
 

 e-ISSN: 2289-8131   Vol. 10  No. 1-6 113 

 

Optimizing Laying Hen Diet Using Particle Swarm 

Optimization with Two Swarms 
 

 

Gusti Ahmad Fanshuri Alfarisy1, Wayan Firdaus Mahmudy1, and Muhammad Halim Natsir2 
1 Faculty of Computer Science, Universitas Brawijaya, 

Malang, Indonesia. 
2Faculty of Animal Husbandry, Universitas Brawijaya, Malang, Indonesia. 

gusti.alfarisy@gmail.com 

 

 
Abstract—The highest cost production of the poultry industry 

is the feed that given to the poultry on daily basis. Unfortunately, 

manual formulation of poultry diet becomes difficult task when 

several nutritional requirements with fluctuating price are 

accounted. Several evolutionary approaches have been 

employed to solve this complex problem such as particle swarm 

optimization (PSO). However, in order to prevent premature 

convergence, PSO highly depends on the diversity of particles 

that influenced by acceleration component. This study presents 

a strategy to improve diversity in PSO using two swarms with 

migration and learning phase (PSO-2S). Numerical 

experimental results show that swarm size of 20 for each swarm, 

total iteration of migration phase of 42,000, and total iteration 

of learning phase of 40,000 are the good choice parameter of 

PSO-2S. While comparison experimental results show that 

PSO-2S can provide good solutions with the lowest cost and 

standard deviation than genetic algorithm, canonical PSO, and 

another migration strategy in multi-swarm PSO. 

 
Index Terms—Feed Formulation; Laying Hens Diets; Least 

Cost; Multi-Swarm Optimization; Particle Swarm 

Optimization. 

 

I. INTRODUCTION 

 

Chicken egg has become worldwide consumption that has 

many uses as valuable foodstuffs. It uses as staple food and 

main ingredient for various types of cake and other meals. It 

contains high-quality protein, a good source of antibodies, 

and affect the mental development of children with low prices 

[1]. Thus, it plays an important role in human health [1]. 

An increasing world population will rise the egg intake and 

farmer should be able to increase the production to meet these 

demands. Apart from the aspect of management, cleanliness 

of cages, temperature, humidity, and others, the fulfillment of 

nutrients is the pre-requisite to increase egg production. The 

nutrient deficiency of laying hen may exhibit typical 

symptoms that make embryos die in the oviduct and may 

decrease egg production [2]. Thus, feed intake by laying hen 

is the critical aspect in order to increase its productivity. 

However, the highest costs production to be incurred is in the 

feed that takes approximately 65-70%. So that farmer may 

save massively if the cost of feed formulation is minimized 

[3]. 

In order to formulate laying hen diet with least cost, the 

robust and scientific method is required. Classical methods 

such as trial and error, pearson square, and algebra have the 

limited way in formulating the feed mixture that meets the 

nutritional requirements with least cost. They became 

complicated and time-consuming when a lot of nutrients and 

cost of price are accounted [4]. To overcome the drawbacks 

of classical methods, linear and nonlinear programming is 

employed to optimize animal diet formulation [5]. Finding 

the best proportion of ingredients can be used in two different 

way and nonlinear approach provides the better formulation. 

It shows us that the relationship between rate of ingredients 

can be nonlinear. However, both linear and nonlinear 

programming techniques only have one objective and highly 

likely the unfeasible formulation is obtained. 

In recent years,  an evolutionary algorithm is employed to 

overcome the drawbacks of these methods. A Study 

conducted by Akif Şahman et al. [6] employed genetic 

algorithm (GA) to find the feed formulation that satisfies 

several constraints with objective function to minimize the 

price of feed formulations. However, the results of their 

studies, GA encounter difficulty to find the optimum 

formulation for poultry. Another study by Wijayaningrum [7] 

employed numerical method to generate initial population for 

GA and show better results. Random injection technique can 

also be utilized to repair the negative solution for evolution 

strategies in Fatyanosa study [8]. To enhance the GA ability 

in finding global optima, Wijayaningrum propose 

hybridization approach between adaptive GA and simulated 

annealing. It can provide a better solution than real-coded GA 

with little additional computation time [9]. The study 

conducted by Rahman et al  [10] proposed evolutionary 

model with hard constraint such as a number of ingredients, 

total weight, and range of protein that must be satisfied 

exactly. While penalty is given to soft constraint which 

determined by the expert for several nutrients. However, the 

expert is needed to formalize the soft constraint. Several 

animals may require a different kind of nutrient penalty. Their 

approach also provides high penalty with the unstable 

formulation. 

Particular swarm intelligence approach like particle swarm 

optimization show promising result for animal diet 

formulation. It provides robust and better formulation than 

real-coded GA and linear programming for cattle, sheep and 

rabbits diet in Altun and Şahman study  [11]. Therefore, PSO 

becomes the best choice to be investigated since it can solve 

complex constrained programming and complex nonlinear 

problem in multidimensional space efficiently [12]. 

However, premature convergence highly likely occurs in 

solving multi-modal problem when there is loss of diversity 

[13]. To overcome this issue, multi-swarm PSO can be used 

to maintain the diversity of the swarm in order to generate 

better solutions, to consistent and to prevent premature 

convergence.  

Over a decade, many studies are being conducted to 

improve the performance of PSO by using multi-populations. 
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The study conducted by He and Wang [14] modify co-

evolutionary technique in genetic algorithm and incorporate 

it into PSO to solve constrained engineering design problem. 

Two kinds of swarm are defined. One is used for finding a 

good solution and other used for finding suitable penalty 

factors. The effective and efficient solution is obtained by 

using co-evolutionary PSO. Liang and Suganthan [15] 

introducing multi-population PSO which operates 

dynamically. Periodically, sub-population filled by other 

particles that selected randomly and self learning is 

performed which learn from its own and another personal best 

position. Lai [16] conduct an experiment with different 

strategies through various migration strategy between 

subpopulations. The results of their study, the migration of 

the gBest particle in source sub-population to the worst 

particle in destination subpopulation with or without 

mutations show better results in the complex problem. 

Influenced by that study, Peng et al., [17] use this migration 

strategy without mutations with multiple learning strategies. 

Each sub-swarm have different strategies and combined into 

one population after the movement process of particles in all 

sub-swarm is finished 80%. 

In this study, we extend the canonical PSO for optimizing 

laying hen diet using two swarms with learning phase (PSO-

2S). The migration strategy that we use is different from the 

above studies and discussed in the next section. We also 

investigate the optimum swarm size and the optimum number 

of iterations. 

 

II. DATA AND METHODOLOGY 

 

A. Data Source 

Laying hen diet optimization is a process to determine the 

best proportion of each ingredient to fulfill the nutritional 

requirements with the minimum cost. For laying hen diet, 11 

different nutrients are accounted. They are crude protein 

(CP), lysine (Lys), methionine (Met), methionine + cystine 

(Met+Cys), tryptophan (Tryp), threonine (Thre), crude fat 

(F), crude fiber (CF), calcium (Ca), total phosphorus (P), and 

metabolizable energy (ME). The nutritional requirement is 

vary based on the age of laying hen which is described in 

detail in Table 1 [18]–[23]. While data on feed ingredients 

was obtained from Faculty of Animal Husbandry, Universitas 

Brawijaya, East Java, Indonesia. It consists of the nutrient 

value and price for each ingredient (see Appendix II for more 

detail). 

B. Canonical Particle Swarm Optimization 

Nature inspiration from bird flocking and fish schooling 

leads to the initiation of particle swarm optimization. The 

particle flies toward its best personal experience and all 

particles best experience. It is a simple and effective 

algorithm to find global optima [24]. The addition of inertia 

weight is proposed by Shi and Eberhart  [25] to control the 

personal and global best position and it becomes a canonical 

PSO as we know today. 

PSO start with random initialization of N particles with D 

dimensions which contain velocity and position under a 

feasible domain. Then particle flies in search space by 

changing its position based on updated velocity. Both 

position and velocity are updated by using Equation (1) and 

(2). Let assume that particle i at particular iteration that 

contain position (x) and velocity (v) of each dimension 

denoted as 𝑃𝑖(𝑡) = { (𝑥𝑖,1, 𝑣𝑖,1), (𝑥𝑖,2, 𝑣𝑖,2), … , (𝑥𝑖,𝐷, 𝑣𝑖,𝐷)}. 

Inertia weight is denoted as w and c1 and c2 are acceleration 

coefficient for cognitive and social component respectively. 

While r1 and r2 are two different random real number between 

0 and 1. 

 

𝑣𝑖,𝑗(𝑡 + 1) = 𝑤 . 𝑣𝑖,𝑗(𝑡) + 𝑐1 . 𝑟1   (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖,𝑗(𝑡)) +

 𝑐2 . 𝑟2   (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑗(𝑡))  (1) 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) + 𝑣𝑖,𝑗(𝑡 + 1)  (2) 
 

C. PSO with Two Swarms 

The proposed PSO-2S is consist of two swarms, let say A 

and B. Each swarm contains N number of particles. This 

algorithm has two phases. First is the migration phase, the 

best particle (gBest) of swarm will migrate to other swarm 

and replace the destinated swarm best particle (gBest). If the 

source swarm is A, then the best particle in its swarm migrate 

to swarm B and vice versa. After the migration phase is 

ended, the whole swarm will enter the learning phase. Swarm 

A will learn from gBest of swarm B by updating the velocity 

that attracted to gBest B and vice versa. After all phases have 

ended, the best gBest of A and B will be the final solution.  

At a glance, the both phases look similar however they work 

differently. After migration, both gBest are swapped and all 

particle will move toward the new gBest. If gBest from 

swarm A has higher fitness than gBest in swarm B, then all 

particles in swarm A will fly toward new gBest and will not 

be attracted anymore to the source gBest. This strategy may 

increase diversity in swarm A. Since all particles fly through 

the worse gBest, it has little chance to improve the new gBest. 

Because the selection of pBest is strict which the value of 

pBest may have higher fitness than new gBest. This situation 

may not apply in standard PSO. After the next migration is 

taking place, the gBest from swarm B will fly to its home, 

swarm A. Since diversity has been increased, it may lead 

swarm A to find a better solution. Therefore, the first 

migration may increase diversity for swarm A and for the 

next migration, when gBest fly back to its home, they may 

enhance the original gBest. 

If swarm A has worse fitness than swarm B, then all 

particles in swarm A will fly toward new better gBest and 

may enhance the new gBest and pBest in swarm A. However, 

when the gBest back to its home and original gBest from 

swarm A is not increased, it may not increase the original 

gBest. This issue is resolved in learning phase. 

In the learning phase, the update position is attracted to 

neighbor gBest that is described in Equation (3) and (4). The 

velocity of particle i in swarm A and B for dimension j 

respectively denoted as 𝑣𝐴𝑖,𝑗 and 𝑣𝐵𝑖,𝑗. While pBest for 

particle i in swarm A and B denoted as 𝑝𝑏𝑒𝑠𝑡𝐴𝑖  and 𝑝𝑏𝑒𝑠𝑡𝐵𝑖 . 

Global best position for swarm A and B denoted as 𝑔𝐵𝑒𝑠𝑡𝐴 

and 𝑔𝐵𝑒𝑠𝑡𝐵 respectively. By using this strategy, it may helps 

all particles learn from neighbor global best and may lead to 

better result. 

 

𝑣𝐴𝑖,𝑗(𝑡 + 1) = 𝑤 . 𝑣𝐴𝑖,𝑗(𝑡) + 𝑐1 . 𝑟1   (𝑝𝑏𝑒𝑠𝑡𝐴𝑖 − 𝑥𝐴𝑖,𝑗(𝑡)) +

 𝑐2 . 𝑟2   (𝑔𝑏𝑒𝑠𝑡𝐵 − 𝑥𝐴𝑖,𝑗(𝑡))  (3) 

 

𝑣𝐵𝑖,𝑗(𝑡 + 1) = 𝑤 . 𝑣𝐴𝑖,𝑗(𝑡) + 𝑐1 . 𝑟1   (𝑝𝑏𝑒𝑠𝑡𝐵𝑖 − 𝑥𝐵𝑖,𝑗(𝑡)) +

 𝑐2 . 𝑟2   (𝑔𝑏𝑒𝑠𝑡𝐴 − 𝑥𝐵𝑖,𝑗(𝑡))  (4) 
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Table 1 

Nutrient requirements for each laying hen stage 
 

No Nutrient Unit Boundary 

Layer Pre 

Starter (1 - 

4 Weeks) 

Layer 

Starter (5 - 

10 Weeks) 

Layer 

Grower (11 
- 16 

Weeks) 

Pre Layer 

(17 - 18 

Weeks) 

Layer (19 - 
50 Weeks) 

Layer Post 

Peak ( > 50 

Weeks ) 

1 Crude Protein (CP) % Min 20.00 19.00 15.50 16.00 16.50 16.00 

2 Lysin (Lys) % Min 1.00 0.90 0.70 0.75 0.80 0.75 
3 Methionine (Met) % Min 0.50 0.40 0.30 0.35 0.40 0.35 

4 
Methionine + Cystine 

(Met+Cys) 
% Min 0.80 0.70 0.60 0.63 0.67 0.65 

5 Tryptophan (Tryp) % Min 0.20 0.18 0.17 0.17 0.18 0.17 

6 Threonine (Thre) % Min 0.75 0.65 0.50 0.52 0.55 0.50 

7 Crude Fat (F) % Min 3.00 3.00 3.00 3.00 3.00 3.00 
8 Crude Fiber (CF) % Max 6.00 7.00 8.00 8.00 7.00 8.00 

9 Calcium (Ca) % Range 0.80 - 1.20 0.80 - 1.20 0.80 - 1.20 2.00 - 2.70 3.25 - 4.25 3.50 - 4.50 

10 Total Phosphorus (P) % Min 0.60 0.55 0.46 0.50 0.55 0.50 

11 
Metabolizable Energy 

(ME) 
Kcal/Kg Min 2900.00 2800.00 2700.00 2700.00 2700.00 2650.00 

 

The step of PSO-2S is shown in the following : 

Step 1: Initialize velocity and position randomly for N 

particles in Swarm A and B in feasible domain. 

Step 2: Evaluate all particles using fitness function, 

initialize pBest and update gBest for both 

swarms. 

Step 3: Update velocity and position by using Equation 

(1) and (2) respectively. 

Step 4: Evaluate particle in swarm A and B. 

Step 5: Update personal best if the current particle is 

better and update gBest if the current particle is 

better for both swarm. 

Step 6: if 𝑡 mod 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑖𝑜𝑑 is equal to zero, then 

swap global best particle in both swarms. 

Step 7: Repeat step 3-6 if the stop condition is not meet. 

Step 8: Update velocity for swarm A and B using 

Equation (3) and (4) respectively. 

Step 9: Update position for both swarms. 

Step 10: Update personal best if the current particle is 

better and update gBest if the current particle is 

better for both swarm. 

Step 11: Repeat step 8-10 if the stop condition is not meet. 

 

D. PSO Application for Laying Hen Diet Formulation 

In employing PSO for laying hen diet formulation problem, 

the main issues are how to encode the particle, how to 

measure the good particles and what is the good parameters 

choice to produce optimum formulation. They will be 

discussed in detail in particle representation, fitness function 

and good parameters choice. 

 

a. Particle Representation 

Each dimension in particle represents the ingredient that 

being optimized. If a particle has D dimension then it will 

optimize D number of ingredients. In feed formulation, each 

ingredient is represented by the percentage and the 

summation of all ingredients that have to satisfy 100%. For 

the accuracy, we use real-coded particle. This particle is 

described in Figure 1. x denotes the position of the particle,  i 

denotes the particular particle, and j denotes the particular 

dimension. During the movement of particles, the summation 

of all ingredients may not satisfy 100%, thus Equation (5) is 

used to adjust the percentage. The negative value may also 

appear during the movement. This issue is handled in the 

fitness function. 

 

 

 
Feed1 Feed2 ... Feedj ... FeedD Total Percentage 

𝑥𝑖,1 𝑥𝑖,2 ... 𝑥𝑖,𝑗 ... 𝑥𝑖,𝐷 
∑ 𝑥𝑖,𝑗 = 100

𝐷

𝑗=1

 

 

Figure 1: Particle representation 

 
𝑥𝑖,𝑗 =   

𝑥𝑖,𝑗

∑ 𝑥𝑖,𝑗
𝐷
𝑗=1

 𝑥 100% (5) 

 

b. Fitness Function 

In this study, the accounted nutrients are crude protein 

(CP), lysine (Lys), methionine (Met), methionine + cystine 

(Met+Cys), tryptophan (Tryp), threonine (Thre), crude fat 

(F), crude fiber (CF), calcium (Ca), total phosphorus (P), and 

metabolizable energy (ME). All nutrients use percentage unit 

except for the ME that use Kcal/Kg. Each age of laying hens 

has a different nutrient requirement which is shown in detail 

in Table 1 [18]–[23]. 

The total nutrients of all ingredients should satisfy the 

nutritional requirements. The different nutrient may require 

different nutritional requirements which can be described 

with different nutritional constraint. The penalty is given 

when the total nutrient requirements violate the boundary. 

While the total cost should be minimized during minimizing 

the penalty. However, the range between the total cost of 

ingredients and nutrient value may also far which depends on 

the currency of a particular country. Therefore, The fitness 

function that has to be maximized can be described as 1 

divided by the summation of normalized cost of all 

ingredients and the summation of the penalty of nutrient 

constraint which is described in Equation (6). 

 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖(𝑡)) =
1

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑜𝑠𝑡(𝑃𝑖(𝑡))+𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑃𝑖(𝑡))
  (6) 

 

The minimum and maximum cost can be identified through 

the combination of ingredients. Let say that a lot of 

ingredients is prepared for laying hen formulation. Then we 

identify the lowest (minCost) and highest (maxCost) price 

among those ingredients in one kg. Since the total rate of each 

ingredients should be 100%, thus we can say that the 

minimum and maximum cost of the formulation that can be 

obtained are 100 multiply by minCost and maxCost 

particularly. Thus, Equation (7) is used to normalized the 

cost. 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑜𝑠𝑡(𝑃𝑖(𝑡)) =  
𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝑃𝑖(𝑡))−100 .𝑚𝑖𝑛𝐶𝑜𝑠𝑡

100 .𝑚𝑎𝑥𝐶𝑜𝑠𝑡−100 .𝑚𝑖𝑛𝐶𝑜𝑠𝑡
  (7) 
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While the total cost is the summation of ingredients rate 

multiple by the cost of that ingredient which is described in 

detail in Equation (8) where cj denotes the cost of particular 

ingredient j. 

 

 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝑃𝑖(𝑡)) = ∑ 𝑥𝑖,𝑗  𝑥 𝑐𝑗
𝐷
𝑗=1    (8) 

 

Each nutrient has a different constraint to be satisfied. It 

may have maximum, minimum or range boundary. In order 

to identify particular nutrient that has a particular nutrient 

constraint, we add max and min property. Let say a is a 

particular nutrient like CP or Ca. If amax is equal to zero, then 

it indicates that it has a minimum boundary. While if amin is 

equal to zero, it indicates that it has a maximum boundary. If 

both properties are not equal to zero, than it indicates that it 

has absolute value in defined range for nutritional 

requirements. Thus, the penalty for a particle is the 

summation of penalty from nutritional constraint which is 

described in detail in Equation (9) where TNa is the total 

nutrient of a.  

 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑃𝑖(𝑡)) =  ∑ {

𝑓𝑚𝑖𝑛(𝑇𝑁𝑎(𝑃𝑖(𝑡))),   𝑎𝑚𝑎𝑥 = 0 

𝑓𝑚𝑎𝑥 (𝑇𝑁𝑎(𝑃𝑖(𝑡))) , 𝑎𝑚𝑖𝑛 = 0

𝑓𝑟𝑎𝑛𝑔𝑒(𝑇𝑁𝑎(𝑃𝑖(𝑡))),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴
𝑎=1   (9) 

 

Total nutrient a of formulation is the summation of each 

proportion of ingredient of  nutrient a which is described in 

Equation (10). Nutritional constraint that has minimum 

boundary is described in Equation (11). Nutritional constraint 

that has maximum boundary is described in Equation (12). 

Nutritional constraint that has range boundary is described in 

Equation (13). 

 

𝑇𝑁𝑎(𝑃𝑖(𝑡)) =  ∑
𝑥𝑖,𝑗

100
 𝑥 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑎,𝑗  𝐷

𝑗=1   (10) 

𝑓𝑚𝑖𝑛(𝑇𝑁𝑎(𝑃𝑖(𝑡))) = {
0, 𝑇𝑁𝑎(𝑃𝑖(𝑡)) ≥ 𝑎𝑚𝑖𝑛

𝑎𝑚𝑖𝑛 − 𝑇𝑁𝑎(𝑃𝑖(𝑡)), 𝑇𝑁𝑎(𝑃𝑖(𝑡)) < 𝑎𝑚𝑖𝑛
   (11) 

 

𝑓𝑚𝑎𝑥( 𝑇𝑁𝑎(𝑃𝑖(𝑡)) ) = {
𝑇𝑁𝑎(𝑃𝑖(𝑡)) −  𝑎𝑚𝑎𝑥, 𝑇𝑁𝑎(𝑃𝑖(𝑡)) >  𝑎𝑚𝑎𝑥

0, 𝑇𝑁𝑎(𝑃𝑖(𝑡)) ≤  𝑎𝑚𝑎𝑥
   (12) 

 

𝑓𝑟𝑎𝑛𝑔𝑒( 𝑇𝑁𝑎(𝑃𝑖(𝑡))) = {

𝑎𝑚𝑖𝑛 − 𝑇𝑁𝑎(𝑃𝑖(𝑡)), 𝑇𝑁𝑎(𝑃𝑖(𝑡)) <  𝑎𝑚𝑖𝑛

0, 𝑎𝑚𝑖𝑛 ≤ 𝑇𝑁𝑎(𝑃𝑖(𝑡)) ≤  𝑎𝑚𝑎𝑥

𝑇𝑁𝑎(𝑃𝑖(𝑡)) − 𝑎𝑚𝑎𝑥, 𝑇𝑁𝑎(𝑃𝑖(𝑡)) > 𝑎𝑚𝑎𝑥

 

 (13) 
 

III. EXPERIMENTAL SETUP AND RESULT 

 

We experiment with swarm size and a number of iteration 

in order to get the best parameter. We also compare 2SL-PSO 

with other algorithms. Scala programming language is chosen 

to develop all algorithms with the same environment to make 

sure that all algorithms are adequately comparable. All 

algorithms were run ten times because of stochastic 

optimization and the average of fitness, penalty, cost and 

standard deviation was compared. Swarm size and iteration 

experiment use A11 as test ingredient (please see Appendix I 

for more detail). 

The good choices of inertia weight (𝑤), cognitive 

coefficient (𝑐1), and social coefficient (𝑐2) are 0.6, 1.8, and 

2.1 respectively which was used in the all following 

experiment. These parameters have been tested in our 

unpublished work. 

 

A. Swarm Size 

The swarm size was tuned from 5 until average fitness 

converges by 5 for both swarms. The number of iteration of 

100,000 was set as maximum iteration, migration performed 

after 5,000 iterations periodically, and 100,000 number of 

iteration was set for learning phase. The optimum swarm size 

then was drawn from the experimental result. 

The obtained result from swarm size experiment is depicted 

in Figure 3. The average fitness increased start from 5 to 20 

for both swarm and there is no improvement over 20. 

Therefore, 20 swarm size for each swarm is considered to be 

the good value for optimum swarm size. 

 

 
Figure 2: The average fitness for different swarm size 

 

B. Number of Iterations 

2SL-PSO use two phases for seeking process. The stopping 

criteria may independently be determined for both migration 

and learning phase. The present study uses an iterative 

method to stop the seeking process of 2SL-PSO. Thus, we 

tune a number of iteration for both phases and the optimum 

values were drawn from the experimental result. The 

optimum swarm size from previous experimentation was 

used for this experiment. 

 

 
Figure 3: The average fitness for different number of iterations in 

migration phase  

 

A number of iterations were tuned from 1,000 until the 

average fitness converges by 1,000 step. The adjustment of 

this experiment does not involve the learning phase in order 

to see the optimum value obtained in migration phase. As 

shown in Figure 3, the average of fitness value was increased 

from 1,000 to 42,000. The improvement of average fitness is 

not significant over 42,000. Therefore, 42,000 considered 

being the good value for total iterations of PSO in migration 

phase (maxIteration). 

In order to perceive the effectiveness of learning phase, the 

different number of iteration should be tuned through 

iteration parameter. Hence, we introduce a parameter called 
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learning iteration (learningIteration) which is similar to PSO 

iterative method to stop the seeking process but applied in the 

learning phase. learningIteration was tuned from 10,000 until 

the average fitness converges with 10,000 step. The same 

swarm was utilized after migration phase. It was run ten times 

and the average fitness was drawn from the obtained result. 

 

 
Figure 4: The average fitness of different learning iteration 

 

As shown in Figure 4, the average fitness is sensitive to the 

learning iteration. The average fitness is gradually increased 

from 10,000 to 40,000 and does not provide significant result 

more than 40,000 iterations. Therefore, we choose 40,000 as 

the good starting value for learning iteration. 

 

C. Comparison 

In this study, we compare our proposed algorithm with 

canonical PSO and real-coded genetic algorithm (GA). We 

also compare it with multi-swarm PSO with BW strategy 

using two swarms by Lai [16] (for simplicity we call this 

algorithm as PSO-BW) in order to see the effectiveness of 

PSO-2S with another migration strategy. The parameters of 

each comparison algorithm are set by considering equity 

comparison. The parameters of each algorithm are described 

in detail in Table 2. 
Table 2  

Parameters value of all algorithms 

 

Algorithm Parameters 

2SL-PSO 

N = 40 (20 for each swarm), maxIteration = 42,000 , 

𝑤 = 0.6, 𝑐1 = 1.8, 𝑐2 = 2.1, migrationPeriode = 

5,000, learningIteration = 40,000 

PSO-BW 
N = 40, maxIteration = 82,000, 𝑤 = 0.6, 𝑐1 = 1.8, 

𝑐2 = 2.1, migrationPeriod = 5,000 

PSO 
N = 40, maxIteration = 82,000 , 𝑤 = 0.6, 𝑐1 = 1.8, 

𝑐2 = 2.1 

GA 
N = 40, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 82,000, 𝑝𝑐 = 0.8, 𝑝𝑚 =

0.3 

 

The comparison results are shown in Table 5. B11 is the 

abbreviation of the different ingredients combination. It 

averages that the number 11 denotes the eleven different 

ingredients that used as test ingredients (please see Appendix 

I for more detail). As shown in Table 5, PSO-2S can provide 

the highest average fitness than other comparison algorithms 

with near zero penalty. PSO-2S also can produce the formula 

that has lowest average cost and the lowest standard 

deviation. 

As shown in Table 5, the formula obtained by PSO-BW 

that use the migration strategy of BW in two swarms decrease 

the average fitness compared to canonical PSO. Replacing the 

worst particle in destinated swarm with the best particle 

source swarm may not fully maintain diversity in both 

swarms which may lead swarm to converge faster. However, 

3 of 5 formula (B11, B12, and B15) is more stable than 

canonical PSO as shown in average standard deviation 

results. Using more than one swarm may lead particle to 

move with different direction based on the acceleration 

component and inertia weight. It may produce different 

global best position and by using more than one swarm, the 

probability of stable formulation that obtained by PSO-BW 

may higher than canonical PSO. These results also show the 

effectiveness of migration phase and learning phase in PSO-

2S to maintain diversity and to make particles in different 

swarm learn each other which may lead to better solution. 

All average fitness of obtained formula from canonical 

PSO are lower than all average fitness from PSO-2S as shown 

in Table 3. These average fitness results associate with the 

average cost which canonical PSO produce higher cost than 

PSO-2S. The migration strategy by swapping the global best 

position periodically lead particle to move that influenced by 

different global best position which may lead the better 

solution is found. It also show us that migration phase may 

maintain or increase diversity in PSO with two swarms. 

Moreover, the formula obtained by PSO-2S also produce 

more stable than canonical PSO.  

Unfortunately, GA produces the lowest average fitness 

than other comparison algorithms. It is not beneficial for GA 

since it uses evolution operator like crossover and mutation 

in evolution process that require more computation time. The 

evolution operator in GA can not compete with particle 

movement in PSO. It may lead GA need an improvement by 

using hybridization or other evolution operator technique to 

enhance the formula. These results show the effectiveness 

and efficiency of PSO-2S compared to GA. 

 
Table 3 

Comparison of PSO-2S, PSO-BW, PSO, and GA 

 
Formula Algorithm Average Fitness Average Penalty Average Cost Average Standard Deviation 

B11 

PSO-2S 12.73639142 1.11E-17 465,916.73 0.000592567 

PSO-BW 12.71228524 0 466,326.62 0.019289156 

PSO 12.72276442 0 466,148.98 0.028552415 

GA 12.20509985 0 475,602.80 0.452420014 

B12 

PSO-2S 20.86232487 0 362,775.34 0.019915684 

PSO-BW 20.49487767 0 365,161.50 0.142064225 

PSO 20.80160571 0 363,170.47 0.164848918 

GA 16.65377807 0 397,526.26 1.420332937 

B13 

PSO-2S 28.24232863 0 270,830.17 0.422434364 

PSO-BW 27.68565396 0 272,292.60 0.791162508 

PSO 27.77125775 0 272,060.02 0.71010195 

GA 21.03616908 0 295,507.15 1.481661054 

B14 

PSO-2S 28.8428542 0 326,039.47 0.131852677 

PSO-BW 28.65813022 0 326,669.97 0.350891842 

PSO 28.66292177 0 326,645.19 0.209546701 

GA 26.5589369 0 334,531.75 1.285590364 

B15 

PSO-2S 35.48962362 6.66E-11 317,769.82 0.104165946 

PSO-BW 34.68139583 2.85E-14 319,612.91 0.71610071 

PSO 35.14186506 5.40E-15 318,583.50 0.857415918 

GA 31.00731739 2.18E-07 329,215.75 1.560244467 
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IV. CONCLUSION 

 

This paper presents how two swarms can be used 

effectively to produce optimum laying hen diet by using 

migration and learning phase. All formula obtained from all 

comparison algorithms can produce near zero penalty that 

shows the quality of the formula. Furthermore, PSO-2S can 

produce the highest average fitness with the lowest average 

cost and average standard deviation. It shows that by using 

PSO-2S can enhance the formula that satisfies the nutritional 

requirement of laying hen with the lowest cost and stable 

results. It also shows that the migration strategy used in 

migration phase in PSO-2S is better than BW strategy that 

replacing the worst particle with best particle periodically. 

The obtained results show the effectiveness and robustness of 

PSO-2S. 

In the future study, more than two swarms may be 

employed with different strategy. By using multiple swarms, 

the particles in different swarm have different directional 

movement and may lead to better solution. 

 
APPENDIX I 

Test Ingredients 
 

Formula Ingredients 
Total 

Combination 

A11 3, 8, 9, 19, 20, 21, 22 ,23, 24, 26, 27 11 

B11 3, 7, 9, 10, 15, 19, 22, 23, 24, 26, 27 11 

B12 0, 3, 4, 5, 6, 19, 20, 23, 25, 26, 27, 28 12 

B13 1, 2, 3, 4, 5, 8, 17, 18, 21, 25, 26, 27, 28 13 

B14 0, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 26, 27, 28 14 

B15 0, 1, 2, 3, 7, 8, 9, 10, 19, 25, 22, 23, 24, 26, 27 15 

 

APPENDIX II 

Ingredient List for Laying Hen Diet 

 

Index Ingredient ME CP F CF Ca P Lys Met Tryp Thre 
Met 

+Cys 

Price 

/Kg. 

0 Bran 2860 10.2 7 3 0.04 0.16 0.71 0.27 0.09 0.57 0.64 3500 

1 Brown Rice 2660 8 1.7 9 0.09 0.04 0.3 0.17 0.1 0.31 0.27 9000 

2 White Rice 3100 7.5 0.4 0.4 0.03 0.01 0.27 0.17 0.09 0.36 0.26 10000 

3 Fine Bran 1630 8 8 12 0.12 0.21 0.77 0.29 0.1 0.62 0.69 2500 

4 Corn Barn 2950 10.6 6 5 0.04 0.15 0.5 0.17 0.27 0.37 0.37 4000 

5 Yellow Corn 3370 8.54 2.61 4.76 0.02 0.1 0.2 0.18 0.1 0.4 0.36 5000 

6 Pollard 1300 15 4 10 0.14 0.32 0.3 0.17 0.1 0.31 0.27 2300 

7 Sorghum 3250 10 2.8 2 0.03 0.1 0.2 0.13 0.12 0.36 0.28 6000 

8 Cassava Flour 2970 1.5 0.7 0.9 0.18 0.09 0.03 0.09 0.14 0.18 0.19 2400 

9 Whey 1910 13 0.8 0 0.9 0.8 0.9 0.15 0.15 0.7 0.45 8000 

10 Cotton Seed Meal 2100 41 4.8 12 0.18 0.33 1.6 0.6 0.5 1.4 1.6 2500 

11 Soybean Meal 2240 42 0.9 6 0.29 0.65 2.9 0.65 0.6 1.8 1.32 5900 

12 Coconut Meal 2200 18.5 2.5 15 0.2 0.57 0.64 0.29 0.2 0.65 0.59 3500 

13 Sesame Meal 1910 45 5 5 2 0.3 1.3 1.4 0.76 1.6 2 6000 

14 Sunflower Seed Meal 1760 31 2.5 21 0.4 0.3 1.3 0.5 0.6 1.5 0.83 5500 

15 Peanut Meal 2200 42 1.9 17 0.2 0.2 1.8 0.5 0.5 1.4 1.3 3900 

16 Dried Buttermilk 2730 32 5 0.4 1.3 0.9 2.4 0.7 0.5 1.6 1.1 2500 

17 Foka 2700 14 1.8 10.1 2.25 1 0.71 0.27 0.09 0.57 0.64 2000 

18 Pea 2200 22 1.1 6 0.15 0.1 1.6 0.31 0.24 0.94 0.48 22000 

19 Soybean 3510 38 18 5 0.25 0.25 2.4 0.51 0.55 1.5 1.15 6500 

20 MBM 2190 52 10 2.8 10 5.1 2.61 0.69 0.27 1.74 1.38 5000 

21 Beer Yeast 1850 35 5 3 0.13 0.5 2.6 2.4 1.63 1.5 2.83 3500 

22 Torula Yeast 1850 48 5 2 0.57 0.5 3.8 0.8 0.5 2.6 1.4 3000 

23 Skimmed Milk 2510 33 0.9 0.2 1.3 1 2.3 1 0.45 1.7 1.42 30000 

24 Fish Flour (Ancovetta) 2830 65 4 1 4 2.6 5.2 1.8 0.8 2.6 2.8 7500 

25 Fish Flour (Herring) 2640 72 10 1 2 1.5 6.4 2 0.9 2.8 3.2 8000 

26 Fish Flour (Menhaden) 2650 54 9 1 5.5 2.8 4 1.3 0.8 2.6 2.24 8500 

27 Quill Flour 2310 85 2.5 1.5 0.32 0.32 1.5 0.5 0.5 0 3.5 5000 

28 Blood Flour 2750 85 1.1 1 0.15 0.32 6.9 6.9 1.1 3.7 8.3 5000 
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