
 e-ISSN: 2289-8131 Vol. 10 No. 1-8 123

Software Testing by Standard Software Metrics

Method; Study Case “Mission Planner” as UAV

Ground Station Software

Adi Susila Putera 1, Fatwa Ramdani2
1Faculty of Computer Science, Brawijaya University, Malang, Indonesia.

2Geoinformatics Research Group, Faculty of Computer Science, Brawijaya University, Malang, Indonesia.

adhie065109319@gmail.com

Abstract—This paper explains the testing of a complexity of

software and complexity of flight data from Mission Planner as

UAV Ground Station software. Tests were conducted using the

software metric method. The analysis, testing, and calculations

were applied using the method of software metric to investigate

the complexity of the software and the flight data on Mission

Planner. The tests were performed on three different OS

(operation systems); Windows, Linux, and Mac. The result

shows that Windows OS has the most reliable software

environment and flight data than the other two software.

Index Terms—Ground Station; Mission Planner; Software

Metric; Complexity Software; Windows; Linux; MAC OS

I. INTRODUCTION

In general, ground station software is used to monitor the

UAV behavior when it is operated. Flight plan can be defined

with the starting point coordinates, while the path and the

coordinated path will be observed. The monitoring process

can be accessed from a telemetry connection, which is placed

on the ground for the purpose of monitoring and observing

the condition of UAV.

The Mission Planner (MP) is a software for autopilot of the

aircrafts, helicopters, or rovers. This software is compatible

with Windows. In addition, MP can be used for monitoring

the situation and condition of autopilot on the ground and to

receive data from telemetry for the production of many

commands that control the flight parameters of UAV.

Some of the things that can be done with the MP are

controlling the vehicle (Auto Pilot), optimizing performance,

saving and loading autopilot autonomy mission with simple

point-and-click, as well as analyzing the mission logs and

flight simulator. With the telemetry hardware we can monitor

the status of the operated UAV. Telemetry logs will record all

information onboard log autopilot, view and analyze

telemetry logs from the ground station.

Software module complexity assessment is crucial in

software engineering study [1].This study will use MP

software to assess the software complexity as well as its data

complexity on three different operating systems (OS). The

testing phase itself is done using the calculation of the

implication by using the software metric method. [1]

The initial testing phase is determined based on Metric

standard quality and validation[2], which calculates the

implication software and data based on Metrics for

specification quality, Design model metrics, System Size,

Depth, stripe and AN ratio.[3] The results of the test, the

implication software and the data on MP can help us know

the Institutionalization indicators implication on three OS that

were tested.

The architecture of the MP software is shown in Figure 1.

Software testing will illustrate the efficiency and reliability in

a way that is measured. This paper is aimed at calculating the

metric software for testing as well as the complexity,

efficiency and reliability of MP software.

II. METHODOLOGY

The testing phase is done using several stages of the testing

phase with the poaching Software Metrics. In the testing

phase that uses the method of calculation of the metric

implication on MP software, the test was conducted to know

the indicators of the complexity of the MP software.

This test is done on three different OS (i.e., Windows,

Linux, and MAC OSX) to know how the complexity of the

software when it is tested and running on three different OS.

The MP software is open source that runs on on Windows

OS, Linux and MAC. It can be downloaded and learnt by

anyone.

To generate the real flight data, we used a fixed-wing type

UAV (Unmanned Aerial Vehicle) with APM 2.6 autopilot.

We used the MP software as the ground station to monitor the

UAV behavior and finally get the detailed flight information.

The software testing is done with the process of loading the

data through the MP software. The data inputted can be

seen and monitored through MP software Graphical User

Interface (GUI).[4]

III. PREVIOUS RESEARCH

There are many studies and discussions related to the topic

of this research and the common testing method used is the

metric calculation. Standard software metric assessment had

previously been discussed in Fenton and Neil [5] focuses on

testing the software control of a ground station. However, the

software used is not open source.

Software and monitoring have an important role in the

operation of the ground station. In this paper, the

development phase of the monitoring and control software

verifies the test and system architecture using metric, system

size, and depth metric. The testing phase is done with the

analysis and verified based on metric software.

Journal of Telecommunication, Electronic and Computer Engineering

124 e-ISSN: 2289-8131 Vol. 10 No. 1-8

Figure 1: Software Architecture of Mission Planner

Hamayun and Soomro [6] revealed that the overall

complexity of software can be tested, but there has been no

explanation of the test evaluation tests on software reported

by all the literature. They tend to focus only on when the

testing process and the results of loading data are in

accordance with the command in the input on unmanned

aircraft.

The development of the Automatic Voice identifier (ASR

message)[7] on MP software is a system that can be

integrated on the ground control station from MAVs to know

the activities and a voice command. There are two papers that

relate to this work. The first one is about the design of an

application aerospace with a voice command and the second

paper focuses on the development and integration of the

ability of a message of ASR against the Ground Stations.

In relation to the test using the algorithm above and the

development of integration on a typical ground station and on

MP based on MAV, the paper concludes that the evaluation

of the voice mail message ASR laboratory and discussion

about the steps should be adapted to form a system that can

cope with the real application scenarios.

Bukhari et al. [8] discussed some of the proposed metrics

for the software development process and quality evaluation

of the software. In this paper, we reviewed the metrics

proposed for the selection. The metric was based on the

external measurement as the first step toward the

determination of the model method metric software. With

respect to the software metric, the same approach in the stage

of development and evaluation of the software to measure the

quality of the software has been used.

The determination of metric software in the software

testing is important for the purpose of choosing the most

appropriate metrics for the evaluation and assessment of the

software. The determination of the method and method

selection software metric is based on the external

measurements and determination of testing and analysis

software.

In addition to using it as a test and monitoring the flight

ground station[9], it can also be made part of a ground station

that can be used as nano and pico satellites. Flight line testing

on grandstations are located at the frequencies VHF, UHF,

and S-band around songs MHz, 435MHz, and 2.3GHz.

Ground stations are ideal and suitable for some mission that

allow for flight and seamless path of the ground flight

stations to the flight ground stations. A ground station is

designed in some modular so that it can be tested in various

conditions and paths of the different flights.

Flight safety [10] involves the time to get attention on the

UAV. The paper focuses on the development status,

predicting errors and UAV flight management. Monitoring

the UAV flight simulation systems includes determining the

low state, analyzing real-time, modelling security systems,

and monitoring ambient conditions. This paper focuses on a

research related to the UAV flight monitoring system in real

time. In this case, during the occurance of unexpected

conditions, the commando commands instruction to the

system, which quickly intervene the situation by providing a

remote control, and made the recording process that can be

stored and analyzed for the entire flight process.

This paper proposes the development of UAV technology

that is able to be controlled [11]. The proposed process is able

to fly independently and track the position of the flight. The

proposed mathematical models include artificial technology

consisting of artificial algorithm fed with a predetermined

process, such as the ablity to walk independently, track the

trajectory, break accurately, and record at all stages. The PID

loop is designed to achieve stability at all stages of the

Monitoring dan Control Software MISSON PLANER

FLIGHT PLAN INITIAL SETUP CONFIG/TUNING SIMULATION TERMINAL
FLIGHT DATA SCREEN

Map Display

Action Panel

DRAFT

Instal Firmware

WIZARD

Optional Hardware

Planer/Config Flight Simulation Flght

Cross Track

Heading direction

Break Angle

Wireles Telemetry

GPS Time

Altitude

Air Speed

Ground Speed

Battery Status

Architecture Monitor

H U D(Head Up Display)

Garis Speed Distance

Zoom

Map

Titik Koordinat

Longitude

Attitude

titik Koordinat

LoadWpFile

Data Satelit

SaveWpFile

Home Location

WriteWpS

RealWpS

SIX Radio

PX4 FLOW

Bluetooth Setup

Atene

Video device

Video Format

USD Color

Speech

UI Language

Joystick

Disc Units

Telematry Rate

HUD

Log Path

Track Leght

Map Path

Theme

Home Location

Options

Advanced user Only

Selected Firmware

Run

Configuration Autopilot

Connect

Show Setting

Log Download

Test

Setup Radio

Log Browser

Control Area

Quick

Action

PreFight

Gauges

Status

Servo

Telematry logs

Data Flash Log

Messange

Scrips

Map

Jalur Flight

Koordinat Awal

Satelit Terhubung

GPS

Ketinggian

Peta

WayPoint

Mission Filght

WP Radius

Loiter Radius

Default ALT

Very Height

Add Bellow

Command detail

Layout

Software Testing by Standard Software Metrics Method; Study Case “Mission Planner” as UAV Ground Station Software

 e-ISSN: 2289-8131 Vol. 10 No. 1-8 125

process. In the analysis process, it was found that the UAV

system was unstable.

All the frequency reference functions to explain the results

of the analysis and testing phase. The multitude of testing

using the MP is to test the software only. The complexity of

the MP in terms of the quality of the software and the data is

not known. Therefore, this research was done in order to

know the complexity of both the software and data on MP.

IV. SOFTWARE AND HARDWARE USED IN THE STUDY

A. Software

The testing process in this paper uses MP software, an open

source and easy to use software. MP software is equipped

with complete tools and GUI-based. The command on the

unmanned aircraft determines the order of execution. MP

software provides users with the opportunity to work on one

application for the process of the program, testing and

monitoring, and tools. It not only allows the development of

user-friendly and graphics GUI, but also gives programmers

the freedom in choosing what to display to the user at a

specific time.

B. Hardware

In this study, we employed Ardu Pilot Mega (APM 2.6), a

hardware IMU autopilot based on the Arduino Mega

platform. This autopilot hardware can control fixed-wing,

multi-rotor helicopter as well as traditional helicopter. The

autopilot hardware has the ability to stabilize the UAV

navigation point and two-way telemetry with Xbee wireless

module. It also supports 8 channel RC with 4 serial port. APM

consists of the main board processor and shield IMU. The

open source control software is constantly updated with new

features and improved by a team of around 30 core

developers, supported by communities of more than 10,000

members [12].

We installed the APM 2.6 in the fixed-wing UAV type,

and flew it for 15 minutes to generate the real flight dataset.

The result can be downloaded through MP log information.

The format of the flight data is [dot] log.

C. UAV navigation point Metrics for specification quality

The development of the software consists of several steps:

The first step in the process of the development of the

software is the model of analysis described by the quality of

the specification agreed by the consumers and the developers

[15]; the metric has been brought down to the quality of the

model specification analysis. MP software process that shows

the transition diagram can be seen in Figure 2.

nffr aaa  (1)

where: ar = total variable needs,

 af = the number of functional needs, and

 anf = the number of non-functional requirements.

Both of these parameters are generally calculated based on

the requirements in the engineering project phase.

Figure 2: State transition diagram of MP software

a. Metrics for vagueness in architecture

Based on the above statistic, [13] derived various quotients

for the specific quality. The metric to determine the

ambiguity in this analysis was developed by [13]. These

metrics provide the size of the entire software requirements

specification.

r

ui
i

a

a
K  (2)

where ar is the number of the total needed, and aui is the

require ents inferred by the developer team.

b. Metric for completeness

Another other aspect of a model analysis stated that all

functional requirements must be identified. K2 gives us the

completeness of a functional software system.

si

u
i

aa

a
K

*
 (3)

where au specifies the number of unique functional

requirement, ai is a figure denoting number of inputs and

as shows the amount of state specifically.

c. Validation metrics

The metric defined for the validation is as shown in

equation 4:

nvc

c

aa

a
Ki

*
 (4)

where, ac shows the correct validation statement, 𝑎𝑛𝑣 shows

the statement of validation failed or is not executed until the

specified time.

D. Design model metrics

Once the updated analysis model is completed, the next

step is still under construction with the software models of the

design. The design or architecture model stresses on the

structure and the effects of the module that are different from

the previous models. Metric design can come without

knowing the internal working principles of the module. The

design metrics are closely linked to the complex ecology

software, and there are three fruit metrics considered

important in the metric development of this software [14]

Journal of Telecommunication, Electronic and Computer Engineering

126 e-ISSN: 2289-8131 Vol. 10 No. 1-8

 The structural complexity is defined as:

S(j) = fout2(j) (5)

where fout shows the number of the module in the module j.

This is also referred to as the fan-out.

The complexity of the data gives the interior of the

complexity of the interface on the module j.

𝐷(𝑗) =
V(j)

[𝑓𝑜𝑢𝑡(𝑗) + 1]
 (6)

where, V(j) shows the number of variables I/ P and O/ P

variables against the module j.

 The total complexity is the number of a combination of the

structural complexity 𝑆(𝑗) of the MP software S(j) and

complexity of the data D(j). It is given by the folllowing

equation:

𝑇(𝑗) = 𝑆(𝑗) + 𝐷(𝑗) (7)

E. System Size, Depth, Width and AN ratio

The complexity of the software can also be defined with

mathematical models using the metric as described in [15].

The simplest way in the process of the calculation of the

metric is by describing the complete system that knows the

process that ran and failed. The next stage is dividing the

system and subsystems in describing the related variables, as

shown in Figure 2. The calculation of the specification can be

measured and calculated from the amount of nodes and graph

output on each node.

Size = 𝑛 + 𝑎 (8)

where: n = numbers of node,

 a = arcs

The system depth is a way of determining the complexity

of the vertical direction. It specifies the number of the module

from the top to below or vice versa. The complexity of the

software is defined according to horizontal direction. This

shows that the number of the module on the level of the

variables is the same as the software.

Ratio ‘an’ shows the reliability of designing the whole

connectivity of the system and the software specifications.

𝐴𝑁 𝑟𝑎𝑡𝑖𝑜, 𝑎𝑛 =
α

n
 (9)

V. RESULTS AND DISCUSSIONS

Software metrics are defined and described in section V

and applied to obtain the results of the following section:

A. Metrics for Specification Quality

Software specifications on the development phase are

needed in the analysis, design specification, assessment,

testing and verification of SOW (Statement of Work) that can

be built and received by the third party. The result is shown

in Figure 3 below.

Figure 3: Metric for specification quality

a. Vagueness

 The implementation of Equation 2 of each OS is shown in

Figure 4.

Figure 4: Vagueness of MP software on three different OS.

 The ideal values of the specification K1 must be the same

with 1. It will never be greater than 1.

b. Completeness

 Equation 3 is used to determine the completeness of MP

software. The result is shown in Figure 5.

Figure 5: Completeness of MP software on three different OS

c. Validation

 Equation 4 is used to implement validation as shown in

Figure 6.

75

18

93

55

12

67

49

9

58

0

10

20

30

40

50

60

70

80

90

100

af(fungsional) ar(non fungsional) Total

V
a
lu

e

Windows

Mac

Linux

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Windows Mac Linux

K
1
=

a
f/

a
n

f

Vaguenes

K1

0.05

0.06

0.05

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Windows Mac Linux

K
2
=

a
u

/(
a
i*

a
s
)

Completeness

K2

Software Testing by Standard Software Metrics Method; Study Case “Mission Planner” as UAV Ground Station Software

 e-ISSN: 2289-8131 Vol. 10 No. 1-8 127

Figure 6: Validation of MP software on three different OS.

B. Design Metrics

a. Structural Complexity

Figure 7 shows the results for the application of Equation

5. Figure 7 depicts the structural complexity of the MP

software on three different OS.

Figure 7: Structural complexity of MP software on three different OS

b. Data Complexity

Each module subsystem has different input specification

processes and outputs on the MP software. The command

inputted with the value specified by the user is related to the

command specification on the software. The result is shown

in Figure 8.

Figure 8: Structural complexity of MP software on three different OS

c. Total complexity

The total complexity is mainly dependent on the structural

complexity. Figure 9 shows an image of the total complexity

of MP software on three different OS. The graph is similar to

the structural complexity.

C. System Size, Depth, Width and AN ratio

The next stage determines the size system, depth system,

width and AN ratio. This stage employs Equation 8 and 9.

MP software specification comparison using metric and its

application on three different OS is shown in Figure 10 and

11 .

Figure 9: The total complexity of MP software on three different OS.

Figure 10: Size, depth, and width of MP software on three different OS.

Figure 11: AN ratio of MP software on three different OS.

D. Data Complexity Testing

a. Data Load Graphic Complexity on OS Windows

In Window OS, the stored data dialing phase process is

running a one time process only, although there are display of

the information.

The stored data can be called as well as its display and results

are presented in the graph.

b. Data Load Graphic Complexity on MAC OSX

 Data dialing on MAC OSX is almost the same as on the

Windows OS, as the iteration data dialing process one time

only. However, there was an error at the time of the calling

data with the process and display of the graph for large data

as the bug error process is more than one time. In this case,

the process of calling and raises the implication graph

requires a long waiting time which influences the

performance from the MAC OS and software.

The data shows a more detail and complex information

which is confusing for the reading process and viewing the

data implication through graphic. Further, the details of the

data table on MAC are more complex than on the Linux and

Windows and it is difficult to understand.

0.900

0.905

0.895

0.888

0.890

0.892

0.894

0.896

0.898

0.900

0.902

0.904

0.906

Windows Mac Linux

K
3
 =

 a
c
/a

c
+

a
n

v

Validation

K3

225

256

324

0

100

200

300

400

Windows Mac Linux

 (
)

=

^
2
 (
)

Structural complexity

14
15

17

0

5

10

15

20

Windows Mac Linux

(

)=

(
)/

([

 (
)

+
1
])

Data complexity

225.88
256.88

324.89

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Windows Mac Linux

T
 =

 S
 +

 D

Total complexity

93

21

18.90

67

15 19.90

58

12 17.89
0

10

20

30

40

50

60

70

80

90

100

Size Depth Width

T
o

ta
l
c

o
m

p
le

x
it

y

Complexity of the software

Windows Mac Linux

0.24
0.22

0.18

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Windows Mac Linux

A
N

 =
 a

n
f/

a
f

OS System

Journal of Telecommunication, Electronic and Computer Engineering

128 e-ISSN: 2289-8131 Vol. 10 No. 1-8

c. Data Load Graphic Complexity on Linux

Data dialing on Linux is different compared to other OS

because it not directly called, but use the commands inputted

in a terminal in Linux. At the time of the first dialing, failure

occurred resulting in up to four times testing. This situation

shows that it does not facilitate to use of MP software using

Linux OS.

d. Complexity of Mission Planner

Using the Windows OS, Linux and MAC OSX, this system

can be run and the data can be called on Linux and Mac OS,

although there are some commands and different processes.

Calling the data on the Windows and MAC is easier than on

Linux. The structural complexity of MP software on the

Windows OS is more efficient and easy to use, as it is based

on the GUI. Installation process on Windows OS is a much

faster process than on MAC OSX or OS LINUX.

VI. CONCLUSION

In the system testing phase, the performance of the MP

applications were tested and verified in three different OS;

Windows OS, Linux OS, and MAC OSX. The testing phase

analyzed the calculation of matrix. The testing software does

not only calculate the structural complexity but also the

complexity of data. This is to ensure the reliability

and wastage of MP software.

Calculating the complexity is to know the efficiency,

reliability, and speed, but the most important and often

overlooked is a parameter from clarity and complexity that

describes the stage and development process and the required

function of the software. This paper discusses all validation

metrics calculation. This calculation can also be used by

interactive upside down to ensure that the algorithm used to

produce the result in the restrictions can be accepted. The test,

which measures the implication of the data on the software

was conducted to identify the complexity of the existing

data. Calling data that can affect the implication on MP

software, although data saved on Windows OS can be used to

open MP installed on OS Linux and Mac OS. However, when

data was dialed in MAC, there were error several times. This

study shows that the development of MP on the Mac OS and

Linux are less developed than in Windows OS. Users are

recommended to use Windows OS when operating MP to get

the most reliable flight data visualization but easier to

understand.

REFERENCE
[1] Pizzi, N. J. (2011). Mapping Software Metrics to Module Complexity:

A Pattern Classification Approach. Journal of Software Engineering

and Applications, 4(7), 426–432.

http://doi.org/10.4236/jsea.2011.47049
[2] Srinivasan, K. P., & Devi, T. (2014). Software Metrics Validation

Methodologies In Software Engineering. International Journal of

Software Engineering & Applications, 5(6), 87–102.
http://doi.org/10.5121/ijsea.2014.5606

[3] Fenton, N. and Bieman, J. (2014). Software Metrics. 3rd ed. Hoboken:

Taylor and Francis.
[4] Mission Planner Home — Mission Planner

documentation.Ardupilot.org.. Mission Planner Home — Mission

Planner documentation. Available at:

http://ardupilot.org/planner/index.html

[5] Fenton, N. E., & Neil, M. (2000). Software metrics. Proceedings of the

Conference on The Future of Software Engineering - ICSE ’00, 357–
370.

[6] Humayun, S., & Soomro, M. H. (2013). Application of Standard

Software Metrics
[7] Rahul, D. K., Veena, S., Lokesha, H., Vinay, S., Kumar, B. P., Ananda,

C. M., & Durdi, V. B. (2016). Development of Voice Activated Ground

Control Station. Procedia Computer Science, 89, 632–639.
http://doi.org/10.1016/j.procs.2016.06.026

[8] Bukhari, Z., Yahaya, J., & Deraman, A. (2015). Software metric

selection methods: A review. Proceedings - 5th International
Conference on Electrical Engineering and Informatics: Bridging the

Knowledge between Academic, Industry, and Community, ICEEI

2015, 433–438. http://doi.org/10.1109/ICEEI.2015.735254
[9] Fischer, M., & Scholtz, A. L. (2010). Design of a multi-mission satellite

ground station for education and research. 2nd International

Conference on Advances in Satellite and Space Communications,
SPACOMM 2010, 58–63. http://doi.org/10.1109/SPACOMM.2010.1

[10] Pengbo, X., Guodong, J., Libin, L., Lining, T., & Jigan, N. (2016). The

Key Technology And Simulation Of UAV Flight Monitoring System,
1551–1557.

[11] Mallick, T. C., Ariful, M., Bhuyan, I., & Munna, M. S. (2016). Design

& Implementation of an UAV (Drone) with Flight Data Record.
[12] APM Planner 2 Home — APM Planner 2 documentation,

Ardupilot.org, 2017. Available: http://ardupilot.org/planner2/.

[13] A. Davis, et al., "Identifying and Measuring Quality in a Software
Requirements Specification", Proc. of First Int.. Software Metrics

Symposium, pp. 141-152, 1993

[14] D.N. Card and R.L. Glass, Measuring Software Design Quality.
Prentice Hall, 1990

[15] Fenton, N. E., & Neil, M. (2000). Software metrics. Proceedings of the

Conference on The Future of Software Engineering - ICSE 00, 357–

370.

http://ardupilot.org/planner/index.html
http://doi.org/10.1016/j.procs.2016.06.026
http://doi.org/10.1109/SPACOMM.2010.1

