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Abstract—We study compressive sampling for internet traffic 

reconstruction. Compressive Sampling (CS) requires that the 

traffic satisfies the low-rank feature. Low-rank states that traffic 

matrix can be represented in the right domain which the entire 

necessary information is concentrated in a low number of 

coefficients. In this paper, we compared three low-rank 

representation, which are Principal Component Analysis (PCA), 

Singular Value Decomposition (SVD), and Singular Value 

Decomposition Mean (SVDM). This low-rank representation is 

applied to four CS reconstruction algorithms, namely: Sparsity 

Regularized Singular Value Decomposition (SRSVD), Singular 

Value Decomposition L1 (SVDL1), Iteratively Reweighted Least 

Square (IRLS), Orthogonal Matching Pursuit (OMP), and 

Interpolation. The SVD outperforms the others low-rank 

representation techniques when used together with SRSVD, 

SVDL1, IRLS, and Interpolation. The SVDM gives the best 

NMAE when applied to the OMP. The computational times is 

linear with the number of the rank matrix. For all 

reconstruction algorithms, SVDM takes the least computational 

times.  

 

Index Terms—Compressive Sampling; Low-Rank; Internet 

Traffic Matrix; SVD. 

 

I. INTRODUCTION 

 

Compressive sampling is a novel sampling paradigm, that can 

recovery certain signal from a few number of samples [1] [2]. 

CS must fulfill three requirements, which are the sparse 

representation of the signal, Restricted Isometric Property 

(RIP) on measurement matrix, and signal reconstruction 

algorithm [3]. Sparsity expresses that the signal contains 

many elements of zero. A non-sparse signal can be 

represented as a sparse signal when expressed on the right 

basis. In matrix form, we call sparsity as low-rank. 

Generally, internet traffic matrix is not sparse nor in a 

spatial domain or temporal domain, but it has sparse 

representation if present in a proper transform domain. There 

is an opportunity to achieve low-rank matrix on the right 

domain so that CS performs compression with minimal 

sample quantities and high accuracy.  

Some research explore the low-rank traffic matrix 

representation methods [4], [5], [6], [7], [8]. Lakhina, et al. 

[4] proposed Principal Component Analysis (PCA) to reduce 

high dimensional traffic matrix by finding the most variance 

of dataset that represents data structure. However, this 

method is less accurate because it does not consider the 

temporal correlation between time instants [5]. Another 

research [6] explored Singular Value Decomposition (SVD) 

to represent low dimension matrix using the largest singular 

values. In [7], the authors modified the eigen values of SVD 

decomposition to improve the accuracy of noise signal. In 

literature [8], the authors observed space-time wavelet 

transform to minimize wavelet coefficients. This technique  

only requires 3% of  wavelet coefficients for traffic matrix 

reconstruction. 
Related to the second requirement, the compressed signal 

can be restored to the original signal perfectly if the 

measurement matrix satisfied RIP. This property states that 

compressed signal has the same euclidean norm with the 

original signal [9], [10]. 

Signal reconstruction algorithms consist of greedy 

algorithm and convex optimization. A greedy algorithm can 

approach the original signal by selecting the solution of a 

local optimal in each iteration.The example of a greedy 

algorithm is Orthogonal Matching Pursuit (OMP) that 

developed by Tropp [11]. Convex problems can be solved by 

linear programming using l1 magic software to obtain the 

optimum solution [12]. 

In this paper, we apply Singular Value Decomposition 

Mean (SVDM) to achieve low-rank representation of internet 

matrix traffic. SVDM is a modification of SVD by averaging 

the singular values on diagonal matrix [7]. We compare the 

SVDM with others low-rank methods such as PCA [4] and 

SVD [13]. The binary matrix is used as measurement matrix 

that expresses routing matrix. The routing matrix elements 

are ‘0’ and ‘1’ [14], [15]. The reconstruction algorithms that 

we use are Sparsity Regularized Singular Value 

Decomposition (SRSVD) [6], l1-norm optimization [12], 

Iteratively Reweighted Least Square (IRLS) [16], Orthogonal 

Matching Pursuit (OMP) [11]. These algorithms are 

compared with Interpolation [17]. 

This paper is arranged as follows: Section II describes 

compressive sampling theory for internet traffix atrix. Low-

rank representation techniques is given in Section III. Section 

IV contains analysis of experimentals. Conclusions and 

future works is given in Section V. 

 

II. COMPRESSIVE SAMPLING FOR INTERNET TRAFFIC 

MATRIX 

 

The application of compressive sampling technique 

requires two processes, namely acquisition and 

reconstruction. The aim of the acquisition process is to 

descent into a small number of samples so that the data size 

is more proper for storage or delivery. The reconstruction 

process, on the other hand, recovers the original signal. 

CS application on the Internet TM can solve the ill-posed 

problem of: 

 

𝒀 = 𝑨𝑿 (1) 
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where 𝒀 ∈ ℝ𝑚×𝑡 denotes the traffic measurements on the 

links, 𝑨 ∈ ℝ𝑚×𝑛 expresses routing matrix, and 𝑿 ∈ ℝ𝑛×𝑡 

describes a matrix of the traffics. 

A traffic matrix (𝑿) expresses the total of traffic that flows 

from a source to a destination (SD) node of the network. We 

consider that there are 𝑐 nodes in the network, then the 

number of SD pairs is 𝑛 = 𝑐2. If there is time-series TM 

measurement (𝑡 = 1,2, . . . 𝑇), hence 𝑿 ∈ ℝ𝑛×𝑡. In CS, TM 

must satisfy low-rank property so that TM must be expressed 

in the proper domain. 

The routing matrix 𝑨 acts as measurement matrix in CS that 

defined as follows: 

 

𝐴𝑖𝑗 = {
1, if the link 𝑖 is the part of the path for SD pair  𝑗 
0, otherwise                                                                       

 (2) 

 

In CS, measurement matrix must fulfill RIP condition. The 

minimum number of its rows is given as [14]: 

 

𝑚 ≥ 𝑘 (𝑟 𝑙𝑜𝑔
𝑛

𝑟
), (3) 

 

where: 

𝑘 : Determined by the range from 1 to 2 

𝑟 : Number of ranks on the matrix 𝑿. 

 

In the reconstruction process, the TM reconstruction (𝑿̂) 

should be as close as possible to the original TM (𝑿). 

Reconstruction algorithms work to find an optimal solution 

using norm 𝑙𝑝 norm, as follows: 

 

min ‖𝑿̂‖
𝑝
, subject to 𝑨𝑿 = 𝒀 (4) 

 

where: 

‖. ‖𝑝 : 𝑙𝑝 norm with 0< 𝑝 ≤ 1, that used to determine the 

difference between 𝑿 and 𝑿̂ 

 

III. LOW-RANK REPRESENTATION 

 

This section presents our proposed system that shown in 

Figure 1 [17]. Traffic internet is obtained from the direct 

measurement. This traffic is represented on a temporal 

domain so as forming a matrix with size 𝑛 × 𝑡, 𝑛 denotes the 

number of links on the networks and 𝑡 denotes the number of 

measurements at one time. We explore three low-rank 

representation methods, such as SVD, SVDM, and PCA. The 

system performs compressive sampling using binary 

measurement matrix. The reconstruction algorithms such as 

SRSVD, SVDL1, IRLS, OMP are compared with 

Interpolation technique. The scaling process aims to find 

proportional amplitude level. 

Traffic Matrix (X)

Low-rank 

representation 

using SVD, SVDM, 

PCA
Compressive 

Sampling

Reconstruction 

Algorithm 

(SRSVD, SVD-

l1, IRLS, OMP)

Scaling Process
Recontructed 

Traffic Matrix  (X)

Binary 

Measurement 

Matrix (A)

 
 

Figure 1: Block diagram of proposed system for low-rank representation on 

internet traffic reconstruction using CS [17] 

 

A. Principal Component Analysis (PCA) 

The principal component of 𝑿 ∈ ℝ𝑛×𝑡 is based on an 

eigenvector decomposition to obtain a low-rank traffic matrix 

approximation. PCA overcomes high dimensionality problem 

that described in 𝒀 = 𝑷𝑿. This problem can be solved by 

finding some orthonormal matrix 𝑷, which 𝑆𝑌 =
1

𝑡−1
𝒀𝒀𝑻 =

1

𝑡−1
𝑷𝒁𝑷𝑻. The matrix  𝒁 = 𝑿𝑻𝑿 is a symmetric (𝑛 × 𝑛) 

matrix. For the symmetric matrix 𝒁, can be decomposed into 

[18]: 

 

𝒁 = 𝚬𝐃𝐄𝑻 (5) 

 

where: 

𝑫 : Diagonal matrix of 𝒁 

𝚬 : Matrix composed by the eigenvector of 𝒁 as 

columns. 

 

The matrix 𝒁 has 𝑟 ≤ 𝑛 orthonormal eigenvectors, where 

𝑟 is the rank of matrix 𝒁. If each row (𝑝𝑖) of the matrix 𝑷 is 

an eigenvector 𝑿𝑻𝑿 so that 𝑷 = 𝐄𝑻 and  𝒁 = 𝑷𝑻𝐃𝑷. The 

diagonal term of 𝑆𝑌 as the covariance matrix can be rewritten 

as: 

 

       𝑺𝒀 =
1

𝑛 − 1
𝑷𝒁𝑷𝑻 (6) 

                                 =
1

𝑛 − 1
𝑷(𝑷𝑻𝐃𝑷)𝑷𝑻

=
1

𝑛 − 1
(𝑷𝑷−𝟏)𝐃(𝑷𝑷−𝟏)

=
1

𝑛 − 1
 

 

 

Performing PCA is quite simple: (1) the dataset 𝑿 is 

subtracted with the mean of row 𝑥𝑟, (2) The principal 

component of 𝑿 are the eigenvectors of 𝑿𝑿𝑻 or the row of 

𝑷. The PCA solution is given in Equation (7). 

 

𝑿̂ = 𝑬𝑻(𝑿𝒎×𝒏 − 𝑿̅𝒎×𝒏) (7) 
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B. Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) is a potential 

technique for representation the low-rank internet traffic 

matrix [6]. Consider an internet traffic matrix 𝑿 ∈ ℝ𝑛×𝑡 . The 

eigenvalue (𝜆𝑟) and eigenvector (𝒗𝒓) of 𝑿𝑻𝑿 fulfills [19]: 

 

(𝑿𝑻𝑿)𝒗𝒓 = 𝜆𝑟𝒗𝒓 (8) 

 

A set of (𝑣1,  𝑣2, … , 𝑣𝑅) represents orthonormal (𝑡 × 1) 

eigenvectors with associated eigenvalues (𝜆1,  𝜆2, … , 𝜆𝑅) of 

the 𝑋𝑇𝑋. The eigenvalues are ordered from largest to smallest 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑅. Each principal component can be 

calculated by 𝑣𝑟  dan 𝑢𝑟, as follows: 

 

𝑿𝒗𝒓 = 𝜎𝑟𝒖𝒓 (9) 

 

The set of (𝑢1, 𝑢2, … , 𝑢𝑅) is an orthonormal (𝑛 × 1) of 

𝑿. The singular value 𝜎𝑟 = √𝜆𝑟 is a positive real value that 

represents the quantity of energy captured by principal 

component 𝑟. The new diagonal matrix (𝚺 ) is arranged by the 

singular values with the result that 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑅, 

 

𝚺 =

[
 
 
 
 
𝝈𝟏 0 0 0 0
0 𝝈𝟐 0 0 0
0 0 ⋱ 0 0
0 0 0 𝝈𝑹 0
0 0 0 0 𝟎]

 
 
 
 

 (10) 

 

For the orthogonal matrices 𝑼 and 𝑽, where 𝑼 = [𝒖𝟏, 𝒖𝟐,
… , 𝒖𝒏, 𝑽 = [𝒗𝟏,  𝒗𝟐, … , 𝒗𝒕], 𝑼 = 𝑼−𝟏,and 𝑽 = 𝑽−𝟏. SVD 

decomposes 𝑿 according to Equation (11). 

 

𝑿𝑽 = 𝑼𝚺 (11) 

𝑿𝑽𝑽𝑻 = 𝑼𝚺𝑽𝑻 

        𝑿 = 𝑼𝚺𝑽𝑻 
 

 

The maximum number of linearly independent rows or 

column in a matrix is equivalent to the number of non-zero 

singular values that termed as the rank of the matrix. The 

matrix 𝑿 is low-rank if it satisfies 𝑹 ≪ min (𝒏, 𝒕). For the 

low-rank matrix, it can be represented as: 

 

𝑿 = 𝑼𝚺𝑽𝑻 = ∑ 𝜎𝑟

min (𝑛,𝑡)

𝑟=1

𝒖𝒓𝒗𝒓 ,
𝑻  (12) 

 

where: 

𝒖𝒓   𝑟𝑡ℎ columns of 𝑼 

𝒗𝒓  : 𝑟𝑡ℎ  columns of 𝑽 

 

The low-rank approximation of 𝑿 is equivalent to [6]: 

 

𝑿̂ = ∑ 𝜎𝑟

R

𝑟=1

𝒖𝒓𝒗𝒓
𝑻 = ∑𝜎𝑟

R

𝑟=1

𝑩𝒓 (13) 

 

where: 

𝑿̂ : Top rank estimate of 𝑋  

𝐵𝑟 : Matrix that composed by rank-1 

 

C. Singular Value Decomposition Mean (SVDM) 

SVDM is a modified SVD technique. In SVD, the TM is 

decomposed to produce 𝑼, 𝚺, and 𝑽𝑻. On the other hand,  

SVDM is obtained by modifying the singular value matrix (𝚺) 

from the Equation (12) [7]. The modified singular value is an 

average of 𝚺 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝜎1, 𝜎2, … , 𝜎𝑟), which in 𝜎1 ≥ 𝜎2 ≥

⋯ ≥ 𝜎𝑅, 𝑀𝑒𝑎𝑛 = 𝜎 =
𝜎1+ 𝜎2+⋯+𝜎𝑅

𝑅
 so that 𝚺 =

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝜎1̅ , 𝜎2̅̅ ̅, … , 𝜎𝑅̅̅ ̅) = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝜎, 𝜎,… , 𝜎), which is 

𝜎1̅ = 𝜎2̅̅ ̅ = ⋯ =  𝜎𝑅̅̅ ̅ = 𝜎. The modified singular value is 

shown in Equation (14). 

 

𝚺 =

[
 
 
 
 
𝝈𝟏̅̅ ̅ 0 0 0 0
0 𝝈𝟐̅̅ ̅ 0 0 0
0 0 ⋱ 0 0
0 0 0 𝝈𝑹̅̅̅̅ 0
0 0 0 0 𝟎]

 
 
 
 

 (14) 

 

The modified form of the SVDM decomposition from 

Equation (12) and (13) can be expressed as follow: 

 

𝑿 = 𝑼𝚺𝑽𝑻 = ∑ 𝜎𝑟̅̅̅

min (𝑛,𝑡)

𝑟=1

𝒖𝒓𝒗𝒓
𝑻 (15) 

 

𝑿̂ = ∑ 𝜎𝑟̅̅̅

R

𝑟=1

𝒖𝒓𝒗𝒓
𝑻 = ∑𝜎𝑟̅̅̅

R

𝑟=1

𝑩𝒓 (10) 

 

IV. EXPERIMENTAL RESULTS 

 

A. Abilene Data 

We use the actual traffic data that is taken from the Abilene 

network. The Abilene consists of 12 nodes (𝑐 = 12) so that 

there are 144 pairs of source destination  (𝑛 = 144) [20]. The 

Abilene data set contains link count measured at every 5 

minutes interval. For a day, there are 288 values of five 

minutes aggregates. The traffic matrix is shown in Figure 2 

for a period of 1st April 2004. 

 

 
 

Figure 2: Traffic measured for a day on 1st April 2004 

 

B. Performance Metric 

The performance metrics that used to measure the accuracy 

of the TM reconstruction are Normalized Mean Absolute 

Error (NMAE) and computational times. These metrics are 

commonly used for CS in network application [6] [21]. 

NMAE is defined as follows: 

 

𝑁𝑀𝐴𝐸(𝑿, 𝑿)̂ =
∑ |𝑿(𝒊, 𝒋) − 𝑿̂(𝒊, 𝒋)|N

𝑖,𝑗

∑ |𝑿(𝒊, 𝒋)|N
𝑖,𝑗

, (17) 

 

where: 

𝑿(𝒊, 𝒋)  : Original TM 

𝑿̂(𝒊, 𝒋)  : Reconstruction TM 
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Computational time is the amount of time required by an 

algorithm to perform the computing processes. The time 

measurement is started since the input inserted to the output 

produced [22]. 
 

C. Comparing of Low-rank Type in Different 

Reconstruction Algorithms 

We evaluate the effect of low-rank types on various 

reconstruction algorithms. These algorithms use the same 

regularization, which is 𝑘 = 2 for RIP condition, input rank 

parameters are 𝑟 = 30 and 𝑟 = 100, and binary value as 

measurement matrix. 

In Figure 3, The X-axis represents the CS method, the Y-

axis represents the low-rank type, and the Z-axis represents 

the value of NMAE. SVD gives the best NMAE value when 

used in conjunction with reconstruction algorithms, namely 

SRSVD, SVDL1, and IRLS. Whereas SVDM shows a good 

performance when applied to OMP algorithm. PCA, on the 

other hand, gives the best results when combined with IRLS 

and SRSVD. 

 

 
(a) NMAE for rank = 30 

 

 
(b) NMAE for rank = 100 

 

Figure 3: NMAE of Low-rank type in different reconstruction algorithms 

(a) for rank=30, (b) for rank=100. 

 

SVD performs low-rank approximation with the number of 

rank-𝑅. The SVD concept finds optimum 𝑅 vectors that 

together reach a subspace in which the most of the data 

sample data located on until a small reconstruction error. The 

rank-𝑅 represents the number of singular values that illustrate 

the significant information of matrix. 

PCA, on the other hand,  reduces the dimension of a matrix 

by projecting the matrix to a different matrix such as 

diagonalized covariance matrix. The PCA procedure finds the 

deviation between the data sample and means data sample 

that depends on the proper distribution around the mean. 

SVDM principle finds the average of singular value on the 

matrix and replaces the old singular value with the new ones. 

This case illustrates that significant information of matrix 

spread so that the use of minimum rank-𝑅 can not represent 

the actual matrix. 

 

 
(a) Computational time for rank = 30 

 

 
(b) Computational time for rank = 100 

 

Figure 4: Computational time of Low-rank type in different reconstruction 
algorithms (a) for rank=30, (b) for rank=100. 

 

In Figure 4, The X-axis represents the CS method, the Y-

axis represents the low-rank type, and the Z-axis represents 

the value of computational time. Figure 3 showed that SVDM 

yields the lowest computational time when used together with 

all of the reconstruction algorithms. The SVDL1 algorithm 

takes the longest computational time than others. 

 

D. Rank Parameter Sensitivity 

This simulation aims to determine the effect of the number 

of rank on the performance of all algorithms. The observation 

is done with rank value (𝑟 = 10, 20, … , 140).  Figure 5 

shows the performance results associated with a rank 

parameter. The X-axis represents the low-rank type and the 

Y-axis represents the NMAE value. For all low-rank types, 

the NMAE value increases with the increasing number of 

rank since 𝑟 = 60. We find that the rank input (𝑟 = 60) gives 

the best performance. In CS, rank is an input parameter that 

is used to calculate the number of samples as shown in 

Equation (3). This is a requirement to satisfy RIP condition. 

It can be concluded that the more of samples of CS 

processing, the performance of algorithms will be an 

increase. 
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(a) NMAE in SRSVD 

 

 
(b) NMAE in SVDL1 

 

 
(c) NMAE in IRLS 

 

 
(d) NMAE in OMP 

 

 
(e) NMAE in Interpolation 

 
Figure 5: Rank parameter sensitivity in different reconstruction algorithms 

(a) SRSVD, (b) SVDL1, (c) IRLS, (d) OMP, (e) Interpolation 

 

Figure 6 shows the influence of input parameter rank to the 

computational time. The X-axis represents the low-rank type, 

Y-axis represents rank value and the Z-axis represents 

computational time. We conclude that the greater number of 

rank, the computational time is getting longer. For all 

algorithms, SVDM has lowest computational time. In 

SRSVD algorithms, the low-rank representation types show 

that the computational process needs in a short time (0.08-

0.12 s). Whereas in SVDL1 algorithms, all types of low-rank 

representation have in a long computational time, which is 6-

19s. 

 

 
(a) Computational time in SRSVD 

 
(b) Computational time in SVDL1 

 
(c) Computational time in IRLS 

 
(d) Computational time in OMP 

 
(e) Computational time in Interpolation 

 

Figure 6: The effect of rank parameter to computational time in different 

reconstruction algorithms (a) SRSVD, (b) SVDL1, (c) IRLS, (d) OMP, (e) 
Interpolation 
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V. CONCLUSIONS 

 

CS in network application provides the good TM 

reconstruction results and fast computational time especially 

if the TM represents the proper base so that the TM has low-

rank property. The SVD low-rank type has good performance 

when it is applied together with appropriate reconstruction 

algorithms, ie: SRSVD, SVDL1, IRLS, and Interpolation. 

SVDM, on the other hand, can increase the performance 

when works with OMP algorithm. The number of ranks is 

very influential to the number of sample for the 

reconstruction process. The best performance is obtained 

when the input rank of 𝑟 = 60. The computational time is 

increasing as increasing the number of ranks. The SVDM 

produces the fastest computational time compared to the 

others on the use of all reconstruction algorithms. The 

computational time in the SVDL1 algorithm is the worst for 

all low-rank types, which is 8-20 seconds. 

Further advances optimizes the measurement matrix and 

modifies the reconstruction algorithms simultaneously based 

on right low-rank representation. We can expand future work 

by using static and dynamic routing protocol.  
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