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Abstract—In wireless sensor network existing spatial (inter) 

and temporal (intra) correlation causes redundant data in the 

network. Exploiting the existing spatial (inter) and temporal 

(intra) correlation to effectively compress data thereby reducing 

redundancy to reduce data traffic in network is of prime 

concern. In this paper, we propose a 2-D distributed 

compressive data gathering framework to reduce redundancy in 

sensor network data. We also analyze the performance of the 

proposed scheme with random DCT and DFT measurement 

matrices on real data sets of sensor readings with different 

sparsity. Results indicate that high compression can be achieved 

with negligible mean square error in recovery from far fewer 

number of samples than the traditional Nyquist rate at the sink 

thereby enhancing network life time to large extent in large scale 

wireless sensor networks. Also, the recovery performance 

improves depending upon the sparsity measure and the 

measurement matrices used for compressing the data.   

 

Index Terms—Compressive Data Gathering; Data 

Compression; Joint Sparsity; Sparse Signal; Spatial 

Correlation; Temporal Correlation. 

 

I. INTRODUCTION 

 

Wireless sensor networks are now-a-days commonly used in 

various applications such as physical environment 

monitoring [1], [2], habitat monitoring [3], health care 

monitoring [4], infrastructure monitoring, domestic 

application [5], etc. In all these applications, small sized, low 

cost, limited battery powered sensor nodes are deployed in 

ad-hoc fashion. Due to development in fabrication 

technology these sensor nodes have limited memory, 

computational power and a short range transceiver capability, 

in addition to electro-mechanical sensors; all of these 

fabricated in a matchbox size cassette. 

Due to its small size and low cost, these sensor nodes can 

be deployed in any environmental scenario. Generally, these 

sensor nodes are deployed in adverse environment where 

once deployed it is very difficult to either repair or replace 

these sensor nodes. Therefore, sensor nodes are deployed 

densely in the area under observation. These sensor nodes are 

capable to reconfigure automatically. Due to auto-

reconfigurable nature of sensor nodes, higher level of fault 

tolerance capacity may be achieved in wireless sensor 

networks which is caused either due to hardware or software 

failure or due to various environmental factors. Also, large 

area can be monitored with very less human resource. 

Beside advantages, major challenges prevailing in wireless 

sensor network is the limited battery power available in 

sensor nodes and data redundancy. The redundant data 

transmission from resource constrained sensor nodes to sink 

via multi-hop communication consumes maximum amount of 

energy among various operations performed at any sensor 

node. 

In regular monitoring applications, the closely spaced 

sensor nodes sense the same physical phenomenon. 

Therefore, these sensor readings collected at sink exhibit high 

spatial (inter) correlation. Similarly, due to high sensing 

frequency the readings collected by any particular sensor 

node over a short time span exhibit temporal (intra) 

correlation. Various schemes are proposed in the literature to 

reduce data traffic in wireless sensor network in order to 

preserve energy in wireless sensor network thereby 

enhancing overall network lifetime of the network.  

Compressive Sensing [6] is a novel phenomenon for 

simultaneous sensing and compression for sparse signals with 

minimal computational and memory requirement. This 

phenomenon tends to preserve lot of energy with respect to 

traditional data gathering in which raw data collected by 

nodes is transmitted to sink and at sink various compression 

techniques (lossy or lossless) are applied to reduce the 

amount of data by discarding redundant data. Thus, lot of 

energy loss is incurred in transmitting data from source to 

sink.  Compressive data gathering based on compressive 

sensing is an efficient way to compress data in sensor network 

locally at the sensor node. Compressive data gathering 

reduces data traffic which preserves lot of energy in wireless 

sensor network. 

Compressive data gathering may be applied efficiently to 

sensor readings because due to high spatio-temporal 

correlation existing in sensor data causes data to be 

represented as sparse signal in some orthonormal basis. 

Therefore, in this paper, we propose to apply compressive 

sensing to achieve compression by exploiting both spatial and 

temporal correlation in real sensor data and study the 

performance of various measurement matrices on original 

signal reconstruction at sink. 

The rest of the paper is organized as follows. Compressive 

data gathering and its mathematical formulation is discussed 

in Section II. Distributed compressive sensing and joint 

sparsity is discussed in Section III. Proposed distributed 

compressed data gathering framework is explained in Section 

IV. Simulations results in support of propose scheme are 

shown in Section V. Finally, conclusions are drawn in Section 

VI. 
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II. COMPRESSIVE DATA GATHERING 

 

Compressive data gathering proposed by Luo et al. in [7]  is 

being widely used in wireless sensor networks to reduce the 

data traffic thereby distributing energy consumption evenly 

among all the nodes in the network. Compressive data 

gathering uses compressive sensing [6] to compress the raw 

data in wireless sensor network because raw sensor data 

exhibit high spatial (inter) and temporal (intra) correlation.  

Compressive data gathering reduces global energy 

consumption of the wireless sensor network without 

additional computational cost. Compression of raw data in 

wireless sensor network also reduces data communication 

control overhead in the network.  

Compressive data gathering, thus, have twofold advantages 

over traditional multi-hop data gathering (baseline data 

gathering). First, it reduces energy overall energy 

consumption and second, it distributes the load equally 

throughout the network. These two advantages in turn 

increase the life time of the network.  

Mathematically compressed sensing proposed for one 

dimensional signal is discussed here briefly. Consider an 𝑁 -

dimensional, discrete time, real-valued signal 𝒙 such that 𝒙 ∈
ℝ𝑁. Using an 𝑁 × 𝑁 orthonormal basis Ψ ∈ ℝ𝑁, the signal 𝒙 

may be represented as  

 

                                    𝒙 =  Ψ𝒔                                        (1)  

 

where s is an 𝑁 -dimensional sparse vector. The signal 𝒙 is 

said to have sparsity 𝑘 iff there are 𝑘 non-zero elements in 𝒔, 

where 𝑘 ≪ 𝑁. Let, 𝒚 be an 𝑀-dimensional measurement 

vector formed by 𝑀 linear projections of the signal 𝒙, where 

𝑀 ≪  𝑁. Thus, 𝒚 may be represented as  

 

                          𝒚 = Φ𝒙 = ΦΨ𝒔 = 𝑫𝒔                              (2)  

 

where Φ is an 𝑀 × 𝑁 measurement matrix that is incoherent 

w.r.t Ψ and satisfies the Restricted Isometry Property (RIP), 

and 𝑫= ΦΨ is an 𝑀 × 𝑁 matrix known as Dictionary. 

As 𝑀 ≪ 𝑁, solving the under determined system of 

equation of (2) requires additional constraints. In addition to 

this, the measurement matrix should satisfy the restricted 

isometry property (RIP) and incoherence w.r.t the 

orthonormal basis in which the signal x is k-sparse. The 

measurement matrix satisfies RIP of order k if there exists 

a restricted isometry constant 𝛿𝑘  ∈  (0,1) such that 

 

            (1 − 𝛿𝑘)||𝒙||
2

≤ ||Φ𝒙||
2

 ≤  (1 + 𝛿𝑘)||𝒙||
2
     (3) 

 

where ||. || denotes the ℓ2 norm or the Euclidean norm. 

The recovery of 𝒙 from 𝒚 by solving the set of equations 

given by (2) requires additional constraints to be satisfied. 

These additional constraints may be minimization or 

maximization of certain parameters subjected to (2). The 

commonly used constraints given in literature are the 

minimization of norms such as the ℓ0, ℓ1 or ℓ𝑝 norm. The 

Euclidean norm ℓ2 minimization results in unique but non-

sparse solution because ℓ2 norm is a convex function and any 

convex function promises uniqueness. So, ℓ2 norm is not an 

appropriate solution to the CS problem.  In some literature, 

ℓ0 norm minimization is considered. However, it leads to a 

non-convex optimization problem which is NP-hard to solve. 

Accordingly, sub-optimal algorithms have been developed to 

find an approximate solution. Various sub-optimal sparse 

signal recovery algorithms found in the literature are 

Orthogonal Matching Pursuit (OMP) [8], Randomized 

Orthogonal Matching Pursuit (RandOMP) [9], Simultaneous 

Orthogonal Matching Pursuit (SOMP) [10], OMP for 

multiple Measurement Vectors (OMPMMV) [11] and so on. 

As we move from ℓ2 to ℓ1 norm, we get a sparser solution as 

ℓ1 norm is not strictly convex. The various algorithms based 

on ℓ1 norm minimization are Basic Pursuit [12], The FOCul 

Underdetermined System Solver (FOCUSS) [13], etc. 

Figure 1 depicts traditional multi-hop (baseline) 

transmission in chain type topology. In this scheme as shown 

the node close to sink is likely to run out of power soon as 

compared to the node located far from sink. In such scenario 

entire network will fail.  

 
 

Figure 1: Baseline Data Gathering Scheme 
 

Figure 2 depicts compressive data gathering scheme in 

chain type topology. In this scheme weighted sensor 

measurements are forwarded to the next node which is 

located in the limited transmission range of the node. Every 

intermediate node in the routing path acts as relay for other 

node. The intermediate nodes adds its weighted measurement 

to the weighted measurements received by its preceding node 

in routing path, finally weighted sum of sensor measurements 

is received at the sink. 

 

 
 

Figure 2: Compressive Data Gathering Scheme 
 

Originally compressed sensing proposed for one 

dimensional signal vector can be effectively applied to sensor 

data gathering where each sensor reading is a one 

dimensional signal.  Distributed compressive sensing is an 

extension of compressed sensing phenomenon to multiple 

vectors suitable for wireless sensor networks. Distributed 

compressed sensing is briefly discussed in next Section.  

 

III. DISTRIBUTED COMPRESSIVE SENSING 

 
Distributed compressed sensing was first proposed by 

Baron et al. in [14]. Distributed compressed sensing is based 

on the concept of joint sparsity. Joint sparsity can be stated as 

the ensemble of different signal vectors is sparse or can be 

sparsely represented in some orthonormal basis. Distributed 

compressive sensing exploits both spatial and temporal 

correlation in sensor readings. Three different joint sparsity 

models have been proposed for sensor networks. These are 
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explained briefly.  

 

A. Joint Sparsity Model – I  

In this model each sensor measurement consist of two 

different components namely the sparse common component 

arising due to global environmental phenomenon and the 

sparse innovation which arises due to some local 

environmental phenomenon. Mathematically it can be 

represented as 

 

                    𝒙𝒋  =  𝒛𝒄 + 𝒛𝒋   ∀  𝑗 =  1,2,3, ⋯ 𝐽                    (4) 

 

where 𝒛𝒄 is the common component to all 𝒙𝒋 and has sparsity 

𝑘𝑐  in basis for e.g. effect of sun which is common on all 

sensor nodes in wireless sensor network deployed for 

environment monitoring and 𝒛𝒋 is unique to every 𝒙𝒋 having 

sparsity 𝑘𝑗  in the same basis for e.g. effect of shade or 

wind which is unique to any particular sensor node in wireless 

sensor network deployed for environment monitoring. 

Therefore, 𝒛𝒄 and 𝒛𝒋 may be represented as  

 

                             𝒛𝒄  = Ψ𝒔𝒄,    ||𝒔𝒄||ℓ0
=  𝑘𝑐                        (5a) 

and                       𝒛𝒋  = Ψ𝒔𝒋,     ||𝒔𝒋||ℓ0
=  𝑘𝑗                   (5b) 

 

where ||. ||ℓ0
 denotes the ℓ0 norm which is a measure of 

cardinality i.e. number of non-zero elements in the vector. 

 

B. Joint Sparsity Model – II  

In this model every sensor measurement is constructed 

from same sparse set of basis vectors, but with different 

coefficient values. Mathematically expressed as  

 

               𝒙𝒋  = Ψ𝒔𝒋  ∀  𝑗 =  1,2,3, ⋯ 𝐽                          (6) 

 

where  𝒔𝒋 have cardinality equal to 𝑘. This model may be 

assumed as a special case of Joint Sparsity Model – I 

with 𝑘𝑐 = 0 and 𝑘𝑗 = 𝑘.  

 
C. Joint Sparsity Model – III  

In this model each sensor measurement consist of two 

different components similar to that described in Joint 

Sparsity Model – I but the common component no longer 

remains sparse. Thus, in this model the signal consists of non-

sparse common component and sparse innovation.  

Mathematically it can be represented as 

 

                    𝒙𝒋  =  𝒛𝒄 + 𝒛𝒋   ∀  𝑗 =  1,2,3, ⋯ 𝐽                    (7) 

 

with 

                             𝒛𝒄  = Ψ𝒔𝒄,                       (8a) 

and                       𝒛𝒋  = Ψ𝒔𝒋,     ||𝒔𝒋||ℓ0
=  𝑘𝑗                    (8b) 

 

where 𝒛𝒄 is not necessarily sparse. 

 

IV. PERFORMANCE ANALYSIS OF PROPOSED SCHEME 

 

Sensor data in a WSN is highly correlated and exhibit both 

spatial and temporal correlations. Compressive data 

gathering can be used to exploit both spatial correlation and 

temporal correlations to achieve high compression. In this 

paper, we propose to exploit spatial as well as temporal 

correlation, similar approach was proposed in [15], but in this 

paper we also compare the reconstruction performance using 

different measurement matrices viz.: DCT and DFT matrices 

in terms of MSE of the proposed scheme and percentage of 

exact recovery of measurements. For recovery of original 

sensor measurement at sink we have used an extension of 

FOCUSS recovery algorithm to multiple measurement 

vectors termed as MFOCUSS [16]. 

Let 𝑿 = [𝑥𝑛𝑗] be the 𝑁 ×  𝐽 matrix composed of sensor 

readings collected by 𝐽 sensor nodes over 𝑁 time instances, 

𝑥𝑛𝑗 is 𝑗𝑡ℎ sensor reading at 𝑛𝑡ℎ time instance. The, rows of 𝑿 

exhibit spatial correlation and the columns of 𝑿 exhibit 

temporal correlation. As rows are spatially correlated, there 

exists a 𝐽 ×  𝐽 orthonormal basis Θ ∈  ℝ𝐽 in which all rows 

of 𝑿 are sparse with support size of 𝑘𝑠 such that 𝑘𝑠  ≪ 𝐽. 

Similarly, columns are temporally correlated so there exists 

an 𝑁 × 𝑁 orthonormal basis Ψ ∈  ℝ𝑁 in which all columns 

of 𝑿 are sparse with support size of 𝑘𝑡 such that 𝑘𝑡  ≪ 𝑁. This 

scenario is similar to JSM-II described in Section III. 

Therefore, we may write,  

 

                                   𝑿 = Ψ𝑺Θ𝑇                                          (9)   

 

where 𝑺 is sparse matrix representation of 𝑿. 

Since 𝑿 is sparse, we choose a measurement matrix Φ of 

dimension 𝑀 ×  𝑁 where 𝑀 ≪  𝐽 and is incoherent with an 

orthonormal basis Ψ for temporally correlated data. 

Similarly, we choose a measurement matrix Ω of dimension 

𝐿 ×  𝐽 where 𝐿 ≪  𝑁 and is incoherent with an orthonormal 

basis Θ for spatially correlated data. Therefore, 

 

             𝒀 =  Φ𝑿Ω𝑇 =  ΦΨ𝑺Θ𝑇Ω𝑇 =  𝑫𝒕𝑺𝑫𝒔                 (10)          

 

where 𝒀 is a matrix of dimension 𝑀 ×  𝐿 formed by linearly 

projected measurements of 𝑿. 𝑫𝒕 and 𝑫𝒔
𝑻 are the over-

complete dictionaries for temporal and spatial correlated data 

respectively. As observed, 𝑁𝐽 number of samples are 

compressed to only 𝑀𝐿 number of samples by applying DCS. 

In this paper, we propose to evaluate the performance of 

DCS applied to jointly sparse signals in terms of mean square 

error (MSE) of the recovered signal with varying 

compression ratio (CR) using different random measurement 

matrices viz: DCT and DFT matrices. MSE is chosen as the 

metric for performance evaluation as exact recovery of sparse 

signal from an over complete dictionary is NP-hard to solve 

as discussed in Section II. The MSE is defined as 

 

                 𝑀𝑆𝐸 ≜  
1

𝑁𝐽
 ∑ ∑

(𝑥𝑛𝑗−𝑥𝑛𝑗)2

𝑥𝑛𝑗
2

𝐽
𝑗=1

𝑁
𝑛=1                       (11) 

 

where 𝑥̂𝑛𝑗 is the reconstructed 𝑗𝑡ℎ sensor node measurement 

at 𝑛𝑡ℎ time instance. The compression ratio (CR) is defined 

as the ratio of number of uncompressed samples to that of 

compressed samples.   

 

                                  𝐶𝑅 ≜  
𝑁𝐽

𝑀𝐿
                                           (12) 
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Figure 3 : Relative Humidity (in %) using DCT measurement matrix. 

 

V. SIMULATION RESULTS 

 

In our simulations, we used real set of sensor readings of 

environmental monitoring data taken from LUCE 

deployment of EPFL sensor scope WSN database available 

at [2]. This database consists of few key environmental 

quantities with high spatial and  temporal correlation. In our 

work, we used readings of relative humidity (in %) recorded 

by 𝐽 = 8 closely located SNs at an approximately constant 

distance 𝑑 from the sink at 𝑁 = 512 successive time 

instances. The readings were spatially and temporally 

correlated and were sparsely representable in Hadamard basis 

𝛹 and 𝛩. The temporal sparsity of signal 𝑘𝑡 = 3 ≪  𝑁 =
512 and spatial sparsity of signal 𝑘𝑠 = 1 ≪  𝐽 = 8. The two 

measurement matrices 𝛷 and 𝛺 are randomly generated. The 

number of measurements 𝑀 is fixed at 4 while 𝐿 is varied 

from 2 to 200. Thus, compression ratio ranges from 512:1 to 

5.12:1 is achieved. For recovery, we used MFOCUSS 

algorithms. 

The performance of the proposed 2-D compressed sensing 

is evaluated for two different choices of measurement 

matrices viz. DCT and DFT matrices. The entries of DCT 

measurement matrix Φ are randomly sampled rows of 

𝑁 ×  𝑁 DCT matrix, and the entries of DCT measurement 

matrix Ω are randomly sampled 𝐿 rows and 𝐽 the columns of 

DCT matrix. The entries of 𝑁 ×  𝑁 DCT matrix are given by 

 

                      𝛼𝑝,𝑞 = {

1

√𝑁
                ∀ 𝑝 = 0, 0 ≤ 𝑞 ≤ 𝑁 − 1

√
2

𝑁
 cos

𝜋 (2𝑞+1)𝑝

2𝑁
∀1 ≤ 𝑝 ≤ 𝑁 − 1, 0 ≤ 𝑞 ≤ 𝑁 − 1

           (13) 

 

Similarly, DFT measurement matrices are generated by 

randomly sampling rows of 𝑁 ×  𝑁 DFT matrix 𝑾 ∈  ℂ𝑁, 

given by 

            𝑾 =
1

√𝑁
[

1 1 ⋯
1 𝜔 ⋯
⋮ ⋮ ⋱

1
𝜔𝑁−1

⋮

1 𝜔𝑁−1 ⋯ 𝜔(𝑁−1)(𝑁−1)

]             (14) 

where 𝜔 = 𝑒−2𝜋𝑖 𝑁⁄  is the primitive 𝑛𝑡ℎ root of unity.  

 
 

Figure 4 : Relative Humidity (in %) using DCT measurement matrix. 

 

The recovery algorithm used in our simulations is 

MFOCUSS which is an extension of FOCUSS algorithm to 

multiple measurement vectors (MMV). It is based on 

principle of weighted least square that minimizes the 

weighted ℓ2 norm of 𝒙. 

The simulation results depicting percentage of exactly 

recovered signal vs Number of measurement (L) using DCT 

measurement matrix is shown in Figure 3. Similarly, Figure 

4 depicts percentage of exactly recovered signal vs Number 

of measurement (L) using DFT measurement matrix. RMSE 

plot of both DCT and DFT matrix is shown in Figure 5.  

 

 
 

Figure 5 : RMSE using DCT and DFT measurement matrices of relative 

humidity. 
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Figure 6 : Temperature (in ˚C) of CTD sensors using DCT measurement 
matrix. 

 

Further, this proposed scheme was also tested with another 

real sensor data readings obtained from National Data Buoy 

Center’s (NDBC), Tropical atmosphere ocean (TAO) 

deployment in Pacific Ocean [17], for monitoring of 

Equatorial Pacific Ocean Climate Studies (EPOCS) which 

measures various parameters such as temperature, salinity, 

humidity, wind direction, wind speed and many more marine 

geology parameters. In our simulations we used readings of 

temperature of ocean water (in ˚C) and salinity of ocean water 

measured using CTD (conductivity, temperature and depth) 

sensors.  

Again, we used readings from 𝐽 = 8  closely spaced sensor 

nodes for 𝑁 = 512  time instances. These readings were 

spatially and temporally correlated. The Oceanic temperature 

readings exhibited temporal correlation with sparsity  𝑘𝑡 =
7 ≪  𝑁 = 512 and spatial correlation with sparsity 𝑘𝑠 =
1 ≪  𝐽 = 8. Now, we used DCT and DFT measurement 

matrices for compressing the effective data to be transmitted 

to sink and M-FOCUSS algorithm is used to recover the data. 

  

 
 

Figure 7 : Temperature (in ˚C) of CTD sensors using DFT measurement 
matrix. 

 
 

Figure 8 : RMSE using DCT and DFT measurement matrices of 
temperature measured using CTD sensors. 

 

The simulation results depicting percentage of exactly 

recovered signal vs Number of measurement (L) using DCT 

measurement matrix for oceanic temperature readings is 

shown in Figure 6. Similarly, Figure 7 depicts percentage of 

exactly recovered signal vs Number of measurement (L) 

using DFT measurement matrix. RMSE plot of both DCT and 

DFT matrix is shown in Figure 8 for oceanic temperature 

readings.   

The proposed scheme is also applied to readings of salinity 

measurements of Pacific Ocean obtained from CTD sensors. 

The salinity readings exhibited temporal correlation with 

sparsity  𝑘𝑡 = 1 ≪  𝑁 = 512 and spatial correlation with 

sparsity 𝑘𝑠 = 1 ≪  𝐽 = 8. Now, we used DCT and DFT 

measurement matrices for compressing the effective data to 

be transmitted to sink and M-FOCUSS algorithm is used to 

recover the data. 

 

 
 

Figure 9 : Salinity by CTD sensors using DCT measurement matrix. 



Journal of Telecommunication, Electronic and Computer Engineering 

158 e-ISSN: 2289-8131   Vol. 10 No. 1-6  

 
 

Figure 10 : Salinity by CTD sensors using DFT measurement matrix. 

 

The simulation results depicting percentage of exactly 

recovered signal vs Number of measurement (L) using DCT 

measurement matrix for salinity readings is shown in Figure 

9. Similarly, Figure 10 depicts percentage of exactly 

recovered signal vs Number of measurement (L) using DFT 

measurement matrix. RMSE plot of both DCT and DFT 

matrix is shown in Figure 11 for oceanic temperature 

readings.   

 

VI. CONCLUSION 

 

Our simulation results indicate that as the number of 

measurements increases percentage of exactly recovered 

samples increases with negligible RMSE. In our simulations, 

for wireless sensor network with just 8 sensor nodes, energy 

preservation as high as 99.8% is achieved with compression 

ratio of 512:1 which indicates that in large scale wireless 

sensor network our proposed scheme helps to achieve huge 

energy conservation. Thus, enhancement in overall network 

lifetime proportional to energy saving is also achieved. 

Results also indicate that as sparsity decreases the better is 

the recovery with negligible RMSE and DFT measurement 

matrix gives better recovery performance for signal with less 

sparsity. 
 

 
 

Figure 11 : RMSE using DCT and DFT measurement matrices of salinity 

measured using CTD sensors. 
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