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Abstract—Most MFCC based speech recognition algorithms 

employ frame segmentation to divide a signal into fixed-size 

frames as the first step prior to MFCC feature extraction. 

Commonly used fixed frame sizes, around 20-40 ms, do not 

usually fit into complete periods of speech signals. Consequently, 

in MFCC feature extraction, spectral leakage arises after 

Discrete Fourier Transform is applied to these fixed-size 

intervals resulting in smeared spectra and reduced speech 

recognition performance. In this paper, a pitch-based speech 

signal segmentation to reduce spectral leakage is proposed by 

utilizing a new technique of pitch detection based on Short-time 

Energy Waveform (SEW) to yield segmented speech intervals 

with complete periods. The proposed method utilizes local 

minima of SEW as markers for pitch segmentation. After 

segmenting speech signals into pitches, MFCC feature vectors 

are extracted and subsequently used as raw data for speech 

recognition using artificial neural networks. Speech recognition 

experiments using artificial neural networks, applied to collect 

Thai language speech signals from 40 speakers, were conducted. 

Empirical results indicate that speech recognition using speech 

signals segmented into pitches yields more accurate recognition 

results than those using speech signals segmented into a fixed 

frame. 

 

Index Terms—Short-time Energy Waveform (SEW); Pitch 

Segmentation; Spectral Leakage; Mel-Frequency Cepstral 

Coefficients (MFCC). 

 

I. INTRODUCTION 

 

Today, as the number of computers employed to perform 

human assistant tasks has been vastly increased, speech 

recognition has become more and more important because 

speech is a fundamental and convenient method for human-

computer intercommunication. Besides improving a 

computer’s hardware performance, a speech recognition 

accuracy can simply be increased by improving voice feature 

extraction [1-2] mapping voice signals into feature vectors 

with much smaller sizes while maintaining the important 

information essential for task recognition. Harmonic 

component analysis using Mel-Frequency Cepstral 

Coefficients (MFCC) is a well-known and widely used 

method of voice feature extraction due to its capability for 

representing voice data that, in nature, has high uncertainty. 

In general, the first step of traditional MFCC based speech 

recognition starts with segmenting a voice signal into 

overlapped frames of fixed and equal size, normally around 

20 - 40 milliseconds. In this method, it is assumed that, using 

an appropriate frame size, there are very few changes to 

statistic values in consecutive frames over a period of time. 

Therefore, the information extracted from segmented frames 

is suitable for speech recognition application. Next, the 

segmented frames are multiplied by smoothing windows [3] 

such as Hanning, Hamming Triangular, and Rectangular 

windows to produce convoluted spectra in the frequency 

domain. After that, subsequent speech segments are collected 

into the MFCC extraction process to obtain MFCC vectors 

for later use by speech recognition tools such as artificial 

neural networks (ANN) [4]-[6] or hidden Markov models 

(HMM) [7], [8]. To improve speech recognition performance, 

several techniques emphasize on the modification of learning 

models, such as increasing the number of nodes and layers, 

for instance, deep recurrent neural networks [9], and 

improving training algorithms, for instance, ANN with 

competitive learning algorithm [10] and a neural-fuzzy 

network trained by using an enhanced genetic algorithm [11]. 

In most papers, MFCC data extracted using a traditional 

method is assumed to be sufficient for speech representation 

and hence improvement of the MFCC extraction method is 

usually neglected. Nevertheless, in general, when a frame size 

does not match the period of a periodic signal, spectrum 

leakage, as well as undesired phase shift in consecutive 

frames, occurs [12]. A difficulty of speech signal processing 

arises from the nature that a speech signal is not an exact 

periodic signal, but a quasiperiodic signal which means that 

pitch lengths may vary slightly along a speech signal length. 

Therefore, fixed-frame segmentation used in a traditional 

MFCC extraction method, applied to a speech signal which is 

a quasiperiodic signal, can cause spectrum leakage which, 

subsequently, will reduce overall speech recognition 

performance. Popular methods for reducing spectral leakage 

employ multiplication between frames and a smoothing 

window to reduce the effects of the end points of a signal 

segment [13, 14]. However, all windowing methods cause 

unavoidable spectrum blurring as a result of window 

multiplication in the time domain corresponding to 

convolution in the frequency domain. To reduce frequency 

leakage and hence improve MFCC based speech recognition 

performance, this paper proposes a new pitch-based speech 

signal segmentation strategy that can effectively reduce the 

spectral leakage of speech signal segments. First, frequency 

leakage is explained in Section 2. Next, pitch detection and 

pitch-based speech segmentation methods based on short-

time energy waveform (SEW), are introduced in Section 3. 

Frequency analysis of speech segmentation results are 

obtained using a new pitch-based segmentation algorithm and 

those obtained using traditional fixed frame segmentation are 
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given in Section 4. In Section 5, experimental results are 

compared between the speech recognition performances of 

ANNs using MFCC vectors extracted using pitch-based 

segments and fixed frame segments as inputs. Finally, 

Section 6 provides concluding remarks. 
 

II. SPECTRAL LEAKAGE 

 

Let )(nx  be a discrete-time sampled signal of length N

points obtained using a sampling frequency sf , and )(kX be 

the discrete Fourier transform (DFT) )(nx . Then, the 

corresponding frequency of the kth point of )(kX is equal to

Nkf s , and a frequency resolution of )(kX , i.e., the 

difference between corresponding frequencies of consecutive 

points of )(kX , is given by Nff s . This means that for

)(nx obtained by sampling a continuous-time sinusoidal 

signal )(tx with frequency, Nkff 00  where Nk, are 

integers, ,2Nk  )(kX will contain only a single frequency 

component at the kth point, i.e., all energy of )(nx will be 

confined in the kth point of )(kX  corresponding to frequency

0f , and thus there is no frequency leakage. In other words, 

when the condition sNTkT 0 is met, i.e., the total sampling 

time, sNT , is equal to a k -multiple of a period, 00 1 fT 

,there is no frequency leakage in )(kX as shown in Figure 1, 

where 0f =10 Hz, 0T =0.1 Sec, Hz , sf =1,000  samples/Sec, 

sT =0.001 Sec, N =300 points and k =3 periods.  

In the case where the condition sNTkT 0 cannot be met, 

frequency leakage will occur as a result of no corresponding 

frequency component Nkf s  of  )(kX exactly matching 0f  

causing the energy at 0f  to spread to nearby frequency 

components of  )(kX  as illustrated in Figure 2, where  0f

=10 Hz, 0T =0.1 Sec, Hz , sf =1,000 samples/Sec, sT =0.001 

Sec, and N =350 points. In order to explain the cause of 

frequency leakage, a signal )(nx of length N points can be 

obtained by multiplying an infinite-length sampled version of

)(tx with a rectangular window of length N points. Since, in 

the discrete-time Fourier transform (DTFT), window 

multiplication in the time domain is equivalent to convolution 

in the frequency domain between the DTFT of a window and 

that of a signal. As a result, DTFT of  )(nx is obtained by 

convolution between the DTFT of a rectangular window [3] 

and that of an infinite-length sampled version of )(tx resulting 

in an undesired, broadened spectrum and ripples. Later, 

)(kX , the DFT of )(nx , is achieved by sampling the DTFT 

of )(nx at corresponding frequencies 1,...,0,  NkNkf s  

when sNTkT 0 , the kth point of  )(kX with the 

corresponding frequency Nkf s  will take a sample at the 

center of the main lobe of the DTFT of )(nx , while other 

points of )(kX will take samples at zero crossings of the 

DTFT of )(nx resulting in a DFT with no frequency leakage. 

On the other hand, when sNTkT 0 , points of )(kX that are 

located neither at the center of a main lobe, nor zero crossings 

but on lobes of the DTFT of )(nx results in frequency leakage 

in DFT. 

 

 
Figure 1: )(nx obtained by sampling )20sin()( ttx   at  

sf =1,000 samples/Sec for 300 points and the corresponding DFT 

Magnitude )(kX without frequency leakage   

 

 
Figure 2: )(nx obtained by sampling )20sin()( ttx  at sf

=1,000samples/Sec for 350 points and the corresponding DFT Magnitude 

)(kX with frequency leakage   
 

In summary, in order to prevent frequency leakage in DFT, 

generally, for a periodic signal containing harmonics with a 

fundamental frequency 0f and fundamental period 00 1 fT   

the condition sNTkT 0  must be retained, i.e., the total 

sampling time, sNT , must be equal to a k -multiple of 0T . 

Therefore, with a traditional fixed frame speech segmentation 

method, widely used as the first step of MFCC extraction, 

there is a high possibility that a frame size does not match the 

period of the speech signal causing spectral leakage in DFT. 

Windowing techniques [3, 14] extensively used to reduce 

frequency leakage do not actually solve the frequency 

leakage problem, instead mitigate the problem by smearing 

the spectrum. In addition, although, the problem of frequency 

leakage in harmonic analysis has been thoroughly 

investigated [3], since the introduction of MFCC for speech 

processing [15-17], the effect of frequency leakage on speech 

recognition performance has never been addressed. In 

contrast, since a speech signal is a quasiperiodic signal, 

segmentation by complete periods or pitches of the signal is 

more suitable to reduce frequency leakage. In this paper, a 

new approach which effectively reduces the problem of 

spectral leakage by utilizing pitch detection in speech signal 

segmentation process is developed. 
 

III. PITCH BASED SPEECH SEGMENTATION 
 

In speech processing, pitch refers to quasi-repetitive 

patterns occurring in speech waveforms as illustrated in 

Figure 3. Pitch detection is used for locating pitches or 

estimating the fundamental frequency of a periodic signal. 

Traditionally, techniques based on detecting the local 

maxima of an autocorrelation function (ACF) [18], widely 

used for pitch detection, are prone to noise. In addition, real 
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time speech processing involving pitch detection, to be 

accomplished in a short time, cannot be done using 

computationally exhaustive ACF. YIN [19] algorithm is an 

improved ACF-based pitch detection method for addressing 

the problem of false peaks due to sub harmonic components. 

Nevertheless, in the YIN method, there is still a limitation of 

pitch detection in the transient stages of a speech signal at the 

beginning and end of voices [20]. In this paper, a new 

technique for pitch detection based on Short-time Energy 

Waveform (SEW), defined in [21], which is able to handle 

the problem of sub harmonic peaks, as well as detecting 

pitches in transient intervals of a speech signal, is introduced.  

 

 
 

Figure 3: A speech signal, pitches, and pitch duration 

 

A short-time energy waveform (SEW) is defined as the 

energy of windowed signal segments as a function of time: 

 

 


W

i
inxnE

0

2 )()(  (1) 

 

where W is the window size. 

In Equation 1, from the view point of frequency domain 

analysis, summation acts as low pass filtering while power-

of-2 operation results in frequency subtraction between 

constituent frequency components of )(nx . As a result, in 

SEW, a fundamental frequency component can be 

emphasized by the power-of-2 operation, and high frequency 

components are suppressed by the summation operation. The 

advantage of using SEW for detecting fundamental frequency 

is that it is computationally simple and can work with most 

periodic signals. The cases where SEW can probably not be 

used for detecting fundamental frequency components are 

trivial cases where )(nx is a single frequency sinusoid or 

cases where )(nx contains no consecutive harmonic 

components.  

Figure 4 demonstrates a speech signal sampled using a 

sampling frequency of 22500 samples/sec and its 

corresponding power spectrum, SEW obtained using 

Equation 1 with W=300 points and the power spectrum of 

SEW. Obviously, a peak corresponding to a fundamental 

frequency of the signal can clearly be seen in Figure 4d. To 

calculate SEW, a window size, W, must be chosen 

appropriately since, in Equation 1, summation acts similarly 

to a moving average filter with its bandwidth inversely 

proportional to the window size. Therefore, if W is too small, 

complex peaks due to high frequency components will occur 

in the SEW while if W is too large, the SEW will be over 

smoothed as a result of a low pass filter with a narrow 

bandwidth. Therefore, to choose an appropriate value of W, 

W is initialized using a large number, in this paper, 300 

points. Then, the fundamental frequency 0f of a speech 

signal is estimated by determining a frequency associated 

with the largest peak, excluding the peak corresponding to a 

DC component, of a power spectrum of SEW. Later, W is 

chosen to be a proportion of a fundamental period 0T , i.e., 

sTTcW 0 where 10  c , in this paper, W = sTT /5.0 0 . 

Later, in order to obtain an appropriate SEW, the SEW is 

recomputed using a new value of W. 
 

 
Figure 4: A speech signal, SEW and corresponding power spectra 

 

For pitch analysis, as seen in Figures 4a and 4c, local 

extrema of SEW inherently synchronize with pitches. Thus, 

detection of pitches can be done by locating pitch marker 

features, such as local minima or local maxima of SEW. In 

this paper, to detect pitch markers, a simple local minimum 

searching algorithm, using a search window of size M points 

performed on SEW is used. However, determining the local 

minima of SEW can be cumbersome or it can even skip some 

local minima if M is too large. On the other hand, if M is too 

small, spurious local minima may be detected. In this paper, 

M is chosen to be equal to W, the window size for computing 

SEW. Figure 5 illustrates an enlarged graph of the speech 

signal in Figure 4a plotted along with its corresponding SEW 

and pitch detection results. 

  

 
 

Figure 5: An original speech signal, SEW and detected pitch markers based 

on SEW 
 

IV.  FREQUENCY ANALYSIS OF SPEECH SEGMENTS 

 

After all pitches are detected, prior to DFT computation and 

MFCC extraction, speech segmentation can be done using 

locations of detected pitch markers. To obtain high resolution 

DFTs, the length of speech segments must be large enough so 

that each segment may cover several pitches. Figure 6(a) 

illustrates 36 speech segments of a length of approximately 5 

pitch duration of the speech signal in Figure 5, obtained using 

the proposed pitch based segmentation in comparison with 

those in Figure 6(b), obtained using traditional fixed frame 

segmentation with a frame size of 22.3ms (490 samples). To 

prevent abrupt changes of speech segment data, all segments 

are multiplied with the Hamming window, and segments 

obtained using the proposed algorithm are set to overlap 

adjacent segments by about 4 pitches, while those obtained 
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using a fixed frame segmentation are set to overlap adjacent 

segments by about 17.6ms (384 points). As can be seen, the 

speech segments in Figure 6(a) are less chaotic than those in 

Figure 6b. 

To demonstrate the effect of frequency leakage, Figures 

7(a) and (b) show the power spectra of speech segments 

obtained using the proposed pitch based method and a fixed 

frame method, respectively. In Figure 7(a), since the lengths 

of the speech segments obtained using the pitch based method 

are slightly varied, a frequency variable of each power 

spectrum graph is scaled to be in the same frequency range. 

As seen, in both Figures 7(a) and (b), the peaks of power 

spectra are slightly shifted, but the peaks of the power spectra 

of the pitch based segments in Figure 7(a) are narrower than 

those of the fixed frame segments in Figure 7(b). Harmonic 

analysis results in terms of the means and variances of 

detected fundamental and harmonic frequencies are shown in 

Table 1. It is clear that the fundamental and harmonic 

frequencies obtained from the power spectra of pitch based 

segments have less variation than those obtained from the 

power spectra of fixed frame segments, which means that 

spectral leakage can be reduced by using pitch based 

segmentation.  

 

 
 

Figure 6: Speech segments, multiplied by the Hamming window, obtained 

using a) pitch-based segmentation with 5 pitch duration and b) fixed-frame 
segmentation with a frame size of 22.3ms. 

 

 
 

Figure 7: Power spectra of speech segments in Figure 6: a) Pitch based 

segments and b) fixed frame segments. 

 
Table 1 

Means and variances of 210 ,, fff and 3f estimated from power spectra 

of pitch based segments and fixed frame segments. 
 

  0f  1f  2f  3f  

Mean 
Pitch frame 213.167 429.752 641.823 859.986 

Fix frame 217.860 431.986 651.092 870.198 

Variance 
Pitch frame 52.174 431.785 1022.564 4333.263 

Fix frame 247.085 706.187 1547.874 5552.261 

 

 
 

Figure 8: The power spectra of the pitch based speech segments plotted 
according to DFT index. 

 
Table 2 

Means and variances of DFT indices of power spectrum peaks 

corresponding to 210 ,, fff and 3f of pitch based speech segments 

 

 0f  1f  2f  3f  

Mean 6 11.083 16.055 21.166 

Variance 0 0.078 0.111 1.228 

 

Furthermore, when the power spectra of pitch based speech 

segments are plotted according to a DFT index, k, instead of 

an actual frequency variable, f, as shown in Figure 8, the 

peaks of all power spectra are, interestingly, located almost at 

the same indices. Table 2 shows harmonic analysis results in 

terms of means and variances of indices of power spectrum 

peaks corresponding to fundamental and harmonic 

frequencies of pitch based speech segments. As seen, 

variances of indices of fundamental and harmonic 

frequencies are remarkably very low and the mean of the 

index of each frequency is separated from those of adjacent 

frequencies by almost the same value. Consequently, since 

power spectra plotted with respect to the DFT index provide 

the best harmonic analysis results, in this paper, superior 

quality MFCC are extracted from the original DFT of pitch 

based speech segments without frequency normalization. 

MFCC [22-24], the features most commonly used for 

speech recognition, are discrete cosine transform coefficients 

of cepstrum of short-time energies of a signal in multiple 

frequency bands defined by a logarithmically spaced mel-

frequency scale filter bank. MFCC are commonly computed 

by first segmenting a signal into short, overlapped, fixed-size 

frames of approximately 20-40 ms in length. Next, the power 

spectrum of each frame is computed using the fast Fourier 

transform (FFT) and then mapped into overlapped log-scale 

frequency slots defined by a mel-frequency scale filter bank. 

Finally, a set of log outputs from the filters is converted into 

discrete cosine transform coefficients, namely MFCC. In 

traditional MFCC computation, fixed-frame speech 

segmentation is performed before MFCC is computed. In this 

paper, to reduce frequency leakage during MFCC extraction, 

fixed-frame speech segmentation is replaced by the proposed 

pitch-based speech segmentation before calculating MFCC. 

The overall MFCC extraction process is shown in Figure 9.  
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Figure 9: Block diagram of the MFCC Extraction Process 

 

V. EXPERIMENTS 
 

In this paper, multilayer perceptron networks were used as 

platforms for evaluating the speech recognition performance. 

Two types of input data were used in comparison: MFCC 

vectors of speech segments obtained using the proposed pitch 

based speech segmentation and those obtained using the fixed 

frame speech segmentation method. The speech data sampled 

at 22050 samples/s were gathered from 40 speakers; 20 males 

and 20 females aged between 20 – 30 years, recorded in a 

clear environment. The training data set consisted of 11 

pronunciations of single numbers, from 0 to 10 in Thai 

language, repeatedly spoken 10 times by 15 male and 15 

female speakers (3300 words in total). The training set was 

then divided into 10 subsets, each containing 330 words 

obtained from each speaking time. For a blind test, the test 

data set consists of the same words as those in the training 

data set, repeatedly spoken 10 times by 5 male and 5 female 

speakers who were excluded as speakers in the training data 

set (1100 words in total). All neural networks comprise of 2 

hidden layers with 25 and 20 nodes and an output layer with 

11 output nodes while the numbers of input layer nodes were 

chosen by the size of the MFCC input vectors, a factor 

affecting upon speech recognition performance.  

In the first experiment, to find the appropriate size of 

MFCC vectors, MFCC vectors of various sizes with 4, 8, 12, 

16, 20, and 24 elements were tested. For each size of MFCC 

vectors, 10 models of neural networks, each trained using one 

training subset, were implemented as illustrated in Figure 10. 

In total, 120 neural network models were implemented: 60 

models used MFCC vectors obtained using the proposed 

pitch based speech segmentation as input data and the other 

60 models used MFCC vectors obtained using the fixed frame 

speech segmentation as input data. For each neural network 

model, the remaining training data subsets, excluding those 

used in training the network, and the blind test data set were 

used to evaluate the speech recognition performance of the 

network for a closed speaker group test and an outside 

speaker group test respectively, as shown in Figure 11. 

Average speech recognition results obtained from the first 

experiment are shown in Table 3. Remarkably, in all cases, 

the networks using MFCC vectors obtained using the 

proposed pitch based speech segmentation as input data 

outperformed those using MFCC vectors obtained using the 

traditional fixed frame speech segmentation as input data. 

According to the results in Table 3, the size of MFCC vectors 

that provided the best recognition results was 16. 

In the second experiment, to investigate the effect of noise 

on the recognition performance, the neural networks 

providing the best results in the first experiment with MFCC 

input vector of size 16 elements were tested under noisy input 

conditions where all testing speech signals were added by the 

addition of white Gaussian noises with signal to noise ratios 

(SNR) set to 25, 20, 15 and 10 dB. As SNR decreased, Table 

4 shows the declining recognition performances received in 

the second experiment. Similar to the results in the first 

experiment, the networks using MFCC vectors obtained 

using the proposed pitch based speech segmentation as input 

data still outperformed those using MFCC vectors obtained 

using the traditional fixed frame speech segmentation as input 

data.  

 

 

 

 

 
 

Figure 10: The training data set, training data subsets, and neural network models 
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Figure 11: Data sets for evaluating the speech recognition performance 

 
Table 3 

Speech recognition performances of ANNs using MFCC vectors obtained 

from 2 speech segmentation schemes as input data. 
 

Size of MFCC 

Vectors 

Recognition rates (%) 

Fixed frame Pitch Based 

Closed 
speakers 

Blind  
test  

Closed 
speakers 

Blind  
test  

4 75.29 64.05 79.85 67.99 

8 78.42 68.82 81.81 79.25 

12 82.56 74.84 87.04 85.12 
16 85.26 81.15 90.48 87.15 

20 87.15 75.48 89.80 85.45 

24 80.61 74.18 87.05 82.76 

  
Table 4 

Speech recognition performances of the best ANNs with MFCC input 

vectors of size 16 elements under simulated noisy input conditions 
 

SNR 

(dB) 

Recognition rates (%) 

Fixed frame Pitch based 

Closed 
speakers 

Blind 
test 

Closed 
speakers 

Blind 
test 

No noise 85.26 81.15 90.48 87.15 

25 77.92 74.55 89.52 86.26 

20 71.84 70.16 88.30 82.25 
15 68.61 63.28 78.07 72.54 

10 52.45 47.36 64.49 59.20 

 

VI. CONCLUSIONS 
 

In this paper, the problem of frequency leakage affecting 

the speech recognition performance of MFCC-based speech 

recognition methods, due to fixed frame speech segmentation 

has been addressed. In the frequency domain analysis, the 

spectral leakage arises when the length of speech segments 

does not match complete periods of the speech signal. The 

solution to reducing frequency leakage can be obtained by 

using the proposed pitch based speech segmentation method 

in utilizing the local minima of the corresponding short-time 

energy waveform as pitch marker features for pitch 

segmentation. Experiments using multilayer perceptron 

networks, with MFCC vectors used as input data, as platforms 

to evaluate the speech recognition performances were 

conducted. It is found that, compared to the results obtained 

from the networks using MFCC vectors obtained using the 

traditional fixed frame speech segmentation as input data, the 

networks using MFCC vectors obtained using the proposed 

pitch based speech segmentation as input data provided 

results with higher accuracy in all cases of both clear sound 

and noisy conditions due to lower spectral leakage occurring 

during the MFCC extraction process.  
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