

 e-ISSN: 2289-8131 Vol. 10 No. 1-8 139

JAX-RS Implementations: A Performance

Comparison

John Velandia, Sonia Rios, Holman Bolivar, Juan Vanzina, Nicolas Almanzar

Universidad Católica de Colombia, Colombia.

javelandia@ucatolica.edu.co

Abstract—Restful services are implemented around the world

to integrate software systems. JAX-RS is a standard API

proposed by Java to maintain a common architectural pattern

independently of the provider´s implementation (libraries). At

the moment, there is no study regarding when to use any of the

implementations, thus, the aim of this article is to compare

implementations considering different test scenarios that would

help software architects and developers to make the right

decision when performance variables are a selection criteria.

This research carries out a methodology based on stability,

peak, stress and load variables. Additionally, the software

architecture is presented for some of the implementations

studied to ensure that they are comparable.

Index Terms—Apache CXF; JAX-RS; Jersey; Performance;

REST; RESTeasy; RESTful Services; RESTlet.

I. INTRODUCTION

The Representational State Transfer (REST) is an

architectural style for distributed hypermedia systems [1]. It

is based on principles that guaranties a common standard for

exchanging data among information systems using client and

server architecture [2]. REST uses as underlying protocol the

Hypertext Transfer Protocol (HTTP) which offers

standardized interfaces and implicit quality attributes such as

interoperability and modifiability [2] as advantages. In

addition, HTTP is a well-known protocol given that the

World Wide Web is built based on this [3].

The growth of information systems with the need of

interoperate with other information systems applies to any

industry sector, for instance banking, e-commerce and social

networks, (i.e., Facebook and Twitter). REST and SOAP

technology are mostly used to cover this interoperability

need. The use of REST has been rising because it is easy,

simple and lightweight to build restful web services.

Java API for RESTful Web Services (JAX-RS) is a

specification framework that defines how plain Java objects

are bound to URIs and HTTP operations using Java

annotations [4]. This framework is important since this

establishes a standard way to handle incoming and outgoing

server requests and information flows from one restful

service to another; consequently, JAX-RS facilitates and

simplifies a restful service implementation.

Providers have been implementing JAX-RS, supporting

the REST principles: Addressability, uniform interface,

content representation, stateless interaction and hypermedia.

In addition, quality attributes such as security, thread-save,

concurrency and performance are offered by providers.

However, there has not been any research regarding which

implementation is better in terms of these quality attributes.

Considering that there is a wide range of quality attributes,

and each of them is composed of metrics and methodologies

to evaluate them, the objective of this paper is to assess the

performance of the following implementations: Jersey,

Resteasy, Restlet and CXF, because according to [5]-[10]they

are the most used for integrating information systems.

A. Statement of the problem

Restful services are used equally in the industry and

academic around the world [11], and software architects and

developers always come up with the same question: Which

JAX-RS implementation shall we use in terms of

performance?

This question is solved as workaround by searching on web

sites that lack of accuracy and reliability since there is not a

deep assessment regarding JAX-RS implementations. A

proof is that digital libraries do not provide studies about this,

i.e. ACM Digital Library, Science Direct, Latin Index, Web

of Science, IEEE Xplore, among others.

B. Main contributions

This research would allow organizations, namely software

architects and developers, to make a choice based on the

performance that the implementation presented in this paper

has.

A new methodology is proposed for comparing the

performance of JAX-RS implementations; thus, it may

extrapolate to another scenario from which software systems

need a formal comparison.

An architectural analysis of JAX-RS implementations is

presented to understand which components are involved in

the communication and what their main tasks are.

II. METHODOLOGY

The methodology comprises 8 activities. The first activity

consists of the analysis of the following JAX-RS

architectures: Jersey, RESTlet, RESTEasy and Apache CXF;

this serves as the input of the following activity. The second

activity involves defining software components that are due

to be assessed. The third activity focuses on defining the

quality attributes, in this case, the performance attributes. The

fourth activity identifies metrics and variables included in the

performance test. The aim of the following activity is to plan

and design the test. The sixth activity prepares the

environment to run the tests. The last two activities address

tests repetitively and result analyses. Figure 1 summaries the

exposed methodology.

Journal of Telecommunication, Electronic and Computer Engineering

140 e-ISSN: 2289-8131 Vol. 10 No. 1-8

Figure 1: Activities of the proposed methodology

A. Software architecture

a. Jersey

This implementation has been developed by Oracle, and its

aim is to support JAX-RS specification [12]. Despite Jersey

implementation is widely used, there is not any formal and

well-defined software architecture in papers, books and

Jersey’s documentation, for instance [5], [12], [13] and [14].

Consequently, the proposed architecture is based on the

Oracle’s documentation and Jersey’s dependencies [15]

Core component is the backbone of this implementation; it

is used for both server and client. Server component provides

the necessary functionality to handle incoming and outgoing

request, and also to deploy itself on HTTP servers [10].

JSR311 API is in charge of compiling restful server and

client, since it defines the restful services API. Servlet

component listens URIs request to bind them to resources and

services. JSON component supports format representation

requests [10], [12].

b. RESTlet

This a lightweight and comprehensive framework that

implements JAX-RS (Sandoval 2009). It is considered as

simple and scalable; it is designed for high concurrency

(Restlet 2016). It supports both client and server by means of

restful libraries. It also provides the following libraries as

extensions to support Web standards: HTTP, SMTP, XML,

JSON, OData, OAuth, RDF, RSS, WADL, and Atom (Louvel

et al. 2012).

Security Restlet is based on HTTP features: authentication

authorization, confidentiality and access login - reducing the

needs to integrate and learn third party APIs, in this way

productivity increases (Louvel et al. 2012).

Figure 2: Restlet software architecture

The architecture encompasses a Core module that contains

two components: (1) Restlet API which supports the concepts

of REST and HTTP, handles server and client requests, and

(2) Restlet Extensions that supports integration to other

plugins or APIs. In addition to the Core module, the Restlet

engine acts as the backbone of Restlet. [16] [17]. Figure 2

depicts the architecture and the components that make up

Restlet.

c. RESTEasy

RESTEasy is not only a RESTful implementation, but also

a JBoss's umbrella project that provides additional libraries

to build RESTful web services [5]. It supports JAX-RS which

means that restful principles are covered.

As in Jersey implementation, there is no formal architecture

defined for RestEasy, and based on thi,s the architecture

proposed is based on JBOSS´ documentation [18]. Servlet

component listens incoming and outgoing server requests.

Core component is the backbone of this library, since it

supports restful features. Jaxb-provider is in charge of

converting java objects into XML elements and vice versa.

Multipart provider component is responsible for dealing with

multiple formats, such as JSON, XML and others.

d. Apache CXF

CXF acronym comes from two projects, Celtix and XFire.

Celtix is an open source Java-based Enterprise Service Bus

(ESB) project. XFire, a Java-based SOAP framework, is an

open source project from Codehaus [19][20]. CXF is an open

source framework that supports JAX-RS implementation for

building and developing Web Services. The aim of CFX is to

simplify web services development.

This framework supports Java Script Object Notation

(JSON) and XML data formats. It also provides notations to

convert POJOs into restful Web Services. Additionally, it

provides a set of tools to generate web service clients and web

services based on standards, such as JAX-WS, WSDL, and

SOAP [19][20]. Given the wide range of implementations,

CXF is also well-known as a framework.

The architecture is composed of seven main components,

as shown in Figure 3. Bus component is the backbone of CXF

architecture, and it is in charge of providing a common

application context for endpoint and shared objects. The

advantage of having this common context is that it is used as

a communication channel among components. A servlet is

deployed to initialize the bus [20].

Figure 3: Apache CXF software architecture

The frontend component is responsible of creating web

services using implementations such as JAX-RS and JAX-

WS. Messaging and interceptors are components that head off

incoming, outgoing and error messages exchanged between

web service clients and server components. Service model

component creates web services descriptions throughout Web

Service Description Language (WSDL) artefact. Data

Binding component maps and converts Java objects into

XML elements and vice versa. Protocol binding maps and

converts logical messages into physical data format that

depends on the required protocol specific format. Transports

components regards network details, i.e., the routing

protocol, for instance HTTP or JMS [19].

JAX-RS Implementations: A Performance Comparison

 e-ISSN: 2289-8131 Vol. 10 No. 1-8 141

B. Selection of software components to test

The aim of this activity is to ensure that components to be

compared are comparable. Thus, the architectures of the four

JAX-RS implementations are comparable, because they have

the same objective, which is to support restful services. In

details, the fourth architectures have three common

components: (1) a servlet that receives requests, (2) an engine

that processes requests and (3) a REST API provided by Java.

In conclusion, the fourth implementations are equally

comparable.

C. Quality attributes

The objective of this activity is to define the quality

attributes that are due to use in the assessment. Since the aim

of the research project is to measure the performance of the

JAX-RS implementations, the quality attribute defined is

performance.

D. Definition of Metrics

Metrics can be constructed to assess a variety of concerns,

e.g., system or component technical performance, human-

computer interaction, and process improvement. Using the

top-down approach advocated in this framework, the metric

selection is scoped by its parent EO. Likewise, each metric

scopes and is informed by its associated measures.

The establishment of criteria and performance metrics are

defined by the attributes of software quality within which are

contemplated [5]:

a. Performance

It refers to the response time, use and performance of the

system behavior. The following are the variables:

• Time: Total time the test lasts.

• Requests: The number of requests send to the server.

• Completed requests: number of requests per second

that were completed in each test.

• Dismiss: number of requests cancelled in the test.

• Failures: number of requests that had failed.

• Maximum value: maximum number of requests.

• Minimum: minimum number of applications.
• STD DEV: standard deviation which measures the

dispersion of values with respect to the average.

b. Efficiency

Quantity of resources and code required by a program or

service to perform its function

c. Reliability

Degree in which a program is expected to perform its

function with required accuracy.

E. Planning and designing the test

The objective of performance testing is to determine if the

programmer is satisfied with the efficiency of implementation

of the Framework of JAX-RS, under conditions of expected

usage. There are four types of performance tests:

a. Load test

This type of testing is performed to observe the behavior of

a service under defined number of requests. The load in our

case considers the number of users that make requests to each

Framework JAX-RS. For the implementation of the evidence,

an initial charge of 100 requests per second is laid down. It

gradually increases until it reaches the maximum load of

requests per second, depending on the behavior’s

implementation. This test allows identifying possible

bottlenecks and response times.

b. Stress test

The stress tests are intended to evaluate the behavior of the

service at the time the requests are sent continuously,

establishing if there are faults in memory. These sorts of tests

are used to find the volume of data and the time software

systems start to fail or are unable to respond to requests. In

conclusion, this test leads a software system beyond the edge

of normal circumstances.

c. Stability testing

Stability tests carry out a high number of requests to ensure

the software system is still available; it looks for the limit of

request that the system supports. The test consists of on leave

implementation running over a time, registering if failures

occur.

d. Peak tests

This test shows the behavior of the system by varying the

number of requests dramatically to evidence the existence of

anomalies in the violent change of requests per second. For

example, the execution of the test sets an initial charge of 500

requests per second, which changes drastically to 12000

requests per second in a 5-minute period.

F. Test environment

This activity consists of setting the environment that would

be used to run tests over the JAX_RS implementations. This

activity encompasses software hardware, data structure and

scenarios used for running tests.

a. Assumptions and restrictions

To ensure the performance test is accurate, the following

assumptions and restrictions are considered: the implemented

restful services are developed and deployed on the same

server; communication network is not considered, because

this variable could vary from time to time and it depends on

the companies´ infrastructure. Thus, client and server are

placed on the same server, which means that requests and

responses are measured without network variables, i.e.

latency and jitter; Data structure, length and weight of HTTP

messages have the same content.

JAX-RS implementations are tested using the following

sort of tests: (1) Load test to measure the number of

transactions each library handles per second, (2) Stability test

finds the limit of transactions per second that libraries

support, (3) Stress test evidences the libraries´ behaviors in

terms of performance under certain number of requests and

(4) peak tests consists of sending blocks of request varying

the number of them.

b. Tiers and layers architecture

In order to evaluate the JAX-RS implementations, four

restful services are created, one for each implementation. The

whole services are deployed on the same hardware server to

guarantee the same variables. One tier is configured to run

tests: one tier for the server and the client. As for the software

layers, the prototype architecture comprises two layers: the

service layer and the business model.

Journal of Telecommunication, Electronic and Computer Engineering

142 e-ISSN: 2289-8131 Vol. 10 No. 1-8

c. Hardware and software features

The server´s features are: processor accelerated AMD

Quad-Core A6-5200 of 2.0 GHz; Microprocessor cache:

2MB cache; Memory: 4 GB DDR3 SDRAM with a maximum

supported memory: 8 GB. Hard disk: 500GB drive (5400

RPM).

On software used: Operating system: Windows 8.1;

LoadUI 1.0.1.; Apache CXF 3.1.2.; Jersey 2.21.; Restlet

2.3.4; RESTeasy 3.0.12.

d. Data structure

XML and JSON are used to build up data structures in order

to determine the effectiveness of each one at the time of

implementing them in the test scenarios.

Figure 4 and Figure 5 show the XML and JSON formats

that are used in performance tests. These data structures

correspond to the basic information of a person, which is

stored for the scenario that uses database and only keep it in

memory for the scenario that does not.

Figure 4: Data structure in XML format

Figure 5: Data structure in XML JSON format

e. Scenarios

Figure 6 describes the first proposed scenario which has a

MySQL database engine using JPA for the connection with

the database, since JPA provides efficiency in connection and

does not generate additional delays for the performance of

each JAX-RS implementation.

This stage appears to estimate or calculate the times in that

one incurs when there is a connection to a database, because

the applications done by the developers include deals with

relational databases.

Figure 6: Test with a database architecture

Figure 7 describes the second testing scenario where the

client does a number of requests to the JAX-RS Frameworks

using XML and JSON, in this way formats in each

Framework according to established performance tests to

evaluate.

This scenario lacks of database engine, to avoid possible

additional time.

Figure 7: Test without a database architecture

f. The test and its results

Section III details out the discussion and obtained results.

III. COMPARISON BY TYPE OF PERFORMANCE TEST

FRAMEWORK

During the running test activity, it was noted that scenarios

involving the database engine does not allow transparency for

doing an adequate analysis, because the restful service

requires more time to bring data from the database, even if

JPA uses memory context. For this reason, the analysis must

be carried out only with the results of the scenario that does

not support database engine.

The results encompass the following metrics:

• Time: It is the time the test lacks.

• Request: Number of requests executed.

• Completed request: Number of completed request by

the implementation.

• Dismisses: Number of requests dismissed.

• Failures: Number of failed requests.

• Maximum value: It is the maximum requests per

second send to the implementation.

• Minimum: It is the minimum requests per second sent

to the implementation.

• Standard deviation (STD-DEV): It is the standard

deviation of the total requests. It is aggregated by using

a weighted average.

Table 1 shows results of each implementation in the load

test using JSON as the format of representation. The

implementation that is capable of handling more requests per

second is CXF, because during a period of 10 minutes, it

reaches a value of 407.161 request/per second, with a

standard deviation of 346 request/per second. While, Jersey

is the less stable processing requests, which is evidenced by

a standard deviation of 2155.

JAX-RS Implementations: A Performance Comparison

 e-ISSN: 2289-8131 Vol. 10 No. 1-8 143

Table 1

Comparison of implementations in the load test

Table 2 shows the best results of each Framework in

stability test, which concludes that the CXF implementation

XML format is efficient, because it performs as many

requests for seconds in a 10-minute time period. The total

number of failed requests is 0, requests discarded 0 requests

the maximum value of requests is 300.003, with a maximum

value of 7.598, this means that it responds to requests

efficiently against other implementations.

Table 2

Comparison of implementations in the stability test

Like previous results, the best performance in terms of

responses, Restlet outstands over other implementations

when an XML format is required, because the total number

of failed requests is 0, requests discarded 0 requests the

maximum value of requests is 271.973, with a maximum

value of 30656, as presented in Table 3.

Table 3

Comparison of implementations in the stress test

Table 4 presents that in the test of peaks, the better

performance is obtained from the CXF implementation,

which answers a greater number of requests, the total number

of failed requests is 0, requests discarded 0 requests the

maximum value of requests is 335.517, with a maximum

value of 22241.

Table 4

Comparison of implementations in the Test of Peaks

Then the general implementations according to the number

of completed requests were evaluated successfully, so

determined a scale from 0 to 10 where a score is set by each

performance tests, to subsequently obtain a weighted value as

shown in Table 5 and in this way compares the behavior of

each one of the implementations.

Table 5

Ratings of the implementations

Figure 8: Bar Chart Rating of Frameworks

The behavior of all evaluated implementations is similar,

however, the Apache CXF Framework shows superiority

over others according to the established qualification, Figure

8.

IV. FUTURE WORK

Since the Jersey´s documentation does not provide its

software architecture, it would be fruitful to research on its

software components and their relations. Additionally, a deep

dive among these implementations in terms of software

architecture would help the academy and industry to develop

new strategies regarding performance.

A provider method may be called multiple times at once.

Therefore, it is important for the provider methods to be

thread-safe. Lastly, the provider instance is relieved and

destroyed by the garbage collector. Some of the

implementations do not say anything about this item.

Jersey Restlet RESTeasy CXF

json json json json

Time 10 Minutes 10 Minutes 10 Minutes 10 Minutes

Request 293991 305536 385172 407161

Completed Request 293989 305536 385172 407161

Dismisses 0 0 0 0

Failures 2 0 0 0

Maximum Value 213205 26802 16472 7627

Minimun Value 3 3 3 3

STD-DEV 2155,97 1329.44 949.95 346.67

Metrics

Load

Jersey Restlet RESTeasy CXF

xml json json xml

Time 10 Minutes 10 Minutes 10 Minutes 10 Minutes

Request 300021 299928 300000 300003

Completed Request 30021 299928 300000 300003

Dismisses 0 0 0 0

Failures 0 0 0 0

Maximum Value 15012 24084 23265 7598

Minimun Value 3 4 3 3

STD-DEV 658,19 1588.79 1243.59 453.8

Metrics

Stability

Jersey Restlet RESTeasy CXF

xml xml json json

Time 5 Minutes 5 Minutes 5 Minutes 5 Minutes

Request 215888 271973 47956 631614

Completed Request 215888 271973 47956 631609

Dismisses 0 0 2386 631614

Failures 0 0 0 5

Maximum Value 22328 30656 473783 55432

Minimun Value 5 5 25 3

STD-DEV 1209,79 797.29 11440.86 1396.11

Metrics

Stress

Jersey Restlet RESTeasy CXF

json xml json xml

Time 5 Minutes 5 Minutes 5 Minutes 5 Minutes

Request 135672 135773 101684 335517

Completed Request 135460 135773 101419 335517

Dismisses 0 0 0 0

Failures 212 0 265 0

Maximum Value 445704 43792 32890 22241

Minimun Value 4 16 88 3

STD-DEV 11371,14 2709.12 2826.66 883.57

Peaks

Metrics

Load Stability Stress Peaks Weighted Value

Jersey 4 2 9 4 4,75

Restlet 6 8.6 10 5 5,25

RESTeasy 8 9.7 3 5 4

Apache CXF 10 10 4 10 8,5

Journal of Telecommunication, Electronic and Computer Engineering

144 e-ISSN: 2289-8131 Vol. 10 No. 1-8

V. CONCLUSIONS

Regarding load test, the CXF is the fastest processing

implementation, despite it is the less able to process requests

per second. Jersey is the most capable to process requests per

second, with some failures request, while RestLet and REST

easy have similar behavior in processing request.

Interoperability between software systems using an

efficient restful implementation would ensure a great

performance as long as the chosen implementation matches

particular needs, such as data format, simultaneous requests

among others.

Performance is not the only quality attribute and the unique

decision factor to choose a JAX-RS implementation, it is just

one criteria of selection.

The implementations that are easier to implement are

Jersey and Restlet, because the amount of lines of code is less.

It was evidenced during the coding phase of the restful

services.

According to the obtained results, one could conclude that

as long as the server processes short messages, the

performance improves. Additionally, if the software system

is saturated, the response time of individual responses is

affected negatively.

Independent of the implementation, one could conclude

that JSON format performs better than XML format, because

the length of the message is lighter; this is evidenced when a

thousand of requests were executed by the server. In

summary, data transfer using JSON is faster than XML.

In cases that a load test scenario is applied, and it requires

a great performance, it is suggested to use CXF with JSON

format. If a stability test is needed, and it requires a great

performance, it is convenient to use CXF and XML formats.

If, on the contrary, a stress test needs to be run, Restlet with

XML format is indicated to implement the service. And if a

scenario with peaks appears, the best option in terms of

performance would be CXF with XML format.

In general, Apache CXF implementation would be the best

choice for most of the scenarios.

REFERENCES

[1] R. O. Y. T. Fielding and R. N. Taylor, “Principled Design of the

Modern Web Architecture,” vol. 2, no. 2, pp. 115–150, 2002.

[2] B. Costa, P. F. Pires, F. C. Delicato, and P. Merson, “Evaluating REST

architectures — Approach , tooling and guidelines,” J. Syst. Softw., vol.
112, pp. 156–180, 2016.

[3] S. Schreier, “Modeling RESTful applications,” in Proceedings of the

Second International Workshop on RESTful Design - WS-REST ’11,
2011, p. 15.

[4] B. Burke, RESTful Java with JAX-RS 2.0, 2nd Edition. o’reilly, 2013.

[5] J. Sandoval, RESTful Java Web Services: Master Core REST Concepts
and Create RESTful Web Services in Java. Packt Publishing Limited,

2009.

[6] C. Davis, “What if the Web Were Not RESTful?,” in Proceedings of
the Third International Workshop on RESTful Design, 2012, no. April,

pp. 3–10.

[7] J. Strauch and S. Schreier, “RESTify : From RPCs to RESTful HTTP
Design,” pp. 11–18, 2012.

[8] X. Wu and H. Zhu, “Formalization and analysis of the REST

architecture from the process algebra perspective,” Future Generation
Computer Systems, vol. 56, pp. 153–168, 2015.

[9] N. Balani and R. Hathi, Apache CXF Web Service Development. 2009.

[10] M. Hadley, S. Pericas-Geertsen, and P. Sandoz, “Exploring
hypermedia support in Jersey,” Proc. First Int. Work. RESTful Des. -

WS-REST ’10, p. 10, 2010.
[11] C. Pautasso and E. Wilde, “RESTful web services: principles, patterns,

emerging technologies,” in Proceedings of the 19th international

conference on World wide web - WWW ’10, 2010, p. 1359.
[12] Oracle, “Jersey,” RESTful Web Services in Java, 2017. [Online].

Available: https://jersey.java.net/. [Accessed: 13-Mar-2017].

[13] B. Burke, RESTful Java with JAX-RS 2.0 - Designing and Developing
Distributed Web Services. O’Reilly Media, 2013.

[14] Oracle, “Types of Web Services,” 2014. [Online]. Available:

https://docs.oracle.com/javaee/7/tutorial/webservices-intro002.htm.
[Accessed: 13-Mar-2017].

[15] Oracle, “Java Embedded Suite Application Developer’s Guide:

Working with Jersey,” 2016. [Online]. Available:
https://jersey.java.net/documentation/latest/jaxrs-resources.html.

[Accessed: 13-Mar-2017].

[16] J. Louvel, T. Templier, and T. Boileau, Developing RESTful web APIs
in Java. Manning Publications, 2012.

[17] Restlet, “Restlet user guide,” Restlet Framework, 2017. [Online].

Available: https://restlet.com/open-source/documentation/user-
guide/2.3. [Accessed: 13-Mar-2017].

[18] JBOSS Comunity, “RestEasy,” RESTEasy, 2017. [Online]. Available:

http://resteasy.jboss.org/. [Accessed: 13-Mar-2017].
[19] B. Naveen and H. Rajeev, Apache CXF Web Service Development.

Birmingham, UK: Packt Publishing Ltd, 2009.

[20] A. S. Foundation, “Apache CXF Software Architecture Guide,” The
apache software foundation. [Online]. Available:

http://cxf.apache.org/docs/cxf-architecture.html. [Accessed: 13-Mar-

2017].

