

 e-ISSN: 2289-8131 Vol. 10 No. 1-8 35

Framework Design for Map-Based Navigation in

Google Android Platform

Aryo Pinandito1,3, Agi Putra Kharisma2,3 and Rizal Setya Perdana1
1Information System Department, Computer Science Faculty, Universitas Brawijaya.

2Information Technology, Computer Science Faculty, Universitas Brawijaya.
3Mobile, Game, and Media (MGM) Research Group, Computer Science Faculty, Universitas Brawijaya.

aryo@ub.ac.id

Abstract—This research proposes a design of mobile

application framework that allow mobile application

developers to develop their own outdoor mobile navigation

application with the possibilities of utilizing multiple different

pathfinding methods by using Abstract Factory design pattern

for an optimized mobile navigation application in Google

Android platform. The proposed framework has main

functionality of providing navigation path from source or user

location to a particular or user-specified location and then

represents it visually on a digital map. Dijkstra and A-Star

algorithms are implemented to show the effectiveness of the

proposed mobile application framework design. An Android

application prototype is constructed using the application

framework and it has been successfully developed and satisfies

the specified requirements. Mobile application framework

design, performance comparison of pathfinding methods

implementation, and a recommendation in specifying

pathfinding method to use during application runtime are also

provided.

Index Terms—Star; Android; Dijkstra; Map; Navigation.

I. INTRODUCTION

The abundant use of mobile devices is affected by the

growing popularity of services that is offered to mobile

users such as location-based mobile games, Global

Positioning System (GPS)-based navigation services,

transportation tracking [1], mobile travelling, and many

others. Statistics shows that mobile travelling applications

have significant growth between 2011 and 2015, while 85%

of international travelers use mobile device while they were

travelling, and they have been proven to increase the

revenue of many travel industries [2], thus invites mobile

application developers to build mobile applications that are

intended for use on mobile devices while maintaining high

level of mobile application usability.

There are many mobile applications that provide map-

based public directions and navigation in the Android

platform such as (Google) Maps, Polaris, Scout, Sygic, and

Waze. Navigation services is often realized by utilizing the

GPS sensor that is embedded in a mobile device. Google as

the developer of Android platform provides their Location

and Sensors Application Programming Interface (API),

maps and direction service as part of Google Play Services

library. The library is included in the Android Standard

Development Kit (Android SDK). Several transportations

and traveling applications provide maps and direction

functionalities by utilizing Google Maps API and Google

Maps Directions API. Hence, the development of maps-

based Google Android and Location-Based Services (LBS)

applications in Android platform become faster and easier.

Several research and implementation related with

travelling and navigation system that is utilizing electronic

or digital maps have been conducted. Tourist guide mobile

application, which is built under Java 2 Mobile Edition

(J2ME) has been designed and developed to support

multiple mobile platforms [3]. It utilizes GPS to obtain user

location information and performs client-server RESTful

communication using XML data format. The application

also utilizes Google Maps API to display electronic maps

and application geographical data. However, mobile

applications, which are developed using J2ME, were still

restricted to use mobile resources and Internet connection,

hence they will suffer from scalability and reliability [3].

Another similar research and application development

about campus navigation system on Google Android

platform has been conducted to help academicians to find

locations along with the travelling route to the intended

location [4][5]. The developed application allows users to

find information related with events that is currently

happening in the area, thus allowing users to obtain updated

information that visualized on their map. However, they still

have several problems on how to find an alternative route to

a particular destination and how to show several places of

another interesting information along the route. The

geographical information, which represents a route from an

origin to a destination, is obtained from external systems or

API, i.e., Google Maps API and Google Geocoder API.

Therefore, most Android developers, which uses Google

APIs in their applications, cannot change, adjust, or modify

the APIs by default.

Google also have their own native Google Maps

application for the Android platform. The application allows

users to find alternative route from origin to destination.

However, the application has several limitations that also

faced in research by [5]. The problem faced is how can

people find a traveling route in a private area such as in

university campus or tourist resort area. Finding the shortest

path from origin to destination in these private areas cannot

be performed by only relying to services provided by

Google Maps application. Moreover, problems related to

how people able to perform indoor navigation by using their

mobile device without using GPS sensor reading also

become an interesting issue. Therefore, researches related to

outdoor and indoor navigation system become issues that

need to be resolved.

This research tries to resolve several navigation problems

in an Android based mobile device by proposing a design of

Android application framework. The proposed application

Journal of Telecommunication, Electronic and Computer Engineering

36 e-ISSN: 2289-8131 Vol. 10 No. 1-8

framework design should allow mobile application

developers to develop their own mobile outdoor navigation

application with the possibilities of utilizing multiple

different path finding methods and improving the

computation of their methods for an optimized mobile

navigation application in Android platform. This research

also tries to implement two path finding methods, i.e.

Dijkstra and A* algorithm, that are wrapped into navigation

library component used in the proposed application

framework. Several performance measurements and analysis

of the implementation were performed in this research to

obtain the suitability characteristics of the proposed

application framework and navigation library for use in an

Android mobile application.

II. LITERATURE REVIEW

A. Dijkstra Algorithm

Dijkstra Algorithm is one of widely used routing

technique to solve single-sourced the shortest path problem

between two locations, nodes, or vertices in such a road

network or a mesh that represented by graph. The algorithm

traces the network from one source node or vertex and spans

all nodes or vertices that are reachable from source. For the

algorithm to be applicable, the cost or weight for an edge

between two nodes or vertices must be non-negative [6][7].

If given a graph (G) with edges (E) and vertices (V), and

a specified source vertex (S), then Dijkstra algorithm could

be described with the following pseudocode [8]:

Initialize all vertices (V) distance (d) in graph (G) to

infinity

Set distance of S to 0

Create set of resolved vertices (P)

Create set of unresolved vertices (U)

Add S to U

While (U is not empty): Then

Pick one vertex V from U with the lowest distance

from S

Remove V from U

Get adjacent vertices (W) from vertex V

For each adjacent vertex (v) in W: Do

Obtain weight (w) from V to v defined by E

If (d of v) > (d of V) + w: Then

Set (d of v) with (d of V) + w

Set path to v from S

: end If

Add v to U

Add V to P

: end For

: end While

B. A* Algorithm

A* algorithm is probably the most popular pathfinding

algorithm, especially in computer games programming [9].

A* algorithm is an improvement of Dijkstra algorithm that

uses heuristic technique in determining estimated distance

between source and destination nodes or vertices. However,

the heuristic function has to be admissible which means that

the heuristic value returned is never overestimates the actual

distance between source and destination nodes.

Dijkstra algorithm selects an adjacent node based on the

lowest cost or distance to the adjacent nodes, A* algorithm

selects an adjacent node by minimizing the total cost

estimation of a path (f(n)) by summing the cost of source

node to a node n (g(n)) and its heuristic value to node n that

estimates the cost from node n to a destination node (h(n))

as in Equation (1).

)()()(nhngnf  (1)

The A* algorithm stops when destination node has been

reached and the computed f(n) value of destination node is

smaller than any other unexplored nodes in queue or until

there are no unexplored nodes in queue and destination node

has not been reached. This behavior become the main

difference between A* and Dijkstra algorithm because

Dijkstra algorithm will always continue the search until all

possible nodes has been explored thus making A* algorithm

better.

C. Abstract Factory Creational Pattern

Application frameworks are becoming increasingly

common and important, as they make up a reusable design

for a specific software purpose. The design is usually

implements a particular object-oriented design pattern.

There are more than 20 design patterns that categorized into

Structural, Creational, and Behavioral Pattern [10] and some

of these patterns apply to Android application. Creational

patterns are abstracting the instantiation of processes or

objects. The pattern helps making systems independent from

its internal creation, composition, and representation while

providing the same functionalities.

Figure 1: Basic abstract factory design pattern

One of popular Creational design pattern used to separate

application with is Abstract Factory. Abstract Factory

design pattern provides an interface to create groups of

related or dependent objects without specifying their

concrete classes [10]. Applications are allowed to specify

concrete classes that provides similar functionality to

perform the required functionalities during runtime.

Therefore, Abstract Factory design pattern is the

recommended design pattern when application developers

want to decouple the main application code from the

creation of instances of class and its working configuration

with multiple families of classes [11]. The basic class

diagram of Abstract Factory design pattern is shown in

Figure 1.

III. METHODOLOGY

A. System Requirement Analysis

Android application framework, which allows developers

to develop their own optimized shortest path algorithm, was

developed in this research. The requirements of the

Framework Design for Map-Based Navigation in Google Android Platform

 e-ISSN: 2289-8131 Vol. 10 No. 1-8 37

proposed framework designed in this research were

composed based on several features. The main functionality

that the framework should possess is, it should be able to

provide navigation path from source or user location to a

particular or user-specified location in such a way that the

navigation path and related information should be able to be

presented visually on user's mobile device digital map.
The system was analyzed by the following scenario: by

using a mobile device application, a user is expected to

know the shortest path to follow when they want to go to a

particular location from their origin. The path to the

destination will be displayed on a map on their mobile

device screen. Therefore, the proposed system framework

design should be able to point the nearest known location

from user current location, locate the nearest known location

to user-specified destination location, provide the shortest

path to the specified location, and display the path on a map.

B. Framework Design

In providing the navigation path, the designed framework

should provide freedom and flexibility to application

developer in developing and optimizing their shortest path

or navigation algorithm. Therefore, the designed framework

provides a Navigation Library component that should meet

the requirements. The proposed framework architectural

design is depicted in Figure 2.

Figure 2: Proposed system architectural framework

Most of the proposed application framework’s

components functionalities were performed inside the

Android application. The core flow of the application is

controlled by an Application Controller which could be

implemented in Android as an Activity. The map path

information is obtained from a Map Path Data Provider

component. The map path data contains geographical

information related to paths and crossroads on the map. This

information could be obtained from a web service, from a

local cache, or both. However, the primary data source used

in this research is provided by a web service using HTTP

RESTful protocol in JavaScript Object Notation (JSON)

format. JSON format is used in this research as it is known

superior compared to XML format in terms of its processing

speed, CPU utilization, and memory usage for a common

usage scenario [12] and more suitable as a data-loading tool

in asynchronous web-based application [13] which is

considered important when it comes into mobile device

computing. The Data Provider component is responsible to

convert it into Nodes and Edges and store its information

into cache for future use.

Figure 3: Navigation library class diagram

The application requires two location information as input

in order to provide the route between them. The source

location is predetermined by user's current geolocation

where such information can be obtained from GPS sensor

reading in user’s mobile devices. The information is

provided by application components namely GPS Location

Provider. An Application Controller has responsibility to

collect and control data that application user, Map Path Data

Provider, and GPS Location Provider provide to perform the

intended application functionalities. Thus, Application

Controller communicates with Navigation Library to obtain

possible shortest path to be displayed on a map.

Apart from providing navigation functionality, the

proposed framework should also provide base classes that

represents the problem domain for navigation algorithm

implementation reuse. These base classes should represent

basic abstractions of road intersection or turn and the path

between two nodes. One Node class will represent each road

intersection or turn and one Edge will represent the

connection or path between two Nodes. It is possible that

one Node may be connected to more than one other Node by

several Edges to represents a crossroad or road intersection.

The information contained in an Edge were used to

determine the adjacent Nodes of a Node. Lastly, a set of

Nodes and their respective adjacent Nodes information were

wrapped as a Graph. Node, Edge, and Graph class

relationship is shown in Figure 3 and for the sake of

simplicity, getter and setter methods have been omitted from

the diagram.

The internal design of navigation library was designed by

implementing the concept of Abstract Factory design pattern

as shown in Figure 3. The Abstract Factory pattern is used

when a system should be configured with one of multiple

Journal of Telecommunication, Electronic and Computer Engineering

38 e-ISSN: 2289-8131 Vol. 10 No. 1-8

groups of objects and only reveals the interface rather than

the concrete implementations [10]. In this research, the

product is the implementation of shortest path algorithm

inside the navigation library. Therefore, an Android

application, which requires the shortest path finding

functionality, does not need to know the concrete algorithm

implementation of the navigation library, thus making it

possible for the development, improvement, and

optimization of navigation library in the future.

C. Implementation and Evaluation

One prototype of Android application that implements the

designed application framework is developed. The

framework and its navigation library component were

implemented using Java programming language under

Google Android application framework using Google

Android SDK. The Android application and its navigation

library were implemented in linked Android application and

library projects respectively. The compiled mobile

application prototype was deployed on a Google Nexus 6

Android device that runs an Android Operating System (OS)

with API level 24 or Android version 7.0 Nougat. However,

the prototype was developed using AppCompat Support

Library from Google Android SDK. The minimum required

level for the application prototype to run was set to API

level 15 or Android version 4.0.3 Ice Cream Sandwich.

Therefore, it should be able to run correctly on devices with

an Android 4.0.3 Ice Cream Sandwich onwards.

A web service has been developed to provide and manage

geolocation Nodes and Edge information from a private

DBMS that store the information. The web service was built

under Linux, Apache, MySQL, and PHP (LAMP) stack so

that the developed mobile application could act as RESTful

client.

In order to evaluate the effectiveness of the designed

framework, this research implements two shortest path

algorithms, i.e., Dijkstra and A* as such that one of these

algorithms can be used to solve the navigation route

discovery problem between two specified locations. Both

algorithms were evaluated using a same data set from the

same data source. The implementation of A* algorithm used

in this research modifies the implementation of Dijkstra

algorithm in terms of distance calculation of a node and in

determining node to expand based on the heuristic value of a

node.

In determining heuristic value of distance between two

nodes in the implementation of A* algorithm, a Euclidean

distance formula is used. However, a better accuracy in

distance calculation between two geolocations over the

Earth surface could be obtained using Haversine formula

[14].

Geolocation data of street intersections, turns, and corners

were obtained by performing data collection of the road

network inside the main campus area of Universitas

Brawijaya. The data then be verified by rendering them to a

digital map such as Google Maps or Mapbox Map and

stored in a MySQL DBMS afterwards.

In order to visualize the intended output, the Android

application prototype employ Mapbox Mobile SDK for

Google Android platform instead of Google Maps API.

Mapbox Mobile SDK has ambient caching feature and

allows application to pre-fetch the maps from Mapbox

Server in advance, hence opening the possibility to render

maps and its associated resources when the device lacks of

network connectivity [15]. The SDK is used to render digital

maps, draw point of interest markers overlay, and, lastly

visualize the returned path from application Navigation

Library on mobile device's screen.

Several performance measurement tests and fitness

analysis were performed to the developed mobile

application prototype and its Navigation Library

implementation to obtain empirical results. The test was

performed on a road network that consists of 134 nodes and

154 edges.

IV. RESULTS AND DISCUSSION

Based on the functionality tests, the proposed framework

satisfies the requirements. The developed Android

application prototype able to obtain road interconnection

information in JSON format from a web service using

RESTful protocol and cache it to the application local

storage. As shown in Figure 4, the application able to obtain

user geolocation and display it as a marker on a map. It also

shows several points of interest nearby to be selected as

destination. Once a destination marker has been selected, the

shortest path could be obtained from the implementation of

navigation library and display it on the map.

Based on the performance test performed to the Android

application prototype, it is known that the average time

required for the Dijkstra algorithm to complete is 1.22

milliseconds while in most scenarios, A* algorithm perform

significantly better. A* algorithm requires 0.1 milliseconds

in average to find the shortest path for a nearby node (C to

NC), 0.21 milliseconds in average for a medium range node

in the center area from the side of the area (C to Ce), and

1.16 milliseconds in average when the source and

destination nodes both are in the opposite sides (C to FC).

As shown in Figure 5, the algorithm execution time of A*

algorithm perform better than Dijkstra algorithm in finding

the shortest path. In average, A* algorithm perform more

than 60% faster than Dijkstra algorithm in all scenarios.

However, A* algorithm has an overhead processing time

when it calculates the heuristic values of all nodes to a

particular destination node. The average processing time of

heuristic estimation process for 134 nodes in this research

test scenarios is 0.26 milliseconds. This processing time

should be added to the total processing time of A*

algorithm.

Figure 4: Android application prototype showing several point of interests

(left) and showing the route to the user-specified location (right)

Framework Design for Map-Based Navigation in Google Android Platform

 e-ISSN: 2289-8131 Vol. 10 No. 1-8 39

0.26

0.10

0.21

1.16

0.49

1.22

0.0 0.2 0.4 0.6 0.8 1.0 1.2

A* Overhead

A* C to NC

A* C to Ce

A* C to FC

A* Average

Dijkstra

Average Execution Time (ms)

A
lg

o
ri
th

m

Navigation Library Performance

Figure 5: Shortest path algorithm average execution time (lower is better)

The worst scenario case for A* algorithm is, when it has

to traverse to almost all possible nodes as much as Dijkstra

algorithm does. This is most likely happened when the

source node is on the opposite side of the destination node.

Even though in all test scenarios the A* algorithm perform

better, the Dijkstra algorithm would perform better than A*

algorithm in a scenario that the application needs to find

several shortest paths from a single source node. This is due

to the nature of Dijkstra algorithm that caches all the

shortest path to every node which has been explored.

Based on this research test case scenarios, both Dijkstra

and A* algorithm perform the routing calculation in

milliseconds. Therefore, both algorithm was applicable in

mobile devices and would not tend to be sluggish. However,

if the desired destination of user could be predefined or

predicted, the application could perform a pre-caching

calculation using Dijkstra algorithm for a better and faster

user experience.

As future works, this research area could be extended to

the following topics:

a. Implementing another shortest path or navigation

method while keep optimizing the implementation of

application navigation library for mobile devices;

b. Conducting usability analysis to improve application

User Interface or User Experience (UI/UX) usage

scenarios. The analysis and refinement could be

performed by several usability improvement methods

as the development of mobile application UI/UX with

limited user-interaction access become important

issues;

c. Integrating the application framework and the

implemented navigation library in other Android or

other mobile application platforms that requires

similar functionalities or features;

d. Extending the application prototype to support

additional functionalities to provide better usability;

e. Extending the concepts introduced in this research,

which are related with the application framework,

data structure, and application design patterns, to help

mobile application users perform turn-by-turn indoor

navigation.

V. CONCLUSION

In this research, the Abstract Factory design pattern allow

the design and implementation of navigation application to

utilize different type of pathfinding algorithms, i.e., Dijkstra

algorithm and A* algorithm. Both Dijkstra and A*

algorithms are able to be implemented natively in Android

platform.

An Android application prototype, which implements the

Abstract Factory design pattern as designed in the proposed

framework, has been successfully developed and meets the

specified requirements. The developed application prototype

is able to obtain road interconnection geographical

information from a RESTful web service using JSON data

format and locally caches the information. User's

geographical location information could be obtained from

user's device GPS sensor to automatically determine the

nearest node as starting point of the navigation path. Lastly,

the Android application prototype that employ Mapbox

Android SDK is able to visually display maps, point of

interest markers, and display computed navigation path from

and to a particular location.

This research also shows that A* algorithm perform

significantly better than Dijkstra algorithm in most

pathfinding scenarios for up to 71% faster and 60% in

average. However, when it comes to a scenario when several

shortest paths to several particular nodes needs to be found

from a single source node at once, Dijkstra algorithm would

probably perform better than A* algorithm as it caches the

discovered shortest path information of every node as it

travels.

By conducting the implementation and test of the

proposed framework to the Android application prototype,

this also proves that the proposed application framework

design allows an Android application to dynamically specify

and use an implementation of shortest path algorithm during

runtime.

ACKNOWLEDGMENT

This research is partially funded by DIPA of Computer

Science Faculty, Universitas Brawijaya. Part of this research

is supported by Mobile, Game, and Media (MGM) Research

Group and Mobile Application Development Laboratory.

We are thankful to all of our friends and colleagues at Unit

TIK Universitas Brawijaya, Information System, Computer

Science, and Information Technology Department of

Computer Science Faculty, Universitas Brawijaya who

contribute their expertise in assisting this research.

REFERENCES

[1] Khalid, S. K. A., Salleh, N. S. M., & Samsudin, N. A. (2016). "A Bus

Tracking Information System using Consumer Grade GPS: A Case
Study." Journal of Telecommunication, Electronic and Computer

Engineering, 8 (4), 47–51.

[2] Frederic Gonzalo. April 12, 2016. "16 Stats About Mobile Travel in
2016", in Frederic Gonzalo [Online].

http://fredericgonzalo.com/en/2016/04/12/16-stats-about-mobile-

travel-in-2016/
[3] Alshattnawi. Sawsan, (2013) “Building Mobile Tourist Guide

Applications using Different Development Mobile Platforms,” in

International Journal of Advanced Science and Technology vol. 54,
pp. 13–22

[4] Anpat, V., “Campus Navigation on Android Platform,” Int. J. Sci.

Technol. Eng., vol. 2, no. 10, pp. 452–458, 2016.
[5] Jana, S. and Chattopadhyay, M., “An event-driven university campus

navigation system on android platform,” Proc. - Int. Conf. 2015 Appl.

Innov. Mob. Comput. AIMoC 2015, pp. 182–187, 2015.
[6] X. Zhang, Y. Zhang, Y. Hu, Y. Deng, and S. Mahadevan, “An

adaptive amoeba algorithm for constrained shortest paths,” Expert

Syst. Appl., vol. 40, no. 18, pp. 7607–7616, 2013.
[7] K. Rohila, P. Gouthami, and P. M, “Dijkstra’s Shortest Path

Algorithm,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 2, no.
10, pp. 6139–6144, 2014.

[8] Baeldung. "Dijkstra Algorithm in Java, " in Baeldung, 2017, [Online]:

http://www.baeldung.com/java-dijkstra

Journal of Telecommunication, Electronic and Computer Engineering

40 e-ISSN: 2289-8131 Vol. 10 No. 1-8

[9] Cui, X., & Shi, H. (2011). "A*-based Pathfinding in Modern
Computer Games." IJCSNS International Journal of Computer

Science and Network Security, 11(1), pp. 125–130.

[10] Ruchi Mittal, Ipsita Bhattacharya, M.P.S. Bhatia. "Innovative
Framework for Data Structure Using Design Pattern," in Proceedings

of the International Conference on Soft Computing for Problem

Solving (SocProS 2011), Volume 2, pp. 197-204, 2012
[11] Joydip Kanjilal, “The factory method and abstract factory design

patterns: managing object creation efficiently” in InfoWorld, Jun 5,

2015 [Online] http://www.infoworld.com/article/2931441/c-
sharp/the-factory-method-and-abstract-factory-design-patterns-

managing-object-creation-efficiently.html

[12] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, Clemente
Izurieta. "Comparison of JSON and XML Data Interchange Formats:

A Case Study," in ISCA 22nd International Conference on Computer
Applications in Industry and Engineering, CAINE (2009), pp. 157-

162

[13] Lin, B., Chen, Y., Chen, X., & Yu, Y. (2012). "Comparison between
JSON and XML in Applications Based on AJAX," in 2012

International Conference on Computer Science and Service System,

CSSS 2012, pp. 1174–1177.
[14] Chris Veness. "Calculate distance, bearing and more between

Latitude/Longitude points, " in Movable Type Scripts, 2017 [Online]:

http://www.movable-type.co.uk/scripts/latlong.html
[15] Mapbox. " Offline maps with Mapbox Mobile, " in Mapbox Help,

2017 [Online] https://www.mapbox.com/help/mobile-offline/

