

 e-ISSN: 2289-8131 Vol. 10 No. 1-6 165

A Java Multithread Audio Acquisition for Audio

Surveillance

C. Dadula and E. Dadios
De La Salle University, 2401 Taft Avenue, Malate, Manila 1004 Philippines.

cristina_dadula@dlsu.edu.ph

Abstract—This paper presents a real time audio acquisition

using a personal computer and multiple USB microphones.

When audio stream is available, audio processing techniques

can be added to make a real time audio surveillance. The output

of this work can be used in audio processing techniques that

require audio signals from multiple microphones like source

localization and source separation. The designed algorithm

implements Java threads and Java sound API (Applications

Programming Interface). Two to five microphone threads were

run for about 1 second. Each setup was run for 5 trials. The 2-,

3-, and 4-microphone setup provided a promising result for a

given hardware specification. The maximum difference for 2-

microphone setup was 939 samples or 117 milliseconds duration.

For 3-microphone setup, the maximum difference was 1109

samples or 138 milliseconds duration but the two-microphone

setup got equal number of samples for about 60% of the trials.

For 4-microphone set-up, the maximum number of difference

was 1024 samples or about 128 milliseconds but 3 microphones3

microphones got equal number of samples for about 40% of the

trials. The 5-microphone setup demonstrated that system

resources cannot support that much number of microphones

because the one microphone got a very low number of samples

compared to other 4 microphones.

Index Terms—Audio Surveillance; Audio Signal Processing;

Audio Recording; Java Multithread; Real Time Audio

Acquisition; USB Microphones.

I. INTRODUCTION

Audio surveillance is the process of capturing audio signals

of a particular area, and processing the captured audio signals

for detecting abnormal events like gunshots, explosions, and

screams [1]. The use of audio in surveillance would augment

video because usually video is not enough to provide

necessary information in case an event occurred. For

example, in transport surveillance video is not enough to

monitor vehicles activity as well as detect possible abnormal

event situations [2]. Abnormal situations may occur outside

the view of cameras making it impossible to detect by human

operators. In such cases, audio analysis complements video

analysis in surveillance systems to detect effectively

abnormal events. Nowadays, IP cameras are already

equipped with microphones ready to facilitate audio

surveillance system. One of the advantages of audio analysis

is that it can be employed day and night and it doesn’t have

to deal with the variations of illumination. But the main issue

is, audio analysis or audio processing is very challenging in

open environments such as roads.

The audio analysis for audio surveillance may involve

audio signal processing techniques such as source

localization, sound source separation, and recognition of one

or more acoustic emissions. In real time, these processing

techniques require audio signals from multiple microphones.

Sound source localization is important in tracking audio

targets. The most common approach to sound source

localization is based on time delay estimation of audio signals

between pairs of microphones. The data along with the

known positions of microphones are used to generate

hyperbolic curves which are optimized to obtain estimate of

the location of the source [3]. Other algorithmic approaches

are based on steered response power of beam former and high

resolution spectral estimation.

Sound source separation is the process of separating

multiple sound sources from the mixture of sources or audio

signals from the audio sensor or microphone. The approach

is divided into blind source separation (BSS), semi-blind

source separation (SBSS), and informed source separation

(ISS) [4].

Blind source separation (BSS) is the process of separating

sound sources without the knowledge of how the sources are

mixed [5]. There are two mixing models of blind source

separation: instantaneous and convolutive. Instantaneous

mixing model assumes that sound mixture is a linear

combination of independent sound sources, x = As, where x

represents a vector of mixture of sound sources, A is a mixing

matrix, and s is vector of independent sound sources.

Mathematically if one can get y = B x, where B=A-1 then y

is equal to vector s. One approach to BSS is to find the

demixing matrix y such that each vector in y that represents

an independent source is independent as possible based on

some optimization criteria like independent component

analysis [6]. In convolutive mixing, the mixture is assumed

as the combination of the convolution of sources and finite

impulse response filter that represents the transfer function

from the sources to the corresponding microphones [7] [8].

In SBSS, there is a partial knowledge about the source

signals such as the components of the reference signals [9].

On the other hand, the ISS assumes that some prior

information is known enough to determine reasonable target

values for the constraint. Instead of optimizing the constraint,

the constraint is used toin each component to converge in

order to get the corresponding target value [10].

Given the idea that it would be very effective if source

localization, source separation and other audio processing

techniques used in audio surveillance are done in real time as

much as possible. When abnormal event is detected just after

a few minutes the event has started the emergency personnel

could respond immediately. In cases where the monitored

area has only few activities, audio event detection could be

used to alert the human operator that an activity is going on

or the system may save the time of occurrence of events. The

availability of the time of occurrence of events may hasten

the review of the stored video from surveillance cameras

when necessary.

Journal of Telecommunication, Electronic and Computer Engineering

166 e-ISSN: 2289-8131 Vol. 10 No. 1-6

This paper attempts to design an algorithm for real time

audio acquisition using a personal computer and off-the-shelf

USB microphones. When audio stream from several

microphones is available, audio processing functionalities

can be added to make audio processing or surveillance real

time as much as possible. The algorithm and its

implementation could be used for audio signal analysis that

requires audio signals from multiple microphones such as

source localization and source separation. The proposed

algorithm for audio acquisition utilized USB microphones

and implemented Java threads. A thread is a sequential

program that has its own thread of control and can execute

concurrently with other threads. Recording from each

microphone was implemented using threads. The threads

accepted the target data line where data was read, and the file

name where the data was saved. The proposed algorithm ran

threads within 1 second. The number of samples obtained

from each microphone were compared. This was done in

order to get an idea of how many microphones the hardware

setup could handle.

The paper is organized as follows: section 2 gives a brief

about Java threads, section 3 presents the design

implementation, section 4 discusses the results, and

conclusion is in section 5.

II. JAVA THREADS

Seventy-five percent of the real world mature java projects

explicitly create threads or employ some concurrent

algorithms [11]. A thread is a sequential program that has its

own thread of control and can execute concurrently with other

threads [12] [13]. Threads compete for time in the same

processor or they may execute in parallel on separate

processors. A multi-threaded program contains multiple

threads or processes. Usually, there are more threads than

processors. Threads take turns executing on the processors.

A Java thread can be created by extending Thread class and

overrides run method with the necessary statements or

implementing the Runnable interface where run method is

defined [14]. Figure 1 shows an example of implementing

threads.

In this algorithm, a Java thread is implemented by

extending the Thread class with the target data line and file

objects as the constructor parameters. Audio is read from a

target data line object so one should be created for each

microphone. The file object holds the filename audio read

from a microphone is saved.

III. DESIGN IMPLEMENTATION

A. Hardware materials and setup

The hardware setup consisted of a computer (Macbook Pro

13-in, 2.8 GHz Intel Core i5 processor, 8GB 16MHz DDR3)

and 2 to 5 units of omnidirectional USB microphones

(UMIK-1). Figure 2 shows a sample actual setup using 4

microphones. The 4 microphones were connected to a USB

hub which was connected to one of the USB ports of the

computer. During the experiment, other application programs

were running like Matlab, Microsoft Excel, and Java

Netbeans IDE (Integrated Development Environment). These

application programs also consumed the resources of the

computer.

Figure 1: Example of Java thread implementations [15]

Figure 2: Hardware setup

B. Audio acquisition algorithm

The proposed algorithm basically consisted of two main

steps: The first step determined the installed audio inputs or

microphones. Not all installed audio devices could deliver

audio data to an application. The output of this step was used

to get the index of the desired microphones which has the

label “Umik_1’’ microphones. The flowchart is shown in

Figure 3.

The second step was the audio signal acquisition from

Umik_1 microphones. The flowchart of this step is shown in

Figure 4. Mixer objects were created for each desired

microphone. This was implemented by using the device index

found in the first step. The audio format was set to 8000

sample rate, PCM signed encoding, 16 bits per sample, 1

channel, 2 bytes per frame, and little-endian. The target data

lines were created for each microphone. The target data line

was where the application gets audio data. To read data from

the target data line, the target data line objects needed to

invoke open then start methods. When the target data line was

ready to send data to the program, a thread for each

microphone was created. The microphone threads created

audio input stream that read data from the target data line and

wrote the stream of data to a specified file. Threads ran for

about 1000 milliseconds. After reading data from the target

A Java Multithread Audio Acquisition for Audio Surveillance

 e-ISSN: 2289-8131 Vol. 10 No. 1-6 167

data line, the target data line needed to invoke stop and close

methods.

Figure 3: Flowchart of getting installed audio devices

The algorithm implemented the Java sound API

(Applications Programming Interface). The audio-input

system has three basic elements: (1) the input port,

microphone port, or line-in port, (2) the mixer where data is

placed, and (3) the target data line where an application can

read audio data [16]. The Java sound API was used for

controlling audio input and output. It provided functions for

installing, accessing, and manipulating system resources such

as audio mixers, file readers and writers, and sound format

converters.

The recording used the javax.sound.sampled package. The

following were some of the classes used from the package:

AudioSystem, Line, Mixer, TargetDataLine, and DataLine.

The AudioSystem object is the entry point to the sampled-

audio system resources. Line interface represents a mono or

multi-channel audio feed. DataLine adds media-related

functionalities such as start and stop to its superinterface,

Line. Mixer objects are software interface to the physical

input device such as microphone. And lastly, TargetDataLine

is a type of DataLine from which audio can be read.

IV. TESTING

The algorithm was tested by utilizing 2-, 3-, 4-, and 5-

microphone setups. The files from each microphone were

examined by tabulating the number of samples obtained from

each recording. Five trials were tested for each microphone

setup. The number of samples obtained also corresponded to

the duration of the recorded audio signal.

Figure 4: Flowchart of audio acquisition

V. RESULTS AND DISCUSSION

The output of determining the audio input devices installed

in the computer is shown in Figure 5. By inspection, the

desired input devices were “Umik_1 Gain_ 18dB”

microphones which had indices of 3, 4, 5, and 6.

Figure 5: Sample output of getting audio devices

The first setup used only two microphones. The number of

samples obtained from the recorded audio signals in five

trials are shown in Table 1 and Figure 6. The average number

of samples in five trials of mic 1 and mic 2 were 4366 and

5253.6, respectively. The maximum difference was in trial 1

5288-4349 which was 939 samples. It was about 117

milliseconds duration. The average difference was 887.6

samples equivalent to 887.6/8000 seconds or 111

milliseconds.

Table 1
 Number of samples from 2-microphone setup

Trial Mic 1 Mic 2

1 4349 5288

2 4434 5288

3 4349 5288

4 4349 5202

5 4349 5202

Ave 4366 5253.6

Figure 6: Number of samples from two-microphone setup

The number of samples for 3-microphone setup is shown

in Table 2 and Figure 7. The average number of samples for

mic 1, mic 2, and mic 3 is 4434.2, 5407, and 5390,

respectively. There was a big difference between the number

of samples in mic 1 and mic 2, and mic 1 and mic 3. The

Journal of Telecommunication, Electronic and Computer Engineering

168 e-ISSN: 2289-8131 Vol. 10 No. 1-6

maximum difference was in trial 1, 5458-4349 which

consisted of 1109 samples or 138 milliseconds duration.

However, there was only a small difference between mic 1

and mic 2, the maximum difference was in trial 1, 170

samples (5458-5288) equivalent to 22 milliseconds duration.

In addition, two microphones got the same number of

samples in 60 % of the trials (3 out of 5).

 Table 2

 Number of samples from 3-microphone setup

Trial Mic 1 Mic 2 Mic 3

1 4349 5458 5288

2 4434 5373 5373

3 4434 5373 5373

4 4520 5373 5458

5 4434 5458 5458

Ave 4434.2 5407 5390

Figure 7: Number of samples from 3-microphone setup

The result of 4-microphone setup shown in Table 3 and

Figure 8. It was similar to the 3-microphone setup where the

difference of the number of samples from two microphones

was very small compared to the difference of each with

respect to the other microphone. In the 4-microphone set-up,

the difference of the number of samples between 3

microphones was very small compared to the difference of

each with respect to the other microphone. The maximum

difference between the 3 microphones is 85 samples or 11

milliseconds duration. The maximum difference of the 3 with

respect to the other microphone was 1024 samples or 128

milliseconds duration. The sample difference is plotted in

Figure 9. Another thing, microphone 3 and 4 had equal

number of samples in 2 out of 5 trials, and 3 microphone got

the same number of samples in 1 trial (1 out of 5).

Table 3

Number of samples from 4-microphone setup

Trial Mic 1 Mic 2 Mic 3 Mic 4

1 4602 5458 5373 5373

2 4520 5373 5458 5458

3 4520 5458 5373 5373

4 4349 5373 5373 5373

5 4349 5288 5288 5288

Ave 4468 5390 5373 5373

`

Figure 8: Number of samples from 4-microphone setup

Figure 9: Sample difference between microphones

A further increase in the number of microphones resulted

in one microphone with very few samples compared to other

microphones as illustrated in Table 4. Microphone 4 got only

86 in trial 3, which is about 2% of the samples of other

microphones. This observation implies that additional

microphones cannot just be added due the limitation of the

computer’s resources.

Table 4

Number of samples from 5-microphone setup

Trial Mic 1 Mic 2 Mic 3 Mic 4 Mic 5

1 4349 5373 5373 2386 3072

2 5288 5373 5288 3239 1963

3 5117 5288 5288 86 5202

4 4349 5288 5288 258 5033

5 5288 5358 5458 4096 1192

Ave 4878 5336 5339 2013 3292

V. CONCLUSION

The proposed algorithm successfully recorded audio

signals using java threads The number of samples recorded

from each microphone was not always the same. The 2-, 3-,

and 4-microphone setups provided a promising result for a

given hardware specification. The maximum difference for 2-

microphone setup was 939 samples or 117 milliseconds

duration. For 3-microphone setup, the maximum difference

was 1109 samples or 138 milliseconds duration but two

microphones got equal number of samples for about 60% of

the trial. For 4-microphone set-up, the maximum number of

difference was 1024 samples or about 128 milliseconds but 3

microphones got equal number of samples for about 40% of

the trial. The 5-microphone setup demonstrated that the

system resources cannot support that number of microphones

A Java Multithread Audio Acquisition for Audio Surveillance

 e-ISSN: 2289-8131 Vol. 10 No. 1-6 169

because one microphone got a very low number of samples

compared to the other 4 microphones.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial

support given by the Commission on Higher

Education(CHED), De La Salle University, Department of

Science and Technology - Philippine Council for Industry,

Energy, and Emerging Technology Research and

Development (DOST-PCIEERD), and Mindanao State

University-General Santos City.

REFERENCES

[1] S. Ntalampiras, "Audio Surveillance," WIT Transactions on State of

the Art in Science and Engineering , vol. 54, pp. 191-205, 2012.
[2] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio and M. Vento, "Audio

Surveillance of Roads: A System for Detecting Anomalous Sounds,"

IEEE Transactions on Intelligent Transportation Systems, vol. 17, no.
1, pp. 279-288, Jan 2016.

[3] H. Alghassi, S. Tafazoli and P. Lawrence, "The Audio Surveillance

Eye," in International Conference of Video and Signal Based
Surveillance , 2006.

[4] A. Ferreira and D. Alarcão, "Real-time blind source separation system

with applications to distant speech recognition," Applied Acoustics, no.
113, pp. 170-184, 2016.

[5] M. Pedersen, J. Larsen, U. Kjems and L. Parra, "A Survey of

Convolutive Blind Source Separation Methods," Multichannel Speech
Processing Handbook, pp. 1065-1084, 2007.

[6] C. P. Dadula and D. P. Dadios, "A Genetic Algorithm for Blind Source

Separation Using Independent Component Analysis," in HNICEM,
Philippines, 2014.

[7] H. Buchner, R. Aichner and W. Kellermann, "A Generalization of

Blind Source Separation Algorithms for Convolutive Mixtures Based
on Second-Order Statistics," Transactions on Speech and Audio

Processing , vol. 13, no. 1, JANUARY 2005.

[8] R. Aichner, H. Buchner and W. Kellermann, "Convolutive Blind
Source Separation for Noisy Mixtures," in Speech and Audio

Processing in Adverse Environments, E. Hänsler and G. Schmidt, Eds.,

Springer Berlin Heidelber, pp. 469-524.
[9] F. Nesta, T. Wada and B. Juang, "Batch-Online Semi-Blind Source

Separation Applied to Multi-Channel Acoustic Echo Cancellation,"

Transactions on Audio, Speech and Language Processing , vol. 19, no.
3, pp. 583-599, March 2011.

[10] C. Rohlfing and J. Becker, "Generalized Constraints for NMF with

Application to Informed Source Separation," in 24th European Signal
Processing Conference , 2016.

[11] G. Pinto, W. Torres, B. Fernandes, F. Castor and R. Barros, "A large-

scale study on the usage of Java’s concurrent programming constructs,"
The Journal of Systems and Software , vol. 106, pp. 59-81, 2015.

[12] G. Andrews, Foundations of Multithreaded, Parallel, and Distributed

Programming, Addison-Wesley, 2000.
[13] L. Chen, "A Multi-thread Data Flow Solution Applying to Java

Extension," in Physics Procedia, 2012.

[14] B. Sanden, Design of Multithreaded Software, Wiley, 2011.
[15] "Thread Objects," 15 March 2017. [Online]. Available:

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.h

tml.
[16] "Overview of the Sampled Package," [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/javax/sound/sampled/.

[Accessed March 2017].
[17] "Overview of the Sampled Package," [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/javax/sound/sampled/.
[Accessed March 2017].

[18] C. Dadula and E. Dadios, "Event Detection Using Adaptive Neuro

Fuzzy Inference System for a Public Transport Vehicle," in 11th
International Conference of the Eastern Asia Society for Transportation

Studies, 2016.

[19] Y. Hu and P. Loizou, "Evaluation of Objective Quality Measures for
Speech Enhancement," Transactions on Audio, Speech, and Language

Processing, vol. 16, no. 1, January 2008.

[20] T. Kinnunen and H. Li, "An Overview of Text-Independent Speaker
Recognition: from Features to Supervectors," Speech Communication,

vol. 52, pp. 12-40, 2010.

[21] F. Bimbot, J. Bonastre, C. Fredouille, G. Gravier, I. Chagnolleau, S.
Meignier, T. Merlin and J. Garcia, "A Tutorial on Text-Independent

Speaker Verification," EURASIP Journal on Applied Signal

Processing , vol. 4, pp. 430-451, 2004.

