 2 

Key parameters in CGP 

 

Parameters Value 

Maximum generations 1,000 
Crossover No 

Mutation 1+4 Strategy 

Chromosome value [1,300] 
Chromosome length 1507 

 

The chromosome segment is represented by the 

chromosome vector, v 𝜖[1,300]. For each instances of the data 

set, a new projected coordinate is generated (xm,ym,zm) are 

generated by decoding from the chromosome. The cluster 

centroid point (xt,yt,,zt) is generated from the chromosome, v 

segments as shown in Equation 2 to 5. The first 300 segments 

of v represent the function and the two input. The subsequent 

200 segments of the chromosome vector v are decoded into 

weightage coefficient that is multiplied to the input.  Table 3 

show the list of functions and their respective operands where 

w1 and w2 represents the weightage to the dataset input.  

 

xm= function (v1 ,….,v500,  f1,…fn) (1) 

xt=v501 (2) 

ym= function (v503 ,….,v1003, f1,…fn) (3) 

yt=v1004 (4) 

zm= function (v1006,….,v1506, f1,…fn) (5) 

yt  =v1507 (6) 

Ox= v502 (7) 

Oy= v1005 (8) 

Oz= v1507 (9) 

 

where fn represents the normalized dataset values, (xt,yt,,zt) 

represents the cluster centroid, (xm,ym,zm) represents the 

projected coordinates and Ox Oy Oz  represents the selection of 

the output from the node chain in the respective dimension.  

A node of 100 in CGP represents the length of allowable 

function equation. Similar to the original CGP proposed in 

[1], three types of inputs were decoded as operand to the 

functions as shown in Table 3. The three types of inputs are 

constants, dataset values and output from previous nodes. The 

types of inputs are decoded from the chromosome vector 

values by using look up approach in which certain range 

corresponds to either of the input types. Figure 1 shows the 

functions generated from a section of the node chain for a 

single dimension. Nodek  is a section of the equation where 

the operands are the nth feature value in a dataset instance 
〈𝑓1 … … . 𝑓𝑛〉. The output of Nodek is fed back to Nodek+1 

as second input after multiplying with the second weightage 

coefficient, w2. Ox which is decoded from the original 

chromosome vector v decides the segments of the node chain 

as the output. 

The chromosome vector integer value is decoded into the 

function, various nodes output reference using the directed 

cyclic graph system where the values are continuously 

subtracted with a threshold until a valid range is obtained.  

 

 
 

Figure 1: Equation generation from various node chain 

 

The CGP equations project the features into new features 

spaces. A spherical boundary is introduced from the three 

dimensional coordinate (xt,yt,,zt,). If the projected features lie 

within the boundary (0.5 from the cluster centroid), it will be 

classified as target. The Euclidean distance from the cluster 

centroid coordinate (xt,yt,zt) is expressed in Equation 10.  

 

𝑑𝑚 = √(𝑥𝑚 − 𝑥𝑡)2 + (𝑦𝑚 − 𝑦𝑡)2 + (𝑧𝑚 − 𝑧𝑡)2   (10) 

 

where xm, ym, zm,  are the generated values from the CGP 

generated projection functions and xt, yt, zt are the selected 

reference coordinate. dm represents the distance of new 

projected coordinates of instances m in the normalized  

dataset values.  
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The outlier/target class is determined by the following, if 

(dm>=0.5), then the features will be classified as the target 

class. Else, the features will be classified as outlier class.  

Table 3 shows the functions, function arity and the equivalent 

function number that may be applied to each node as 

previously depicted in Figure 1. As shown, 12 function 

operators were introduced and their respective integer 

representation.  For the unary operation, the second integer 

(int2) will be ignored. 12 integers represent the operators as 

shown in the third column of Table 3. For unary functions, 

only the first input is considered.  

 
Table 3 

Function Operator 
 

Function Arity 
Integer 

representation 

(w1*int1)+(w2*int2) Binary 1 
(w1*int1)-(w2*int2) Binary 2 

(w1*int1)*(w2*int2) Binary 3 

(w1*int1)/(w2*int2) Binary 4 
Exp (w1*int1) Unary 5 

-(w1*int1) Unary 6 
(w1*int1)2 Unary 7 

√(w1 ∗ int1) Unary 8 

Cos(w1*int1) Unary 9 

Sin (w1*int1) Unary 10 
Min(w1*int1, w2*int2) Unary 11 

Max(w1*int1, w2*int2) Unary 12 

w1 and w2 are the multipliers to the input (int1 and int2) 

 

The mutation of the CGP is based on a simplified mutation 

scheme. The CGP algorithm decides which segment of the 

chromosome vector v to be mutated based generation of 

enabler vector v in which v1 is a randomly generated 

precision numbers [0,1] of the same length as chromosome 

vector v. The chromosome segment v is only replaced with a 

random integer value [1,300] if the enabler v1 segment is 

above a specified range. In all the testing for this research, a 

value threshold value of 0.95 is determined to ensure minimal 

mutation. Figure 2 shows the overall pseudocode for the 

evolutionary algorithm using the 1+4 mutation strategy. 

 

 

 
 

Figure 2: Pseudocode for the proposed CGP 

 

The fitness score for optimisation is the sensitivity 

*specificity ratio as shown in Equation 11.  

 

𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
∗  

𝑇𝑁

(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 (11) 

 

where TP is true positive sets, TN is true negative sets, FP is 

false positive and FN is the false negative sets. 
 

 

IV. RESULTS 

 

The projection and classification are performed using ten-

fold cross validation (90% of the instances for training and 

10% of the instances for testing). The algorithm stops running 

and assumes the best solution after 1000 generations. The 

CGP is ran for ten times and the average is the average for all 

the testing /training classification rates. Table 4 shows the 

classification rate of the algorithm on the three benchmark 

datasets. It is noteworthy that the partitioning of the testing 

and training dataset is different in some of the research work 

and thus a direct comparison might not be applicable. Some 

research works eliminate instances with the missing value. 

The average values are from acquired by calculating the mean 

of the recognition rate from 10 set of optimisation for each 

data set.   

Results on the Benchmark test (Table 5 to 7) showed the 

testing results were competitive as compared to the other 

benchmarking results. Among the three benchmarking 

datasets, the heart disease dataset contained the highest 

number of missing data but gave the best results as compared 

to the others. However, the average testing for this dataset is 

at 80.212% which showed that there is there is high variance 

among the ten sets of function generations (solution finding).   
 

Table 4 

Results of training and testing 

 

Best/average training and testing rates (%) 

Dataset 
Best 

training 

Best 

testing 

Average 

Training 

Average 

testing 

Cancer 96.97 97.71 96.19 94.85 
Diabetes 80.36 77.92 73.45 71.07 

Heart Disease 77.53 85.86 76.56 80.21 

 

Benchmarking is performed by comparing the results with 

other algorithms. Table 5 to 7 shows the benchmarking with 

other research work. 

 
Table 5 

Benchmarking of current work with other research work on Wisconsin 
Breast Cancer dataset 

 

Method Accuracy % 

Radial Basis Function Networks [10] 49.8 

Probabilistic Neural Networks [10] 49.8 

ANN (Back Propagation) [10] 51.9 

Recurrent Neural Network [10] 52.7 
Competitive Neural network [10] 74.5 

Support Vector Machine [11] 1 96.9 

Memetic Pareto ANN [12] 98.1 
ANN (Back Propagation) [12] 98.1 

Genetic Programming [13] 2 98.2 

Support Vector Machine [14] 2 98.4 
MT-CGP [9] 99.3 

Data projection using CGP(best) 97.71 

 

Table 6 
Benchmarking of current work with other research work on Pima Indians 

Diabetes dataset 
 

Method Accuracy % 

Self-generating Neural Tree (SGNT) [15] 68.6 

Learning Vector Quantization (LVQ) [15] 69.3 
1-Nearest Neighbor [15] 69.8 

Self-generating Prototypes (SGP2) [15] 71.9 

Linear Genetic Programming [16] 72.2 
k-Nearest Neighbor [15] 72.4 

Self-generating Prototypes (SGP1) [15] 72.9 

Gaussian mixture models [15] 72.9 
Neural Network [16] 75.9 

Infix Form Genetic Programming [17] 3 77.6 

-Start with initial values of 1 for all vector segment v  

- initialize Previous_best=1 

Repeat for 1:1000  

-Generate enabler vector v1 

-mutate using 1+4 mutation strategy  
-for i=1:1507, if (v1 (i)>=0.95, replace all alternative solutions  v(i) 

with rand(1,300).  

-Decode and calculate the score value based on CGP 
The solution with highest score=current_best 

-if (current_best>previous best solution) 

Previous_best<-Current_best  

end 
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Method Accuracy % 

Support Vector Machine [18] 2 77.6 

Principal Curve Classifier [19] 78.2 
MT-CGP [9] 79.2 

Data projection using CGP (best) 77.92 

 
Table 7 

Benchmarking of current work with other research work on Heart disease 

dataset 
 

Method Accuracy % 

Neural Network [20] 80.3 

Linear GP [16] 81.3 
Support Vector Machine [18] 83.2 

Infix Form GP [17] 84.0 

MT-CGP [9] 85.3 
Data projection using CGP (best) 85.86 

 

1. Results are based on leave-one-out validation 

2. Results are based on ten fold validation 

3. This paper does not use the pre-defined training 

and validation split 

 

 

V. CONCLUSION AND FUTURE WORK  

 

The proposed algorithm produced feasible results that are 

comparable with other algorithms as shown in the 

benchmarking results. More research can be applied to 

improve the classification by changing the various range of 

the chromosome. More exploration can be applied to optimise 

the classification algorithm by applying different 

chromosome range, initial value and different evolutionary 

algorithms such as ant colony optimisation, Cuckoo Search 

and even Gradient Descent.    

The research in this work can be extended by projection in 

multiple dimensions (hyper dimensions). This may contribute 

to better classification but could also cause a bloating 

problem (solutions that are overly or unnecessarily complex).   

Increasing the number of nodes will provide more parameters 

for tuning in the classification development and can be 

extended to a probabilistic output rather than just a discrete 

output.  It is noteworthy to highlight that increasing the 

dimensions of data projection also increases complexity in 

the solution searching and ultimately it’s a trade-off situation 

to get the optimal number of dimensions. 

It is also desirable to explore various classification method 

apart from the bounding and clustering method. This research 

work can be extended to using a linear function to separate 

the classes and may even be extended to multiclass 

classification.   

In conclusion, this preliminary work on this classifier based 

on CGP data projection showed that the method is worth 

further exploration based on results in Table 4 to 7.  The 

preliminary results achieved using a simplified CGP without 

the application of only mutating the active nodes. More 

complex versions of CGP such as ECGP and SMCGP can 

also be tested with more datasets.  
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