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Abstract—Hyperspectral remote sensing is widely used in 

monitoring vegetation because it provides a high spatial and 

spectral resolution. Thus, its ability to distinguish between 

various objects on earth. However, many problems arise in 

processing Hyperspectral data. In this paper, Pixel Purity Index 

algorithm is used in addressing this issue. PPI is an endmember 

extraction method which is widely used in hyperspectral data 

processing because it can handle mixed pixel on large resolution 

images as well as reduce the dimensionality of the data. In 

vegetation mapping, determining the wavelength plays an 

important role in object reflectance analysis. In this study, 

paddy reflectance characteristics are examined, where results 

show that the characteristics of paddy occur in wavelength 447, 

701, 1024, and 1104 nm. In the region of VIS-red edge (447-

701nm), curve below value of 0.1 can be used to distinguish 

among paddy and non-paddy vegetation reflectance, while the 

combination of the increase/decrease value in red edge-NIR 

(701-1027nm) and NIR-SWIR (1027-1104nm) range, can be 

used as a reference for analyzing the reflectance of rice growth, 

wherein the mean value of red edge-NIR can be used as 

predictors in distinguishing the paddy growth stage.           



Index Terms—Endmember Extraction; Hyperspectral; 

Paddy; Pixel Purity Index. 

 

I. INTRODUCTION 

 

Rice (Oryza sativa L.) is a majority staple food [1] in Asian 

countries, including Indonesia [2]. More than 200 varieties of 

rice in Indonesia has been discovered since 1930, with 

various advantages and characteristics [3]. However, the 

conventional methods of monitoring paddy field through 

ground surveys and interviews with farmers will be time-

consuming [4], also destroying the crop field [5]. Thus, usage 

of digital technologies in resulting a non-destructive and 

detailed measurements in mapping [5] which effective in 

observation time is needed as a solution in managing 

agricultural resources, as well as improve the precision 

assessment [1] 

One of the most methods in natural resource monitoring and 

assessment digital technologies can be done through remote 

sensing  [6]. In remote sensing technology, Hyperspectral 

sensor is widely used in processing information because of its 

ability in provides an accurate and detailed prediction for crop 

yields, distinguish vegetation varieties [9] biochemical 

content estimation as well as the absorption features from 

various object on earth [2], which cannot provided by 

multispectral sensors [2][4]. One of the hyperspectral sensor 

systems is produced by Earth Observer 1 (EO-1) Hyperion 

Imagery, which applied the concept of high spectral, spatial 

and radiometric resolution [8] that separated the features in 

the observation area into a region, through the 

electromagnetic spectrum recorded in the spectral library, 

provides detailed mapping and classification result [7] as well 

as identify various spectral objects [8]. 

However, some problems generally arise in Hyperspectral 

data processing. The data dimensions will also increase along 

with the increase in Hyperspectral spectral resolution. This 

leads to some limitations in computing and data processing 

[10]. In addition, the digital image often contains noise [11], 

and will not representative for processing. Besides, each pixel 

of the digital image will bring up issues or pixel mixture. 

Whereas for classification, a training sample must have a 

clear representation in class property [10]. According to 

Mozaffar et al. [12], a mixed pixel image is an element that 

represents an area and which includes more than one type of 

cover. In remote sensing, the endmember selection is an 

essential part in resulting good mapping into sub fraction 

image [13]. One of the critical issues with hyperspectral 

image processing is the breakdown of a mixed pixel into sub-

pixel and fraction endmember spectral signatures through 

spectral unmixing. Spectral unmixing is a method for 

endmember extraction that is carried out in hyperspectral data 

processing to choose the pure endmember signatures for a 

class [14] or pure pixels that contribute to the mixture [8] 

using a signature matrix to find endmember in the image [15]. 

A method of overcoming this problem is required to 

perform dimension reduction in the dataset by removing the 

band with the high value of noise and replacing with the band 

which has optimal information for further processing of the 

data, as well as methods of selecting endmember features of 

the smallest subset in order to minimize redundant 

information, provide fast computing and perform spectral 

unmixing in mixed pixels of the image. In the last few years, 

many methods were developed to reduce the dimensions of 

the data and for extracting endmember. According to 

Chaudhry, et al. [15] in previous research, some algorithm 

was developed to find endmember in the image data, 

including the Pixel Purity Index (PPI), N-finder (N-FINDR) 

algorithm, Iterative Error Analysis (IEA), Automated 

morphological Endmember Extraction (AMEE) algorithm, 

Minimum Volume Transform, Convex Geometry, and so on. 

However, PPI is more widely used [13] because of its ability 

to extract endmember and its availability in the ENVI 

software package [15][20]. In addition, the Minimum Noise 

Fraction (MNF) method in PPI is widely used in reducing the 

dimensionality of the hyperspectral data by eliminating bands 

with high noise values, and vegetation mapping [21].  

In remote sensing, the reflectance value of an object is 
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represented by a curve or graph known as a spectral signature. 

Spectral library has unique characteristics as a reference for 

the study of various biomass content of vegetation where the 

value can be observed at each wavelength range, such as the 

value of photosynthetic pigments (400-700 nm) and 

chlorophyll absorption (600 nm) in the early range spectra, 

red edge-chlorophyll ( 700-750 nm) on the second range 

spectra, liquid water variation (1080-1170 nm) in the third 

region spectra, variations in leaf waxes and oil (1700-1780 

nm) and cellulose (2100 nm) in the fourth region spectra, the 

amount of soil (2100-2300 nm) and nitrogen/protein (2280-

2290 nm) [16]. One common method used to calculate 

chlorophyll and leaf canopy is an area index (LAI, leaf area 

per unit ground area), which is used as an indicator of the 

status of paddy, based on the phase of growth [17]. 

Hyperspectral remote sensing is widely used as a method of 

getting information about vegetation crop based on LAI in the 

canopy [17-21], [27-28] that can measure the value of 

reflectance in a variety of continuous narrow spectral bands. 

Thenkabail et al [18] recommended 12 narrow bands which 

provide optimum crop information in the range of 350-

1050nm, while 400-2500nm narrowband was for the broader 

range. A total of 22 bands is optimally used to characterize 

vegetation and agricultural crops [19].  

More specifically, many previous research on paddy 

reflectance measurement were conducted. These study 

focuses on the development and selection of spectral 

reflectance signature of paddy and discusses the method of 

identifying paddy reflectance profile [1], which can be used 

to distinguish varieties [2], growth stage [29], panicle [6], 

biomass [5], by using hyperspectral data [4][16][22-26]. 

Furthermore, the paddy spectral reflectance signature will be 

used as a reference in the spectral library. Wavebands 444, 

594, and 1510 nm are useful in monitoring vegetation based 

on LAI value [23]. In addition, Red edge and NIR regions of 

the spectra play an important role in discrimination on the 

crop species [21][28]. While in paddy field monitoring 

research, Wang [23] reported having 15 optimal wavebands 

in 9 phases of paddy growth stage in the range of 350-2500 

nm. Where the frequency of the highest wavelength value 

occurs at 554, 675, 723, and 1633 nm, also 444, 524, 576, 

594, 804, 849, 974, 1.074, 1.219, 1.510, and 2194 nm. These 

waveband values are used as indicators for unique paddy rice 

spectral signature and investigated to measure the value of 

LAI using remote sensing data. Moharana, et al [26] 

identified wavebands rice canopy spectral signatures that are 

sensitive to nitrogen content within the ranges of 350-1050 

nm as the basis for classification in distinguishing between 

rice varieties. Where the results of these studies show the 

spectral wavebands significant in distinguishing paddy are 

519.559 nm in Green region which shows the absorption of 

chlorophyll, 649 nm in Red region, and 729 nm in the Red 

edge which is centered in the range of 700-720 nm [27]. High 

reflectance value in the green region and transition between 

red and NIR reflectance (red edge) which varies between 680-

710 nm, NIR (779.819 nm), and 779.819 nm has the 

reflectance characteristics that can be used to distinguish 

between rice genotypes, because of its sensitivity to nitrogen 

content. According to Song [22], the narrowband that is most 

sensitive to nitrogen content and is useful for distinguishing 

between rice leaves is 552, 675, 705 and 776 nm, in addition 

to narrowband SWIR in 1158, 1378 and 1965 nm which is 

useful in distinguishing the spectra of rice under irrigation 

conditions. According to Kuenzer [25], the characteristics of 

rice becomes visible and will appear on NIR (red edge) within 

the value of chlorophyll in the leaves, of which the radiation 

absorption process is strongly influenced by leaf pigments. 

Shwetang et al. [16], recommended the selected wavelengths 

based on the characteristic value of reflectance spectra of 

paddy that has increased in the range of 33-96 (681-1104 nm), 

102-163 (1164-1780 nm), 183-184 (1981-1991 nm), 187-220 

(2022-2355 nm). Where the value of reflectance spectra 

decreases, and has a negative value and it is zero in bands 8-

32 (426.82-671 nm), 97-101 (1114-1154 nm), 164 (1790 nm), 

and 185-186 (2002-2012 nm). According to Chang et al. [24], 

the characteristics of reflectance of rice during the early 3 

weeks planting is influenced by the soil and water. While in 

phases 6 and 9 weeks, the worth of leaf area will increase, and 

at week 12, values of reflectance in the NIR region will attain 

its maximum value and its minimum value is attained in the 

visible region.  

The objective of this study is to determine the paddy 

endmember based on EO-1 Hyperion imagery using the Pixel 

Purity Index (PPI) endmember extraction algorithm, by 

selecting the most meaningful and unique wavelength in 

describing LAI and optimum nitrogen content information 

for distinguishing between paddy growth stage spectral 

signatures based on the wavelength selection of literature 

study. 

 

II. MATERIAL AND METHODS 

 

A. Data and Study Area  

The location of research is Pasuruan, East Java, Indonesia, 

with a geographical location between 7°40'31.86"-

7°45'1.28"S and 112° 51'55.70"-112°55'43.88"E with 

majority land use of residential and paddy field (Figure 1). 

Satellite imagery data used in this study is EO-1 Hyperion 

Hyperspectral L1Gst. EO-1 Hyperion has 242 bands in Band 

Sequential (BSQ) format, consisting of 70 Visible-Near 

Infrared (VNIR/VIR+NIR) bands in 400-1000 nm spectral 

range with a full-width at half maximum (FWHM) of 10.90 

and 172 shortwave-infrared (SWIR) bands in 900-2500 nm 

spectral range with an FWHM of 10.14nm.  and 172 

shortwave-infrared (SWIR) bands in 900-2500 nm spectral 

range with an FWHM of 10.14nm.  

 
Figure 1: Location of Study area in Pasuruan, East Java, Indonesia. 

 

B. Methodology 

The research methodology was performed using the 

Hyperspectral band statistical analysis, to observe the band 

with optimal value for the subsequent process of the spatial 

and spectral subset. The next step in Hyperion image pre-

processing is conducted through radiometric calibration and 

Atmospheric correction. The TOA reflectance image will be 

used as input in the MNF which aims to eliminate noise in the 

image. Furthermore, the process for endmember image 

extraction is through the PPI and the n-D visualizers. After 
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these endmembers were extracted, further analysis is 

performed to distinguish paddy endmember, based on the 

growth stage. Furthermore, the mapping is done through 

unmixing method to search for pure endmember rice planting 

season through the SAM based on the reflectance image 

input. The research methodology is illustrated in Figure 2. 
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Figure 2: Research Methodology 
 

C. EO-1 Hyperion Pre-processing 

Hyperspectral data processing is required in the initial 

analysis of the spectral statistical data. Spectral analysis is 

useful in selecting a band that has the optimum value to be 

used in subsequent image processing. In the spectral subset 

process, the bands which do not have the information (bad 

bands) are identified and eliminated. The analysis is done by 

observing the statistics spectral band, where the hyperspectral 

band generally do not have a calibration value in band 1-7, 

58-76, and 225-242 [30]. Furthermore, there are a number of 

zero value (non-calibrated) bands in 50, 52, 54, 56, 77, 79, 

81, 83, 85, 87, 89, and 91. Besides, the number of bands in 

the 121-126, 167-180, 222-224 has overlap region value and 

vapor water absorption [31]. These bad band list which 

consist of bands: 1-7, 50, 52, 54, 56, 58-77, 79, 81, 83, 85, 

87, 89, 91, 121-126, 167-180, and 222-242 will be eliminated. 

The spectral subset is conducted using 163 spectral bands 

with optimal information (Table 1). 
 

Table 1 
EO-1 Hyperion Calibrated Band used in the Study  

 

Region Band Wavelength (nm) Total 

VNIR VIR 8-31 426.82 - 660.85 24 

NIR 32-49, 51, 53, 55, 

57 

671.02 - 864.35 22 

SWIR 1 78, 79, 81, 83, 85, 
87, 89, 91, 92-120 

1027.16 - 1346.25 36 

SWIR 2 127-166 1416.94 - 1810.38 40 

SWIR 3 181-221 1961.66 - 2365.2 41 

 

Once the data have selected by using only data with 

meaningful information, the next step is pre-processing data 

by radiometric calibration and atmospheric correction. 

Radiometric calibration is performed on an image which is 

spatially subsetted by administrative boundaries and 

spectrally subset using 163 spectral bands. In the spectral 

statistical properties of the image, Radiance Gains value in 

VNIR is 0.025, while in the SWIR is 0.0125. Radiometric 

calibration will convert the value of Digital Number on the 

VNIR and SWIR band into radiance value in units of W/m2 

sr μm, by dividing the VNIR DN value into LRadiance with 

40 (DN / 40) and dividing the SWIR DN value into 

LRadiance by 80 (DN / 80) [16]. Hyperion radiance is 

calibrated by converting BSQ (Band Sequential) format into 

the BIL (Band Interleave) format using a scale factor of 0.1. 

To obtain spectral information from satellite imagery, the 

reflectance value of the object is necessary. The reflectance 

value is obtained from the TOA (Top of Atmosphere) value. 

The next step in pre-processing is the atmospheric correction 

to convert the DN Radiance value into a reluctance TOA (Top 

of Atmosphere) value using FLAASH module. FLAASH is 

used to reduce the atmospheric effects on the reflectance of 

the object [16]. Results showed that the average visibility is 

10.86 km and water content was 0.69 cm. Furthermore, the 

reflectance value is scaled into reflectance value of 0-1. 

 

D. Minimum Noise Fraction (MNF) 

MNF is used to reduce the computing process through 

segregate dimensionality of the data by determining the 

inherent noise [32]. MNF is conducted through two Principal 

Component (PC) transformations, wherein the first 

transformation will separate and rescale noise in the data 

based on the noise covariance matrix, which the second 

transformation is the noise whitened data [33][34]. The data 

dimensionality is determined by eigenvalues selection in the 

images which divided the data space into two parts. The first 

part will be associated with a large eigenvalue and coherent 

eigenimages, and the second part will be associated with a 

near value to large eigenvalues which are dominated by noise. 

By using coherent portion, the noise will be separated from 

the data, thus improve the spectral processing results. 

Eigenvalues and eigenimages were used to evaluate the 

dimensionality of the data. Eigenvalues are sorted from the 

larger value into a smaller value that only contains noise. The 

image resulted through MNF will be spatially coherent, 

wherein the image which contain noise will not have spatial 

information [34]. 

 

E. Pixel Purity Index (PPI) 

Pixel Purity Index (PPI) is an algorithm developed by 

Research System Software Package, Environment for 

Visualizing Images (ENVI). In Hyperspectral analysis, PPI is 

used to determine the potential endmember spectra of images 

through spectral unmixing, whereby in the n-Dimensional 

spectra space, the endmember spectra will be along the 

margin of the cloud data [34]. The purpose of PPI is to find 

pixel which has the purest spectral value and spatial 

information or the location of each pixel represents pure 

endmember. PPI will compute random vector unit repeatedly 

by projecting the random vector in the n-D scatter plots. The 

extreme pixel which is farthest from the unit vector in each 

projection will be recorded, also the number of occurrences 

of the pixel will be marked as extreme. An image output PPI 

will be generated such that each pixel value corresponds to 

the number of times the pixels are recorded as extreme. In 

calculating PPI, the PPI high value means a pixel image is 

recorded as endmember on many iterations [33][36-37]. 

 

F. n-D Visualizer 

n-dimensional visualizer is an interactive tool used to 

determine the location, identification, and spectral cluster, 

that is, the purest or unique pixel in the image, and visualize 

pixel selected through the PPI scatter plot [33][38-39]. 
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G. Spectral Angle Mapper 

SAM is one of the methods used in addressing the pure 

endmember. This is achieved through unmixing in the mixed 

pixel. In this study, spectral unmixing is conducted using 

SAM to measure the pure spectral value of the object with the 

input spectral library of endmember. Through SAM, 

individual spectra represented as a vector in space 

dimensionality will be compared, and the similarity between 

two spectra is determined by calculating the angle between 

them. Spectral mixing using SAM provides mapping by the 

calculation of the dominant material contained in pixel [33-

34]. 

H. Paddy Reflectance 

Endmember generated through the PPI will be stored in a 

spectral library and analyzed based on the wavelength value 

in the reflectance curve of the object. In this study, the paddy 

reflectance will be grouped based on the paddy reflectance 

characteristics from previous research. Whereas, the VNIR, 

Red edge and NIR region have an important role to play in 

distinguishing between crop species. The value of the VNIR 

will be high in the early phase of planting and will decrease 

after a phase of 12 weeks. Where the leaf area value will be 

high in the initial phase of planting and reach the peak at a 

12-week phase but decrease after 12-15 week phase. 

Selection of wavelength is summarized in Table 2. In the 

initial analysis of vegetation, the VIS value below 0.1 will be 

classified as non-vegetation and vegetation of non-paddy. 

Furthermore, the characteristic curve is distinguished by three 

categories mean value curve on VIS (447-701 nm), red edge-

NIR (701-1027 nm) and NIR-SWIR (1027-1104 nm). 

Analysis is performed on the increase/decrease value as well 

as value mean in the red edge-NIR, and increase/decrease 

value in the NIR-SWIR. 

 

Table 2  
Paddy Wavelength Selection (nm) based on Literature 

 

Range Wang [23] Moharana [26] Song [22] 
Shwetank [16], 

Kumar [2] 
This study 

VNIR (440-1000 

nm) 

VIS (440-730 nm) 

554 

675 

723 

519 

559 

649 

552 

675 

705 

 447-701 (VIS-red edge) 

NIR (730-1000 nm)  
729 

779 
776 681.20 - 1104.19 701- 1027 (red edge-NIR) 

SWIR (1000-2400 nm) 
1633   1164.68 - 1780.09 1027-1104 (NIR- SWIR) 

   1981.86-1991.96  

 
 

III. RESULT 

 

Reflectance Image (Figure 3c) used as input in MNF 

process. MNF is a general reduction method used for 

selecting the spectral bands that have optimal information by 

removing bands with high noise. In determining the 

dimensionality of the band, a spatial coherence value method 

was used with a threshold value on MNF eigenvalue. The 

threshold value of 2 was used in this process, because the 

value close to 1 will have high noise. Where there are 53 

MNF bands that have a value higher than 2 used as a new 

image with smaller dimensionality by removing bands that do 

not have optimal information or noise. However, it still bears 

the value of the entire band information. Eigenvalue in MNF 

Iteration and the process of determining spatial 

dimensionality through Spatial Coherence Value is shown in 

Figure 3a and 3b, while the composite MNF Eigenimages 

output is shown in Figure 4b.  

 

 
 

 

Figure 3: Eigenvalue in (a) MNF iteration; (b) spatial dimensionality determination through Spatial Coherence Value; (c) PPI Iteration. 
 

 

Figure 4: (a) Hyperspectral Reflectance Image; (b) Composite MNF Image; (c) PPI image result; (d) n-D visualizer 48 extreme pixel class; (e) pure pixel 

 

Furthermore, MNF Eigenimages is used as input in the PPI 

process by using 5000 PPI iterations, and a threshold value of 

2. PPI iteration process is shown in Figure 3c, where there are 

872 pure pixels in early iteration and it continues to increase 
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until the iteration of 4200, the number of pure pixels is 4000 

pixels. The output PPI pixel image that represents pure pixel 

is shown in Figure 4c. Furthermore, pure PPI pixel will be 

observed through the n-D visualizers, which shows the 

distribution of pure and extreme pixel that represents each 

class. Pure Pixel occurs around the extreme pixel edge. 

Through n-D visualizers, pure pixel can be selected and 

inserted into extreme class pixels. In the extreme pixel 

selection process, we must consider the majority of the 

selected pixel location. When it is away from the center and 

located near the other extreme, it is possible the pixel is not 

an extreme pixel. Further, it will produce a mixed pixel on 

endmember. Selection of a good pure pixel will consider the 

distance recorded as an extreme point of the center point and 

has a location close to the extreme edge corner pixel. The 

process of determining pure and extreme pixel is shown in 

Figure 4d and 4e.  

The output generated through n-Dvisualizer for pure 

endmember is 48 endmember classes (Figure 5a), where there 

are 4 endmember classes: 1, 3, 6, 42 (non-vegetation) and 44 

classes of vegetation. The paddy reflectance characteristic 

can be observed in the VIS-red edge region of value below 

0.1. Vegetation endmember which has value below 0.1 are 

eliminated because the characteristic spectral curves do not 

meet the spectral curve of paddy.  There are 12 classes of non-

paddy vegetation, that is: 8, 12, 17, 20, 23, 26, 28, 32, 34, 40, 

43, and 47. Thus, in a preliminary analysis, there are 32 

endmember classes that are paddy endmember due to its 

characteristics meet the spectral curve of paddy (Figure 5b). 

 
 

 
 

Figure 5: (a) 48 n-D visualizer Endmember Class; (b) 32 Class of Paddy Endmember reflectance. 
 

Based on the paddy reflectance characteristics, the 

combination of characteristics of increasing/decreasing value 

in the VIS-red edge (447-701 nm), red edge-NIR (701-1027 

nm) and NIR-SWIR (1027-1104 nm) range, may indicate the 

paddy growth stages, wherein the mean value in red edge-

NIR can be used as predictors to distinguish planting stages. 

Based on these characteristics, the endmember can be divided 

into three categories. The first category is a curve that has 

increased value in the red edge-NIR (701-1027 nm) and NIR-

SWIR (1027-1104 nm) range, in the value range of 0.2, and 

0.3. The second category is a curve that has decreased red 

edge-NIR (701-1027 nm) range, but has increased value in 

the NIR-SWIR (1027-1104 nm), in the value range of 

0.2<0.3, 0.3<0.4, and 0.4. The third category is a curve that 

has decreased value in red edge-NIR (701-1027 nm) and 

NIR-SWIR (1027-1104 nm) range, in the value range of 

0.2<0.3 and 0.2<0.3. The classification category is shown in 

Table 3. 
Table 3 

Paddy Growth Stage Category 
 

Red Edge - 

NIR 
Value 

NIR -

SWIR 

Endmember 

Class 
Phase 

Increase 
0.2 

Increase 
21, 24 Week 6 

0.3 2, 35, 36, 39 Week 9 

Decrease 
0.4 

Increase 
4, 5, 29, 45 >Week 12 

0.3<0.4 25, 31 Week 15 

0.2<0.3 7, 9, 11, 18 >Week 15 

Decrease 
0.3-0.4 

Decrease 

10, 13, 14, 15, 16, 
19, 22, 30, 33, 37, 

38, 44, 46, 48, 

Week 15 

0.2-0.3 27, 41 >Week 15 

 

In the first category, the paddy reflectance has increasing 

value in the red edge-NIR and NIR-SWIR range. Reflectance 

can be categorized values range in red-edge and NIR. The 

reflectance value of 0.2 can be categorized as a phase of 6 

weeks in the growth stage because the value of the VIS tends 

to be high (Figure 6a), while the value of 0.3, can be 

categorized as a phase of 9 weeks in the growth stage (Figure 

6b).  

In the second category, the curve has decreased value in red 

edge-NIR (701-1027 nm) but has increasing value in the NIR-

SWIR (1027-1104 nm). Reflectance on the value of 0.4 can 

be categorized as phase planting on more than 12 weeks of 

the growth stage, because the value of the red edge-NIR (701-

1027 nm) has begun to decrease, while the value of the NIR-

SWIR (1027-1104 nm) still has increasing reflectance values  

(Figure 6c). At the 0.3 value <0.4, the reflectance can be 

categorized at the initial phase of 15 weeks in the growth 

stage beginning to show a decline, while the value of the NIR-

SWIR (1027-1104 nm) still show an increase (Figure 6d). 

While in the 0.2 <0.3, reflectance can be categorized as phase 

planting more than 15 weeks, because the value of the red 

edge-NIR (701-1027 nm) began to show a decline, while the 

value of the NIR-SWIR (1027-1104 nm) still show an 

increase, while the value of the VIS will be a minimum 

(Figure 6e). 

In the third category, the reflectance curve has decreased in 

red edge-NIR (701-1027 nm) and NIR-SWIR (1027-1104 

nm), range in value of 0.3<0.4 and 0.2 <0.3. In value of 

0.3<0.4, the reflectance can be categorized within a growth 

period of 15th week growth stage (Figure 6f), while the 

reflectance in the 0.2 <0.3 can be categorized as a phase of 

more than 15 weeks of the growth stage because of the value 

of red edge-NIR (701-1027 nm) diminishing to less than 0.3. 

(Figure 6g). The mean class of endmember reflectance based 

on each week growth stage are shown in Figure 6h. The 

further spectral unmixing process is done through SAM, to 

determined the paddy endmember. The pixel in the individual 

spectra image is compared with the pure pixel in the paddy 

growth stage spectral library endmember. Further, the 

similarity between the two spectra is determined by 
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establishing the rule and calculating the angle between the 

two spectra. The classification image generated trough SAM 

is illustrated in Figure 7. 

 

 

 

 

 

 
 

Figure 6: (a) reflectance endmember in 6th week;(b) reflectance endmember in 9th week; (c) reflectance endmember in 12th week; (d) Reflectance 
endmember of initial stage in 15th week within a range value of 0.3-0.4; (e) reflectance endmember of planting stage in 15th week within a range value of 

0.2-0.3; (f) reflectance endmember in 15th week within a range value of 0.3-0.4; (g) reflectance endmember in week 15th week within a range value of 0.2-

0.3; (h) and reflectance endmember mean class in 6th, 9th, 12th and 15th week. 
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Figure 7: Paddy growth Stage Mapping using SAM 

 

IV. DISCUSSION 

 

In determining the new dimensionality with the MNF, the 

election threshold is important in determining the MNF band 

endmember.  Considering too small threshold value (close to 

1) will only produce a little number of endmember value 

while selecting a large threshold value, the MNF band will 

bring a lot of mixed pixels. Besides, the number of iterations 

and threshold in PPI is also very influential in producing pure 

pixels, which would later be pure pixel around the extreme 

pixel in n-D visualizers. In this study, a threshold value of 2 

was selected in MNF and PPI process. Besides, 5000 

iterations were used in PPI process. It produces 53 MNF band 

and 4000 pure pixels. Which later a number of 48 class of 

pure endmember extracted in the n-D visualizer process. 

In this study, the wavebands that are sensitive to LAI and 

canopy content based on previous research used as a 

reference in build spectral library of paddy growth stage. 

Where the paddy wavelength reflectance optimal at 

wavelength 447, 701, 1024, and 1104 nm. Theses selected 

wavelength are used as the unique wavelength in each phase 

of VIS-red edge, red edge-NIR, and NIR-SWIR. In previous 

research, the selection of the VIS wavelength shows the 

absorption of chlorophyll and biomass content occur in green 

(519.559 nm) and Red (649 nm) [26], vegetation 

discrimination of paddy leaf photosynthetic pigments in the 

426-671 nm [16], varied the wavelength 444, 554, 594, and 

675 nm [23], 552 and 675 nm [22], as well as more generally 

in region of VIS-Red (350-1050 nm) [18]. Which in this study 

reflectance values in VIS-red edge region (447-701nm) with 

values <0.1, are used to distinguish paddy and non-paddy 

vegetation. In a previous study the transition between Red 

and NIR (red edge) has an important role in characterizing 

paddy reflectance based on the leaves chlorophyll content 

[24], varies at 700-750nm [16] [21], 705 and 776 nm [22], 

729 nm [26][28], 723 [23], as well as more generally in region 

of VIS-SWIR 681-1104 nm [16]. In this study, these regions 

are used in determining the paddy growth stage based on the 

combination of the increase/decrease value in the region of 

edge red-NIR (701-1027 nm) and NIR-SWIR (1027-1104 

nm), where the mean value of red edge-NIR used as 

predictors in distinguishing the growth stage. Besides, in a 

previous study the SWIR region used in determining 

variation in water content (1080-1170 nm) [16], also 1158, 

1378 and 1965 nm [22]. In this study, the SWIR wavelength 

is used in determining the paddy growth stage at weeks 9 and 

15, each of which is in the value of 0.3-0.4, wherein the 15th 

weeks the curve value will decrease, while in the 9th weeks 

of the curve value will increase. These determinations were 

based on previous studies of paddy reflectance characteristics 

during 3 weeks early planting, which influenced by soil and 

water content, while in 6th and 9th week phase the leaf area 

will increase, besides in 12th week the reflectance value of 

NIR will achieve the maximum value and achieve minimal 

value in VIS region [24]. 

 

V. CONCLUSION 

 

PPI is a widely used in hyperspectral data processing 

because it can reduce dimensionality, and handle mixed pixel 

on large resolution images. Wavelength Selection in 

determining the optimal paddy vegetation occur in 

wavelength 447, 701, 1024, 1104 nm. In the region of VIS-

red edge (447-701nm), curve below a value of 0.1 can be used 

to distinguish among paddy and non-paddy vegetation 

reflectance. Whereas in determining growth stage, it is based 

on the analysis of reflectance combination of the 

increase/decrease in the value of the edge red-NIR (701-1027 

nm) and NIR-SWIR (1027-1104 nm), where the mean value 

in red edge-NIR can be used as predictors in distinguishing 

between the planting period and the mean value in the NIR-

SWIR is useful in determining the growth stage at weeks 9 

and 15, each of which are in 0.3-0.4 value. Which in week 15, 

the NIR-SWIR curve decreases, while in week 9, the curves 

still experience an increasing value. But the findings still need 

to be developed due to the possibility of information loss in 

endmember selection when deciding on the dimensionality of 

the data through the MNF, and the need for further research 

in modeling the characteristic curve based on paddy variety. 

Also, external factors can influence the paddy growth period 

of the spectral curve. 
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