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Abstract—We propose an approach to the interpretation of 

natural 12-lead Electrocardiography (ECG) is the standard tool 

for heart disease diagnose but measuring all 12 leads is often 

awkward and restricted by patient movement. In 1988, Gordon 

Dower has introduced the EASI-lead monitoring system that 

can reduce the number of electrodes from 10 downto 5 and also 

increases mobility of patients. In order to gain all 12-lead ECG 

back from the EASI-lead system, Dower’s equation was 

proposed then. Ever since various attempts have been explored 

to improve the synthesis accuracy. To find the best transfer 

function for synthesizing the 12-lead ECG from EASI-lead 

system, this paper presents a number of Machine Learning 

techniques including Support Vector Regression (SVR) and 

Artificial Neural Network (ANN). The experiments were 

conducted to compare the results from those Machine Learning 

methods to those of Linear Regression, Polynomial Regression, 

and Dower’s methods. The results have shown that the best 

performance amongst those methods with the least Root Mean 

Square Error (RMSE) values were obtained by SVR using 

spherical kernel function followed ANN, 3rd-order Polynomial 

Regression, Linear Regression and Dower’s equation, 

respectively. 

 

Index Terms—12-Lead ECG System; ANN; Dower’s Method; 

EASI Electrodes; Linear Regression; Polynomial Regression; 

SVR. 

 

I. INTRODUCTION 

 

The conventional 12-lead electrocardiogram (ECG) is a 

representation of the electrical activity of the heart, recorded 

from electrodes on the body surface, and used for diagnosing 

other cardiac disorders. The standard 12-lead ECG signals are 

Lead I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6 

signals. Typically for measuring 12-lead ECG requires 9 

electrodes to be positioned strategically on the body and one 

extra electrode to be linked to ground [1,2] as shown in Figure 

1(left). 

 
Figure 1: Standard 12-lead ECG System (left) vs. EASI-lead System (right) 

Typically, the ordinary 12-lead cannot measure ECG signal 

for 24 hours because it would be sensitive to noise and artifact 

while moving body. There must be a way to reduce the 

number of electrodes, resulting in less sensitive to noise while 

moving body.  

The evolution of ECG systems with number of electrodes 

reduction started in the 1940s [3], but the earliest notable 

work on 12-lead ECG system derivation occurred in 1968 [4] 

with the launch of a 12-lead ECG derived from the spatial 

vectorcardiography previously introduced by Frank [5]. 

Reducing the quantity of leads from the original 12-lead ECG 

yielding fewer measurement electrodes and consequently less 

number of wires, is possible by deriving the missing signals 

from the actual measured electrodes. 

Until 1988, EASI-lead system has been introduced and 

developed by Dower and his team [6]. It is a quasi-orthogonal 

system, accommodating only 5 electrodes as shown in Figure 

1(right). The electrodes are positioned at the upper sternum 

for S electrode, at the lower sternum for E electrode and at 

the left and right mid-axillary lines for A and I electrodes, 

respectively, while the final electrode can be placed at any 

position for ground. The advantage of EASI-lead system is 

less sensitive to noise and increases mobility of patients.  

After the derivation method of 12-lead ECG system with 

Dower’s equation via EASI electrodes has been presented, 

various improvements on coefficients in Dower’s equation 

have been investigated ever since.  

In 2002, Feild and his team [7] presented the improvement 

on 12-lead ECG derivation using E, A, S and I signals as 

input data via new EASI coefficients. This has been done by 

using larger data set.  

Later, during 2010-2014, Oleksy and his team [8, 9, 10] 

introduced various machine learning and regression methods 

as opposed to Dower’s equation, to synthesize the standard 

ECG signals from EASI lead system. Nonetheless, their 

experimental result seemed to compare among only those of 

Linear Regression against those with Feild’s EASI 

coefficients and lastly those of the original Dower’s equation. 

The dataset conducted in this work has been obtained from 

Physionet Database [11]. 

Recently, the Nonlinear Regression methodology has been 

proposed as the synthesis approach to derive the 12-lead ECG 

signals from EASI leads. This yielded to less error compared 

to the previous Dower’s and Linear methods.  

This paper attempted to refine the primary EASI ECG 

model and achieve the finest result for deriving 12-lead ECG 

signals. Five different methods have been explored here. The 

first is the original Dower’s Method. Then two common 

regression approaches were conducted; Linear and 

Polynomial Regressions. Finally, two effective Machine 
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Learning techniques; Support Vector Regression (SVR) and 

Artificial Neural Network (ANN) were studied. 

 

II. METHODOLOGY 

 

The following subsections briefly revise the basic concepts 

of all five machine learning and regression approaches used 

in this work. 

 

A.  Dower’s Method 

The synthesis method implemented in Dower’s method 

used paired signals A-I, E-S and A-S derived as a weighted 

linear sum of these 3 base signals as in the Equation (1).  

- Lead A-I projects the heart’s electrical activity in                  

a direction of left-to-right.  

- Lead E-S projects the heart’s electrical activity in                  

a direction of caudal-to-cranial. This lead also contains      

a considerable anterior-posterior component.  

- Lead A-S projects the heart’s electrical activity both in 

directions of left-to-right and caudal-to-cranial. This 

lead also contains a small anterior-posterior component.  

𝐿𝐷𝑒𝑟𝑖𝑣𝑒𝑑 = 𝑎(𝐴 − 𝐼) + 𝑏(𝐸 − 𝑆) + 𝑐(𝐴 − 𝑆)            (1) 

where  

𝐿𝐷𝑒𝑟𝑖𝑣𝑒𝑑  is states any surface ECG lead; 

a, b, and c are empirical coefficients, elaborated by Dower, 

which can be positive or negative values with up to 3 decimal 

points of accuracy. 

 

B.  Linear Regression 

Linear Regression [12] is the longest-established and most 

acknowledged predictive model. In the early 18th Century, 

Gauss introduced the means of reducing the sum of the 

squared error to fit a straight line, resulting as a linear 

function, to a group of data points. A Linear Regression 

model is the outcome from that process. 

 The pattern of the function is shown in Equation (2). 

 

𝑌𝑛 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4               (2) 

 

where:   

𝑌𝑛 is the transfer function of Lead 𝑛 signal;  

𝑛 is those 12 standard leads; 

𝛽0 is the constant and 𝛽1 ,..,𝛽4 are coefficients of 𝑋1,.. 𝑋4 

from the fold providing the minimum RMSE of Lead 𝑛 

signal; 

𝑋1,𝑋2,𝑋3, and 𝑋4 are Lead E, A, S, and I, respectively. 

 

C.  Polynomial Regression 

Polynomial Regression [13] is a pattern of Linear 

Regression to place nonlinear data into a least squares Linear 

Regression model, allowing a single 𝑌 variable to be 

forecasted by fragmented the 𝑋 variable into various degrees 

of polynomial function. The pattern of the function is shown 

in Equation (3). 

 

𝑌𝑛 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2
2 + 𝛽3𝑋3

3+. . +𝛽𝑛𝑋𝑛
𝑥           (3) 

 

where:   

𝑌𝑛 is the target variable;  

𝑋1, 𝑋2,... 𝑋𝑛 are the predictor variables; 

𝛽0 is the constant; 

𝛽1, 𝛽2 ,…𝛽𝑛 are the coefficients that multiply the predictor 

variables. 

   In Polynomial Regression, different of degrees 𝑥 variable 

are sequentially included to the function resulting in the 

changing of the best fit line shape; i.e. a unswerving line for 

including degree of 1, a parabola for including degree of 2 

and an S-curve for including degree of 3.  

The experimental result from the previous research [14], 

conducted on the comparison of Polynomial Regression with 

degree 2, 3, 4 and 5, showed that the best performance for 

deriving 12-lead signals from EASI-lead system on 

PhysioNet Dataset obtained from the degree 3. Therefore, the 

3rd-order Polynomial Regression has been chosen in this 

paper. The function is shown in Equation (4). 
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(4) 

 

where:   

𝑌𝑛 is the transfer function of Lead 𝑛 signal;  

𝑛 is those 12 standard leads; 

𝛽0 is the constant and 𝛽0 ,..,𝛽33 are coefficients of 𝑋1,.. 𝑋4 

from the fold providing the minimum RMSE of Lead 𝑛 

signal; 

𝑋1, 𝑋2,𝑋3, and 𝑋4 are Lead E, A, S, and I, respectively. 

 

D.  Support Vector Regression (SVR) 

Support Vector Regression [15, 16] in the past, has been 

used to resolve nonlinear problems. The basic concept behind 

SVR is to project input data into higher dimensional space to 

map nonlinearity in original data as to perform linear in 

higher dimensional space using a kernel function and build 

the separated hyper plane. The SVR function is shown in 

Equation (5). 

 

𝑓(𝑋) = 〈𝑊 ⋅ K(𝑋)〉 + 𝑏                               (5) 

 

where: 

𝑊 is the weight vector;  

𝑋 is the input column vector; 

K is the kernel function for mapping data to higher 

dimension; 

𝑏 is the bias value.  

The dataset used to train with SVR is {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑙 , 𝑋 ∈

ℝ𝑛, 𝑌 ∈ ℝ where 𝑋𝑖 is the input data vector, 𝑌𝑖  is the desired 

output vector, 𝑋 is the input space, 𝑌 is the output space.  

“Support Vector”, from Figure 2, is all of those of input data 

𝑋𝑖 that gives value of 𝑓(𝑋) function within ±𝜀 interval, 

where the deviation (𝜀) is known as “Loss Function” in the 

function. 
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Figure 2: Soft Margin 𝜀 − Insensitive in Linear SVR. 

 

From Figure 2, the optimization was used to find weight 

vector (𝑊) as in Equations (6-8). 

 

.
1

2𝑊,𝜉𝑖,𝜉𝑖
∗

𝑚𝑖𝑛 ‖𝑊‖2 + 𝐶 ∑ (𝜉𝑖 , +𝜉𝑖
∗)𝑙

𝑖=1                       (6) 

 

Subject to: 

𝑌𝑖 − 〈𝑊 ⋅ 𝐾(𝑋, 𝑋𝑖)〉 − 𝑏 ≤ 𝜀 + 𝜉𝑖

〈𝑊 ⋅ 𝐾(𝑋, 𝑋𝑖)〉 + 𝑏 − 𝑌𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

} 

 

where:  

𝐶 is a constant;  

𝑊 is weight vector acquired by solving with optimization 

problem as in Equation (7). 

 

𝑊 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑋𝑖)

𝑙
𝑖=1                              (7) 

 

Substitute Equation (7) into Equation (5), the 

function 𝑓(𝑋) can be written as in Equation (8). 

 

𝑓(𝑋) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑋, 𝑋𝑖) + 𝑏𝑙

𝑖=1                       (8) 

 

where; 

𝐾(𝑋, 𝑋𝑖) is a kernel mapping function between 𝑋 and 𝑋𝑖. 

The performance of SVR is majorly dependent on kernel 

function being used. RBF, ERBF and Spherical Kernels have 

been explored and tested in the past experiment [17]. It has 

been found the best of kernel function is Spherical Kernel for 

mapping input data to a higher dimension as in Equation (9).  

The parameter 𝜀 was set to 0.001 and parameter 𝐶 was set to 

5,000. 

 

𝐾𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙(𝑋, 𝑋𝑖) = 1 −
3

2
(

‖𝑋−𝑋𝑖‖

𝜎
) +

1

2
(

‖𝑋−𝑋𝑖‖

𝜎
)

3

       (9) 

 

where: σ is the bandwidth of the kernel function. 

 

E.  Artificial Neural Network (ANN) 

Earlier, Artificial Neural Network [18, 19] has been used 

for synthesis 5 signals (V1, V3, V4, V5 and V6) from 3 leads 

(Leads I, II and V2) of the standard 12-lead ECG signals [20]. 

However, in this paper, an ensemble of N multi-layer 

feedforward ANN trained via a supervised back-propagation 

algorithm was utilized. Every independant ANN comprises 

of a single input layer with 4 input neurons (Lead E, A, S and 

I in this case), a single output layer with 12 output neurons 

(12 derived signals), 4 hidden layers and N ranges from 10 to 

60 neurons per each hidden layer. The activation function 

type use a linear activation function for the output neurons 

and chosen sigmoid transfer function for the hidden layer is 

shown in Equation (10). 

𝑓(𝑛) =
2

1+𝑒𝑥𝑝(−2𝑛) − 1                               (10) 

 

III. RESEARCH EXPERIMENTS 

 

The experiments have been conducted to compare synthesis 

methodologies for synthesizing the 12-lead ECG from EASI-

lead system. All dataset, used in this work, are obtained from 

Physionet Database consisting of each signal to shuffle data 

sets in order to prevent over fitting and using five-fold cross-

validation, to find the best parameter. The following steps 

present how to derive the transfer function; 

1. The total dataset from Physionet has been into two 

parts (90:10). The former ‘90%’ part was used as 

“Train Data” to find constant, coefficients, kernel 

parameters of SVR and nodes for ANN while the latter 

‘10%’ part was used as “Blind Test Data”.  

2. As five-fold cross-validation was utilized in this work, 

the first 90% dataset was then divided into 5 equal 

parts/folds. Each round a single fold is used for testing, 

leaving the other 4 folds for training. In the nth round, 

fold#n is used for testing while the remaining folds are 

used for training. For instance, in the 2th round, fold#2 

is used for testing while fold#1 and folds#3-5 are used 

for training. In total 5 rounds are processed. To find 

the average errors in the regression of each fold, the 

Root Mean Squared Error (RMSE) [21] in the 

Equation (11) is used. 

 

RMSE =  √
1

𝑛
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1                             (11) 

 

where:  

𝐴𝑡 is the real value in time 𝑡; 

𝐹𝑡 is the predicted value in time 𝑡; 

𝑛 is the number of samples of testing set in each fold. 

 

3. From all 5 folds, the RMSE value of the Lead I, II, III, 

aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6 signals 

are considered. In order to find the transfer function of 

each signal, the fold that provides the minimum RMSE 

value of that signal must be identified. Then the 

constant, coefficients, parameter σ and number of 

hidden layers from that fold will be substituted into the 

equation of Dower’s method in Equation (1), Linear 

Regression in Equation (2), 3rd-order Polynomial 

Regression in Equation (4), SVR with Spherical 

Kernel Function in Equation (8) and ANN in Equation 

(10).  

4. After obtaining the transfer function models for each 

signal is tested with Blind Test Data of 10% to find 

RMSE values. 

5. Finally the big test in order to evaluate these transfer 

functions can then be started. By feeding the data set 

into these 12 transfer functions to get the calculated 

Lead 𝑛 signals, the RMSE values of each lead signal 

can be determined from the calculated signals and the 

ones from the Physionet Dataset. 

 

IV. RESULT COMPARISON 

 

The experiments with 5-fold cross-validation to find RMSE 

values between five different methodologies (Dower’s 

method, Linear Regression, 3rd Degree Polynomial 
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Regression, SVR with Spherical Kernel Function and ANN) 

and the original signals from PhysioNet Database for all 12 

leads provided the following results listed in Table 1. 

The highlighted values in Table 1 showed the minimum 

RMSE values amongst 5 folds for each of 12 leads. The 

constant, coefficients, parameter σ and the number of hidden 

layers from those folds with the minimum of RMSE value 

was then used for deriving 12-signal ECG. The transfer 

function models for each signal is tested with Blind Test Data 

to find RMSE value. 

Plots of all 12 signals measured using standard 12-lead 

ECG method, derived using EASI-lead system by Dower’s 

Method, Linear Regression, 3rd-order Polynomial 

Regression, ANN and SVR are shown in Figure 3(a-l). 

 
Table 1  

RMSE (mV) 
 

 Signals Fold#1 Fold#2 Fold#3 Fold#4 Fold#5 

D
o
w

er
’s

  
M

et
h
o
d

 

I 33.608 30.026 29.693 30.993 28.152 

II 34.885 31.966 30.140 35.927 34.266 

III 54.207 47.657 42.845 54.354 46.284 

aVR 25.672 24.062 24.508 24.917 25.700 

aVL 40.243 35.191 32.393 38.959 32.672 

aVF 44.897 40.078 36.279 46.002 40.899 

V1 27.421 25.007 25.286 29.801 23.904 

V2 41.022 37.179 37.895 44.646 41.476 

V3 50.933 46.322 44.833 52.422 43.699 

V4 53.287 50.880 56.162 64.026 55.620 

V5 31.169 30.070 29.124 34.890 31.224 

V6 23.477 19.720 17.422 19.670 18.782 

L
in

ea
r 

R
eg

re
ss

io
n

 

I 24.380 23.373 25.086 26.846 23.861 

II 40.678 37.272 35.344 41.899 40.131 

III 47.419 42.953 40.908 51.353 44.795 

aVR 23.714 22.505 22.823 24.059 24.254 

aVL 31.746 29.126 28.967 35.214 29.755 

aVF 42.462 38.477 36.111 44.901 40.819 

V1 20.115 17.880 20.466 27.402 20.187 

V2 40.981 37.045 37.696 44.856 41.359 

V3 48.055 44.943 44.525 51.549 44.171 

V4 54.586 50.523 55.933 63.799 55.354 

V5 24.043 22.057 23.111 29.470 25.179 

V6 10.954 10.418 9.750 11.955 9.857 

3
rd

-o
rd

er
 P

o
ly

n
o

m
ia

l 

R
eg

re
ss

io
n

 

I 17.379 16.317 18.023 17.639 17.048 

II 28.369 27.776 28.404 28.935 27.767 

III 30.080 28.788 29.954 29.751 28.641 

aVR 18.089 17.655 18.479 18.785 18.048 

aVL 20.055 18.831 20.232 19.719 19.045 

aVF 27.916 27.084 27.763 27.989 26.889 

V1 10.840 10.844 13.231 12.229 10.678 

V2 23.665 22.462 23.680 24.776 24.169 

V3 29.356 29.651 27.100 30.229 29.983 

V4 37.434 34.822 36.892 35.951 36.219 

V5 15.996 14.881 18.403 16.401 16.135 

V6 6.052 5.691 5.524 5.793 5.999 

A
N

N
 M

et
h
o
d
. 

I 15.531 9.701 8.750 11.049 12.214 

II 15.057 11.920 10.991 13.882 16.181 

III 21.757 15.570 18.367 18.204 12.575 

aVR 10.120 10.029 10.836 9.781 9.596 

aVL 14.087 10.589 10.880 14.257 11.826 

aVF 14.302 16.003 15.173 14.232 13.011 

V1 5.862 5.144 5.667 5.705 4.872 

V2 12.278 12.235 15.370 12.922 12.814 

V3 10.987 14.442 14.943 16.975 14.379 

V4 25.985 21.524 25.205 23.915 28.019 

V5 9.917 7.056 9.527 9.061 7.904 

V6 3.964 3.974 4.515 5.809 5.198 

S
V

R
 u

si
n

g
 S

p
h
er

ic
al

 K
er

n
el

 

I 3.836 3.351 4.191 3.454 3.259 

II 6.352 6.995 7.666 4.444 4.280 

III 8.827 7.420 7.739 6.043 5.994 

aVR 5.803 6.391 7.003 4.060 3.910 

aVL 5.688 4.011 4.049 4.189 4.024 

aVF 7.924 7.619 8.155 5.357 5.276 

V1 2.257 2.384 4.534 2.390 2.707 

V2 4.908 5.269 7.252 5.597 5.427 

V3 6.482 7.102 5.225 7.098 5.050 

V4 10.287 9.880 9.105 9.316 9.802 

V5 4.480 3.552 6.412 4.190 4.708 

V6 2.656 4.743 5.500 2.763 1.884 

 

 
(a) Lead I Signal. 

  
(b) Lead II Signal. 

 
(c) Lead III Signal. 

 
(d) Lead aVR Signal. 

 

 
(e) Lead aVL Signal. 

 
(f) Lead aVF Signal. 
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(g) Lead V1 Signal. 

 
(h) Lead V2 Signal. 

 
(i) Lead V3 Signal. 

 
(j) Lead V4 Signal. 

 
(k) Lead V5 Signal. 

 
(l) Lead V6 Signal. 

 

Figure 3: Derived VS Original signals of 12-lead ECG. 

 

The average RMSE values for each lead signal with all 5 

techniques are listed in Table 2 and depicted in bar graph 

format in Figure 4. 

 
Table 2 

RMSE (mV) tested with Blind Test Data. 
 

Signals Dower’s Linear Poly ANN SVR 

I 35.288 25.665 16.877 10.628 3.608 

II 32.476 37.704 26.563 11.930 6.587 

III 54.648 46.660 27.867 13.126 7.773 

aVR 24.088 22.037 17.375 12.103 4.576 
aVL 41.950 32.607 18.582 13.446 4.043 

aVF 43.574 40.427 25.881 15.329 7.521 

V1 27.438 20.460 12.233 5.763 2.212 
V2 40.801 40.807 24.545 14.672 6.331 

V3 49.371 47.581 29.865 16.942 6.461 

V4 54.262 53.723 36.206 25.997 11.901 
V5 35.083 24.579 16.783 11.025 8.558 

V6 23.152 12.079 5.876 5.003 3.682 

Average 38.511 33.694 21.554 12.997 6.104 

 

 

 
 

Figure 4: Comparison of Average RMSE Values of 12 Leads Across Five Different Methods with Blind Test Data 
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Lastly, Figure 5 illustrates the relative of average RMSE 

value (mV) comparisons for Dower’s method, Linear 

Regression, 3rd-order Polynomial Regression, ANN and SVR 

techniques. 

 

 
 

Figure 5: Comparison of Average RMSEs from Dower’s method, Linear 

Regression, 3rd-order Polynomial Regression, ANN and SVR. 

   

V. CONCLUSION AND FUTURE WORK 

 

The EASI-lead electrocardiogram (ECG) system, which is 

fundamental on the dipole hypothesis of vectorcardiography, 

has offered the possibility of synthesizing the standard 12-

lead ECG.  

Whereas, previous research introduced the idea of applying 

nonlinear regression and machine learning techniques for the 

ECG derivation from EASI system, most if not all of those 

work have yet shown simply the results from Linear 

Regression. 

This paper has presented and compared various 5 different 

Machine Learning and Regression techniques to finding 

transfer function models for deriving the standard 12-lead 

ECG from 4 measurement signals (E, A, S and I) in the EASI-

lead system.  

The experimental results from Table 2 and very obvious 

from Figure 5 showed the best performance in this work with 

least RMSE error values for all signals, was obtained from 

the SVR method with Spherical Kernel Function followed by 

ANN, 3rd-order Polynomial Regression, Linear Regression 

and Dower’s method, respectively.  

Additionally, from the experiments conducted in this paper, 

it can be concluded that Machine Learning and Nonlinear 

equation such as SVR, ANN and Polynomial Regression are 

much more effective in deriving ECG system than 

conventional linear equations such as Linear Regression and 

Dower’s method.. 
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