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Abstract—Pearson correlation coefficient is the most widely 

used statistical technique when measuring a relationship 

between the bivariate normal distribution when the assumptions 

are fulfilled. However, this classical correlation coefficient 

performs poor in the presence of an outlier. Therefore, this 

study aims to propose a new version of robust correlation 

coefficient based on robust scale estimator Sn. The performance 

of the proposed robust correlation coefficient is assessed based 

on correlation value, average bias and standard error. The 

performance of the proposed coefficient is compared with the 

classical correlation together with the existing robust 

correlation coefficient.  Classical correlation coefficient 

performs well under the condition of perfect data. However, its 

performance becomes worst when data is contaminated. Under 

the condition of data contamination, robust correlation 

coefficient performed better compared to classical correlation.    

 

Index Terms—Average Bias; Outlier; Robust Correlation 

Coefficient; Sn Estimatot. 

 

I. INTRODUCTION 

 

Bivariate normal distribution consists of two random 

variables that are normally distributed and let indicate it as Xi 

and Yi where i = 1, 2, 3…n is an observation from it. The 

parameters for the bivariate normal distribution are (µx, µy, 

σx², σy²). The mean of x and y are represented by µx and µy 

meanwhile the variance of x and y represented by σx² and σy². 

The correlation coefficient denoted by ρ summarises the 

association between bivariate data.   

Correlation is measured by a statistic called the correlation 

coefficient, which aims at characterising the strength of the 

association between two variables. It is a dimensionless 

quantity that takes a value in the range of -1 to 0 to +1, where 

no units involved. The strength of the relationship can be 

anywhere between -1 to +1. The stronger the correlation, the 

closer the correlation coefficients comes to ±1.  

The most frequently used correlation coefficient among 

practitioners is the Pearson correlation coefficient. This 

coefficient is very powerful when there is a linear relationship 

between the two variables and the distribution is normally 

distributed. However, when there is the existence of outlier, 

normal distribution usually deviates, and this will reduce the 

capability of the Pearson correlation coefficient to measure 

the strength of the relationship. An outlier is an observation 

in a sample that deviates markedly from the other observation 

[1]. The distortion that caused by the existence of the outlier 

tends to mislead the interpretation of the relationship between 

variables. Thus, the nonparametric method is one of the 

solutions for this problem. Nonparametric correlation 

coefficients such as Spearman rank correlation coefficient 

and Kendall’s tau correlation coefficient is the coefficients 

that are suitable to use under non-normal data. Despite that, 

these coefficients performance is not as good as the Pearson 

correlation coefficient when data is normally distributed with 

the linear relationship because of the usage of rank values 

instead of the original observations.  

To handle the presence of an outlier in the bivariate data, 

besides using the nonparametric procedure, the robust 

approach also can be considered. The robust statistical 

procedures have been promoted as alternatives to solve 

parametric methods that did not meet the assumptions [2, 3]. 

Robust correlation coefficients were also developed as 

options to the Pearson correlation coefficient [4, 5]. 

 

II. LITERATURE REVIEW 

 

Pearson correlation is the most widely used as a parametric 

technique to measure the strength of the relationship between 

two variables due to its simplicity in the calculation and the 

excellent performance when data is normally distributed with 

a linear relationship. However, this coefficient suffers from 

the existence of outlier [4, 5, 6, 7]. For example, if there is a 

positive relationship between two variables, this coefficient 

unable to detect the relationship if there is only one outlier 

presence. Since Pearson’s correlation is sensitive to the 

outlier, therefore many researchers realise the necessity in 

robust counterparts of the sample correlation coefficient. 

In 1990, a robust correlation coefficient with a high 

breakdown point based on the least median of squares (LMS) 

regression procedure was proposed [4]. This robust 

correlation coefficient based on least median squares (LMS) 

as an estimator provide a higher breakdown point than the 

existed correlation coefficient. However, the LMS produced 

a bad result when there are errors in normally distributed data. 

It also tends to give unrealistically value for correlation 

coefficients whether high or low [5].  For instance, if the 

correlation between two variables exists with the only 

moderate relationship, the LMS correlation coefficient tends 

to provide the very high value of the relationship. As an 

alternative to overcome this problem, [4] proposed robust 

correlation coefficient using weighted least squares by 

combining the LMS estimator with M-estimator  
During 2011, a new version of robust correlation 

coefficient based on the median using scale estimator median 

absolute deviation (MAD) was proposed and known as 

Median-Product (MP) correlation coefficient [8]. They 

replaced the mean in classical correlation coefficient into the 

median and used MAD in this coefficient calculation. 

However, MAD consists of a few drawbacks. Firstly, this 

estimator has low efficiency, which is 37% at the Gaussian 

distribution and secondly, MAD only view a dispersion of 

symmetric distribution [9]. The advantage of this robust 

correlation coefficient is that it requires less computing time 

when compared with the existing robust estimators that have 

been proposed. 

The application of MAD in the equation can be improved 

to another robust scale estimator so that this robust correlation 
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coefficient can perform better. Thus, motivated by their work, 

this study aims to extend the robust correlation coefficient by 

applying a robust scale estimators namely Sn [9]. This 

estimator possesses the high breakdown point which is 50% 

and more efficient under the normality assumption. 

 
III. RESEARCH METHODOLOGY 

 

This topic focuses on developing a new robust version of 

correlation coefficient based on the Sn as robust scale 

estimator. The performance of this proposed procedure will 

be evaluated based on the value of the correlation, standard 

errors and average bias from the simulation study. 

  

A. Proposed Robust Correlation Coefficient 

The sample correlation coefficient commonly denoted by r 

is the Pearson correlation coefficient as given in Equation (1). 
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Where 

xi = ith observation of variable x 

 yi = ith observation of variable y 

 �̅� = the mean of variable x 

 ȳ = the mean of variable y 

 

Another version of robust correlation coefficient has been 

proposed and known as Median-Product (MP) correlation 

coefficient [8]. The equation for this robust correlation 

coefficient is obtained as in Equation (2). 
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Another robust scale estimator can improve the application 

of MAD in the calculation of this coefficient. Therefore, in 

this study, we propose robust correlation coefficient with the 

implementation of Sn as the scale estimator. The robust 

correlation coefficient using this estimator will be named as 

Sn product correlation coefficient, )( )( pSnr . The equation for 

this coefficient is given in Equations (5) to (8).  
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Based on the Equation (8), the observation for each i, the 

median for  njxx ji ..., ,3 ,2 ,1;   is calculated. This step 

will provide n median that will be used in as the final estimate 

for Sn. To obtain the Sn value, the n median will be multiplied 

with median and to get the stability and consistency of the Sn, 

the product of n median with median is multiply with the c 

[9]. The value of constant c is 1.1926. 

 

B. Data Generation & Sample Size 

The performance of the proposed procedure was 

determined with simulation study by using SAS/IML Version 

9.4 [10] generator RANGEN.  Random observations of 

bivariate data will be generating by following the previous 

study [4], and the ρ is set to 1. Data will be generated based 

on sample sizes 25, 100 and 400 [8]. The condition of this 

bivariate data is divided into two. The first condition is the 

uncontaminated or perfect data and the second condition is 

contaminated data. For perfect data, the random data is 

generated with the linear relation of: 

 

𝑦𝑖 = 2.0 + 1.0𝑥𝑖 + 𝑢𝑖 (9) 

 

The observations for xi is normally distributed along with 

given; N(5,1). For ui, the data also normally distributed with 

N(0,0.04). For the contaminated data where the outlier is 

present, the data is gradually contaminated with the 

percentage of 10%, 30%, and 50%. The contaminated data 

will be generated from the linear relation where yi is normally 

distributed with N(2, 0.04), plus xi  is uniformly distributed 

with parameter [5,10]. 

 

C. Simulation Study 

To evaluate the performance of the proposed coefficient 

correlations, 200 datasets will be simulated, and three 

indicators will be employed that are average of estimates, 

standard errors and average bias [8]. Three correlation 

coefficients will be evaluated and compared in this study. 

Those coefficients are: 

1. Pearson correlation coefficient (r)  

2. Median product correlation coefficient (rm(p))  

3. Sn product correlation coefficient (rSn(p))  

 

The average of estimates will be calculated by finding the 

average of the value of the correlation coefficients. The closer 

the value of the correlation coefficients that acquire from the 

simulation study to 1, the better the performance of the robust 

correlation coefficients. Following the simulation study in 

[4], the value of the correlation coefficients will close to 1 

when the data is uncontaminated due to the original value of 

ρ=1. Whereas, the computation procedure for standard error 

can be calculated by Equation (10). 

 

n

s
SE   (10) 

 

Where 

s = standard deviation 

                               n = sample size 

 

Meanwhile, the process to calculate average bias is by 

calculating the average of the difference between the outcome 

value of correlation coefficients in this study with the value 

of correlation coefficient that had been set in the simulation 
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which is ρ=1. The smaller the value of average bias, the 

performance of the robust correlation is better. 

 
IV. RESULTS AND DISCUSSION 

 

The performances of the robust correlation coefficient 

together with the classical correlation coefficient in this study 

are evaluated through the contamination of the data. The first 

condition of the simulated data, the data had been set to ρ=1 

with the absence of outlier. This simulated data is called 

perfect data. Meanwhile, the second condition of the 

simulated data is called contaminated data. The simulated 

data is gradually contaminated with the percentage of 10%, 

30% and 50%. 

 

A. The Performance of the Robust Correlation 

Coefficient Based on Coefficient Value 

The result of the performance of robust correlation 

coefficient plus classical correlation coefficient in term of the 

value of coefficients is portraying in Table 1. The 

performance of the coefficients is better when the value of 

correlation coefficients is closer to 1. This condition is due to 

the value of the ρ=1 that have been set for the simulated data. 

For perfect data, when n=25, 100 and 400, the best result 

comes out from classical correlation coefficient which is 

Pearson correlation coefficient (r) with the value of 

coefficient equal to 0.9990, 0.9990 and 0.9992. Under the 

same conditions, Sn product correlation coefficient ( )( pnrS ) 

gives the weakest value of coefficients which are 0.5082, 

0.5314 and 0.4842 respectively. 

The performance of proposed robust correlation coefficient 

and the classical correlation coefficient is continued by 

evaluating the value of the coefficient in the contamination 

stage of the simulated data. The simulated data is 

contaminated into three part of percentage which are 10%, 

30% and 50%. By referring to Table 1, in the 10% of the 

contaminated data, all sample sizes show that the outcome of 

rm(p) correlation coefficient is the best which is 0.8399, 0.6431 

and 0.5762, respectively. Sn product correlation coefficient (

)( pnrS ) provides better correlation values compared to the 

classical correlation. 

However, when the simulated data is 30% contaminated, 

most of the coefficients deteriorate and provides the negatives 

value of coefficients. Classical correlation performs better 

compared to the others followed by median product 

correlation coefficient (rm(p)) under all sample sizes. During 

50% of contamination of the simulated data, Pearson 

correlation coefficient (r), still shows good performance 

compared to robust correlation coefficients. However, for 

n=400, Sn product correlation coefficient ( )( pnrS ) displays 

good performance compared to classical correlation, and 

median product correlation coefficient with r=-0.6293 event 

thought it produced the less value of the coefficient during the 

early stage of contamination.  

 

B. Average Bias and Standard Error Value of Classical 

and Robust Correlation Coefficient for Perfect Data 

The performances of the robust correlation coefficient and 

the classical correlation coefficient also measured regarding 

average bias and standard error. The performance of the 

coefficient is better when the value of average bias is low. A 

good coefficient is distinguished when the value of the 

standard error is closer to 0. The average bias and standard 

error for the three coefficients are displayed in Table 2 to 

Table 5. Table 2 displays the average bias and standard error 

for perfect data.  

 
Table 1 

The Coefficient Value Under Perfect and Contaminated Data 
(n=25,100,400 and ρ=1) 

 

Correlation Coefficients 

Data Sample 
sizes 

r rm(p) )( pnrS  

Perfect Data 25 0.9990 0.9811 0.5082 

 100 0.9990 0.9220 0.5314 
 400 0.9992 0.9800 0.4842 

Contaminated  25 -0.1386        0.8399 0.4097 

Data (10%) 100 -0.2763 0.6431 0.3175 

 400 -0.1712 0.5762 0.2656 

Contaminated  25 -0.6885      -0.2490       -0.1025 

Data (30%)     100 -0.5289 -0.0540 -0.0076 

 400 -0.4846 -0.0540 -0.0243 

Contaminated  25 -0.7320       -0.4406      -0.2235 
Data (50%)     100 -0.6102 -0.4718 -0.4266 

 400 -0.5892 -0.0977 -0.6293 

 
Table 2 

The Average Bias and Standard Error of Classical Correlation and Robust 

Correlation in the Perfect Data (n=25,100,400) 
 

Correlation 

coefficient 
n=25 n=100 n=400 

Ave. 

Bias 

Std 

error 

Ave. 

Bias 

Std 

error 

Ave. 

Bias 

Std 

error 

r 0.0008 0.0000 0.0008 0.0000 0.0008 0.0000 
)( pmr  0.0055 0.0024 0.0032 0.0016 0.0024 0.0011 

)( psnr  0.0025 0.0025 0.0023 0.0027 0.0026 0.0024 

 

By referring to Table 2, the classical correlation coefficient 

which is Pearson correlation coefficient yields the best value 

of average bias and standard error for perfect data.  When n = 

25, 100 and 400, the value of average bias for Pearson 

correlation coefficient is the lowest which is 0.0008. 

Meanwhile, the value of standard error for Pearson 

correlation coefficient ( r ) also the lowest which is 0.000 for 

all sample sizes. Sn product correlation coefficient ( )( pnrS ) 

give the lower value of average bias compared to median 

product correlation coefficient (rm(p)) under small and 

medium sample sizes and on par with each other under large 

sample size.   

The performance of the classical correlation coefficient 

with robust correlation coefficient is continued being 

observed under the contamination of the data. Table 3 

presents the result of average bias and the standard error of 

the classical correlation coefficient and robust correlation 

coefficient under 10% contamination. Based on Table 3, 

median product correlation coefficient (rm(p)) gives the lowest 

value of average bias for all sample sizes. The value of 

average bias is 0.5092, 0.4286 and 0.4217. Meanwhile, 

Pearson correlation coefficient produced the largest average 

bias for all sample sizes. In the meantime, Sn product 

correlation coefficient ( )( pnrS ) gives the lowest value of 

standard error compared to the other two coefficients.  

The performance of average bias and standard error for 

classical correlation coefficient and robust correlation 

coefficient are compared with 30% contamination of the data 

as shown in Table 4. Sn product correlation coefficient ( )( pnrS

) provides the lowest value of average bias and standard error 

for all conditions. Despite that, the performance of Pearson 

correlation coefficient in terms of average bias and standard 

error is still the worst.  
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Table 3 
The Value of Average Bias and Standard Error of Classical Correlation and 

Robust Correlation in the 10% Contamination of Data (n=25,100,400) 

 
Correlation 

coefficient 
n=25 n=100 n=400 

Ave. 

Bias 

Std 

error 

Ave. 

Bias 

Std 

error 

Ave. 

Bias 

Std 

error 

r  1.2037 0.0148 1.1201 0.0078 1.0991 0.0040 
)( pmr  0.5092 0.0118 0.4286 0.0060 0.4217 0.0026 

)( psnr  0.8148 0.0048 0.7622 0.0030 0.7552 0.0014 

 
Table 4 

The Value of Average Bias and Standard Error of Classical Correlation and 
Robust Correlation in the 30% Contamination of Data (n=25,100,400) 

 
Correlation 

coefficient 
n=25 n=100 n=400 

Ave. 

Bias 

Std 

error 

Ave. 

Bias 

Std 

error 

Ave. 

Bias 

Std 

error 

r  1.5348 0.0082 1.4876 0.0051 1.4880 0.0024 
)( pmr  1.0995 0.0060 1.0580 0.0036 1.0679 0.0019 

)( psnr  1.0387 0.0023 1.0236 0.0015 1.0278 0.0008 

 
During the 50% contamination of data, the performance of 

classical correlation coefficient together with robust 

correlation coefficient is poor in term of average bias and 

standard error. 50% contamination of data means that half of 

the data is an outlier and affecting the other half of clean data.  

Thus, the result of average bias and standard error for the 

three coefficients in this study is unsteady. Table 5 indicates 

the result of three coefficients based on average bias and 

standard error indicators.   
 

Table 5 
The Value of Average Bias and Standard Error of Classical Correlation and 

Robust Correlation in the 50% Contamination of Data (n=25,100,400) 

 
Correlation 

coefficient 
n=25 n=100 n=400 

Ave. 

Bias 

Std 

error 

Ave. 

Bias 

Std 

error 

Ave. 

Bias 

Std 

error 

r  1.5943 0.0077 1.5838 0.0037 1.5749 0.0018 
)( pmr  1.4245 0.0151 1.5468 0.0154 1.6771 0.0108 

)( psnr  1.2173 0.0073 1.4531 0.0039 1.5064 0.0033 

 

Referring to the Table 5, Sn product correlation coefficient 

( )( pnrS ) has the lowest value of average bias while Pearson 

correlation coefficient has the largest average bias. Regarding 

the standard error, )( pnrS gives the lowest value of standard 

error for n=25 while r has the lowest value of standard error 

for n=100 and 400.  

 

V. CONCLUSION 

 

Real datasets usually contain a fraction of outliers and other 

contaminations. The classical correlation coefficient such as 

Pearson’s product moment correlation coefficient r is much 

affected by the outliers and often gives misleading results. 

Robust methods are designed to consider the majority of the 

data rather than all the data. Therefore, robust methods give 

reasonable results even when data contain a fraction of 

outliers. To achieve robustness and computational efficiency, 

we proposed a new robust estimator of correlation. The 

classical estimator of correlation uses non-robust estimator 

mean and standard deviation as the building blocks. In this 

study, we construct the new robust correlation coefficient by 

replacing these non-robust estimators with their robust 

counterpart Sn.  

 Under the condition of perfect data, classical correlation 

performs the best. However, its performance becomes worst 

when data are contaminated. Regarding the correlation value, 

the performance of Sn product correlation coefficient is less 

compared to median product correlation coefficient. 

However, regarding average bias and standard error, Sn 

product correlation coefficient performs better compared to 

the others in most of the condition under study. 
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