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Abstract—Methods of estimation and control of BLDC 

presented in this paper. Because BLDCM is a motor without a 

brush then BLDC requires the sensor position to rotate the rotor 

and this is a weakness of the BLDC. A sensorless algorithm of 

Extended Kalman Filter (EKF) was proposed to cover this 

weakness. Additionally, BLDC is also a non-linear system. Thus, 

it is difficult to obtain accurate and good value PID parameter 

controller with a conventional PID method. In this paper, a 

single neural network - Fuzzy PID for BLDC developed. The 

experimental results show that the EKF is able to estimate the 

speed of the BLDC and single neural networks - Fuzzy PID 

controller makes BLDC system faster. 

 

Index Terms—BLDC; Extended Kalman Filter; Sensorless; 

Single Neuron-Fuzzy. 

 

I. INTRODUCTION 

 

The brushless DC (BLDC) motors are increasingly used in 

various sectors such as automotive, industrial, and household 

because of its better speed versus torque characteristics, high 

efficiency, high dynamic response, long operating life, low 

maintenance, good reliability and durability. The BLDC is 

motor without brush and electronically controlled, then to 

turn the rotor, BLDC need rotor position information by 

sensor position. In addition, it also causes problems at high 

cost and reliability of the sensor. Many researchers have 

developed a sensorless technique to overcome this problem. 

Effective solutions will be driving the use of BLDC to all 

areas as a low-cost and high reliability. 

In the last few decades, many sensorless drive solutions 

have been developed to replace sensor position, i.e. with 

trapezoidal back-EMFs [1-9]. The back-EMF voltage sensing 

[1-2], back-EMF integration [5-6], detection of the 

freewheeling diodes conduction [7], flux estimation [3]-[4], 

and motor modification technique [9]. However, almost 

entirely unable to work well at all speeds and still there is the 

problem of accuracy, complexity, and reliability. 

On the other hand, the control of BLDC motor drive 

requires a complex process such as modeling, control the 

selection scheme, simulation and parameter tuning etc. 

Required knowledge and experience to get and tune the 

controller parameters in order to get optimal performance. 

More recently, a variety of modern control solution is 

proposed to design optimal control of BLDC motors [10-11]. 

However, this method is not good because it has not been able 

to obtain the optimal control parameters. 

In this paper, Extended Kalman Filter Estimator and Single 

Neuron-Fuzzy Controller scheme is proposed for BLDCM 

speed estimator and control. The paper is organized in the 

following manner. Section 2 describes of BLDC motor, 

section 3 explains the design of Extended Kalman Filter 

Speed Estimator for Sensorless Brushless DC Motor, section 

4 briefly illustrate the design of Single Neuron-Fuzzy Speed 

Controller for Sensorless Brushless DC Motor, section 5 

presents the comparison between the results obtained by the 

Single Neuron-Fuzzy and Sensorless method and finally, 

section 6 concludes the paper. 

 

II. THE BRUSHLESS DC MOTOR 

 

The BLDCM has three-phase windings and they are Y 

connected. The motor is operated in two-phase conduction 

and six-step driven mode. Under the assumption: (1) The 

distribution of air gap magnetic field is square; (2) All phase 

resistance, phase inductance, and mutual inductance are 

identical; (3) The cogging torque and armature reaction are 

neglected. The switching between two phases is assumed to 

be completed instantaneous; (4) the saturation in magnetic 

circuit and core losses are neglected, the mathematical 

equation of BLDCM can be given as below: 

 va = Ria + L
dia

dt
+ ea (1) 

vb = Rib + L
dib
dt
+ eb (2) 

vc = Ric + L
dic
dt
+ ec (3) 

where va; vb; vc are the phase voltages, R is the stator winding 

resistances, L is the total phase inductances, ia; ib; ic are the 

phase currents, and ea; eb; ec are the back EMFs with 

equation: 

ea = kbωnF(θe) (4) 

eb = kbωnF(θe +
4π

3
) (5) 

ea = kbωnF(θe +
2π

3
) (6) 

and 
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F(θe) =

{
 
 
 

 
 
 1 0 ≤ θe <

2π

3

  1 −
6

π
(θe −

2π

3
)

2π

3
≤ θe < π

−1 π ≤ θe <
5π

3

−1 −
6

π
(θe −

5π

3
)

5π

3
≤ θe < 2π

 (7) 

 

The electromagnetic torque can be presented as: 

Te = J
dωm
dt

+ Bωm + TL (8) 

Te = kt [F(θe)ia + F (θe +
4π

3
) ib

+ F (θe +
2π

3
) ic] 

(9) 

 

 
Figure 1: Equivalent Circuit of BLDC Motor 

. 

III. EXTENDED KALMAN FILTER SPEED ESTIMATOR 

 

The classical Kalman filter was invented for linear systems 

only. Many real systems, including BLDC motor, are 

however non-linear. If the nonlinearities are of minor 

importance, they can often be neglected. Non-linearity that 

cannot be neglected has to be compensated for in one way or 

the other, before a Kalman filter can be applied to the system. 

One effective method to linearize non-linear equations 

around a certain working point is by using Taylor series. 

Applying the Taylor series to nonlinearities in the system 

equations, results in a version of the Kalman filter called the 

Extended Kalman Filter (EKF). This observer is capable of 

handling almost any non-linear system at the cost of 

calculating Taylor series at each time sample. The Extended 

Kalman Filter cannot be proved to be optimal, but this does 

not mean that the solution is bad. On the contrary, the non-

linear version of the Kalman filter usually performs very well. 

The Extended Kalman Filter is necessary to estimate speed 

of BLDC motor continuously by using measured voltages and 

currents. At each time step, the motor current is estimated in 

two stages to correct the predicted speed and the estimated 

flux linkage. The accuracy of the speed estimation depends 

significantly on the motor parameter variation and accuracy 

of the measured voltage and current. 

The main design steps for a speed sensorless BLDC motor 

drive implementation using a discretized Extended Kalman 

Filter algorithm are as follows:   

• Selection of the time domain machine model   

• Discretization of the machine model  

• Determination of the noise and state covariance 

matrices Q, R, P  

• Implementation of the discretized Extended Kalman 

Filter algorithm tuning. 

It is possible to have EKF implementations using time 

domain machine models expressed in the stationary reference 

frame, or expressed in the rotor reference frames. Generally 

the model is expressed in stator reference frame with the 

following assumptions. 

The effects of saturation of the magnetic paths of the 

machine have been neglected, Stator inductance is assumed 

to be constant, Rotor speed deviation is negligible, In EKF, 

the rotor speed is considered as a state variable. This makes 

the system matrix A nonlinear i.e. A = A(X).  

The state space representation of the system is as follows. 

The equations (10) and (11) describe the time domain model 

of the BLDC motor and can be visualized by the block 

diagram shown in Figure. 2. 

 

 
Figure 2: System Configuration 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (10) 

𝑦 = 𝐶𝑥 (11) 

 

with: 

 

𝑥 = [𝑖𝑎 𝑖𝑏 𝑖𝑐 𝜔𝑛 𝜃𝑒]
𝑇 (12) 

𝑢 = [𝑣𝑎 𝑣𝑏 𝑣𝑐 𝑇𝐿]
𝑇 (13) 

𝐴 =
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 (14) 

𝐵 =

[
 
 
 
 
 
 
 
 
1

𝐿
0 0 0 0

0
1

𝐿
0 0 0

0 0
1

𝐿
0 0

0 0 0
1

𝐽
0

0 0 0 0 0]
 
 
 
 
 
 
 
 

 (15) 
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𝐶 = [
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

] (16) 

 

IV. SINGLE NEURON-FUZZY SPEED CONTROLLER 

 

Figure 3 shows the single neuron-Fuzzy controller which 

realized the self-adapting and self-organization by making 

on-line alteration on the weight coefficient of single-neuron 

and the weight coefficient is adjusted by Supervised Hebbian 

Learning Rule 

 

 
 

Figure 3: The structure of the single neuron-Fuzzy controller for BLDCM 

 

Then the learning arithmetic and advanced control 

arithmetic are given as follow: 

𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝐾∑𝑤𝑖(𝑘)𝑥𝑖(𝑘)

3

𝑖=1

 (17) 

𝑤𝑖(𝑘) = 𝑤𝑗(𝑘)∑|𝑤𝑗(𝑘)|

3

𝑗=1

 (18) 

𝑤1(𝑘) = 𝑤1(𝑘 − 1) + 𝑧(𝑘)𝑢(𝑘)𝑥1(𝑘) (19) 

𝑤2(𝑘) = 𝑤2(𝑘 − 1) + 𝑧(𝑘)𝑢(𝑘)𝑥2(𝑘) (20) 

𝑤3(𝑘) = 𝑤3(𝑘 − 1) + 𝑧(𝑘)𝑢(𝑘)𝑥3(𝑘) (21) 

and: 

𝑥1 = ∆𝑒(𝑘) (22) 

𝑥2 = 𝑒(𝑘) (23) 

𝑥3 = ∆𝑒(𝑘) − ∆𝑒(𝑘 − 1) (24) 

 

In formulas given above, wi (i=1,2,3) is the weight 

coefficient of single-neuron. KP, KI and KD are the learning 

velocities of Proportion, Integral and Differential coefficient, 

respectively. Utilizing the modified arithmetic, the 

performances of the single-neuron will be concerned by 

choosing the proportion factor K. When the value of K is 

large, the response of system is fast. But it may also cause a 

large overshoot even unstable. If the value of K is small, the 

system may response slowly. For getting a faster response 

and avoiding overshoot, the value of K should be adjusted on-

line according to the different response stage. When the error 

is large, the value of K should be large to get a fast response. 

When the error is small, the value of K should be small to 

avoid overshoot and keep the system stable. 

Fuzzy logic is a flexible, general purpose method of 

implementing non-linear functions. So it is useful in control 

applications. One of its advantages is that a combination of 

expert knowledge, expressed either linguistically or 

numerically, machine learning, or other techniques may be 

used in its design. So, in this paper, it is employed to tune the 

parameter K online. 

Normally, the Fuzzy Logic has three main stages, given in 

Figure 4, which are as follows (1) Fuzzification, a process of 

converting a crisp input to a fuzzy input. (2) Inference engine 

and rule-base, in this stage, fuzzy inputs are transformed into 

a fuzzy output by dealing with fuzzy rules and as a result the 

response corresponding to the inputs is produced. Usually, 

the expert’s knowledge about how to control a plant could be 

expressed by a set of linguistic control rules. So the rule-base 

can be setup according to expert’s knowledge. (3) 

Defuzzification, a process of producing a crisp output on the 

base of a fuzzy one. 

 
Figure 4: The Structure of Fuzzy Logic Controller 

 

 
 

Figure 5: Error MF 

 

 
 

Figure 6: Gain MF 

 

The fuzzy partition of input space and output space will be 

partitioned into seven-term set, show in Figure 5 and Figure 

6. The linguistic values of linguistic variables of E and K are 

the same as NB (negative big), NM (negative medium), NS 

(negative small), Z (zero), PS (positive small), PM (positive 

medium), PB (positive big). The inference rules, show in 

Table 1, are got from the analysis of the dynamic response 

period which is then tuned through the experiment. At the 

beginning, the value of K should be large in order to get a fast 

response. When the rotor speed reaches near the command 

speed, the value K should be small in order to avoid overshoot 

and unstable. By using Fuzzy to adjust the parameter K of the 
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single neuron, response speed of the system can be improved 

and overshoot of the system can be reduced. 

 
Table 1 

Inference Mechanism 
 

Error 

NB NM NS Z PS PM PB 

PB PM PM PS PM PM PB 

 
V. SIMULATION RESULTS 

 

The BLDC model drive with speed and current controllers 

is simulated in Matlab. The speed response for a step change 

in input is shown in Figure 7. 

A Figure 8 is the actual and estimated rotor positions by 

EKF algorithm. The motor speed command is initially set at 

104.7 rad/sec (1000 rpm) and at t = 0.05 sec; the reference 

speed is change to 157.1 rad/sec (1500 rpm). The estimated 

speed response clearly follows the actual speed after the 

transient period. 

In Figure 9, the curve stands for the speed response of the 

system under the control of the conventional PI controller. 

The parameters of the conventional PI controller are tuned as 

KP = 1.78, KI=0.0178. 

With no load, the speed response of the BLDCM under the 

control of the proposed controller is shown in Figure 10.  

When under the control of the proposed controller, the system 

responds quickly with little overshoot. The steady state error 

is zero. From Figure 10, it can be seen that after using the 

Fuzzy to adjust the parameter K, the dynamic response of the 

system is much quick 

 

 
Figure 7: Speed Response with ref 1000 RPM 

 
Figure 8: Actual and Estimated speed (EKF) responses 

 
Figure 9: Actual and Estimated speed (EKF) responses with PI Controller 

 
Figure 10: Actual and Estimated speed (EKF) responses with Single 

Neuron-Fuzzy Controller 

 

VI. CONCLUSION 

 

The speed of the BLDC motor is estimated using Extended 

Kalman Filter method. The speed is determined from the 

measured line voltages and currents of the motor.  The 

simulation results prove that sensorless operation of the 

indirect position controlled drive system is possible. For the 

controller, while training the single neuron, the value of 

parameter K is very important. By using the universe 

approximation ability of fuzzy logic system, a single neuron-

fuzzy controller is developed to tuning the value of parameter 

K online.  Experimental results prove that a high performance 

is achieved under the control of the proposed controller. The 

using of single neuron fuzzy makes the BLDC with faster 

dynamic response. 
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