

 e-ISSN: 2289-8131 Vol. 10 No. 1-4 119

Factor Determination in Prioritizing Test Cases for

Event Sequences: A Systematic Literature Review

Johanna Ahmad and Salmi Baharom
Software Engineering and Information System Department, FSKTM, UPM, Malaysia.

gs43485@student.upm.edu.my

Abstract—The generation of test cases is a challenging phase

in software testing. The process of test case generation becomes

more expensive and time-consuming when the test suites become

larger. Many researchers have proposed the test case

prioritization (TCP) technique to schedule test cases, so that

those with the highest priority are executed first before lower

priority test cases. One of the performance goals of TCP is the

rate of fault detection, which is a measure of how quickly faults

are detected within the testing phase. However, the existing TCP

technique has some limitations. This paper presents the results

of a systematic literature review (SLR) of relevant primary

studies as evidence of the existence of TCP in the area of event

sequences. Consequently, five major techniques and 10 factors

were identified and analysed. This study aims to review and

identify techniques and factors that influence the process of

assigning weight values in TCP processes. The proposed factors

need to be evaluated in terms of their contribution to the

performance of the TCP technique. Some researchers believe

that a combination of factors might be required to produce

unique weights during the TCP processes. Nevertheless, most

studies applied the random method or did not provide any

information regarding the same weight value issues.

Index Terms—Unique Weight; Test Case Prioritization;

Systematic Review.

I. INTRODUCTION

In the software development phase, testing software for large

systems is often expensive and time-consuming. Hence, the

importance of testing grows as the size and complexity of the

system increases. Whenever the time for testing increases, the

costs will rapidly increase. In recent years, numerous TCP

techniques have been proposed and applied. This study is part

of the on-going research towards enhancing the existing TCP

technique for event sequences. The flexibility of event

sequence application enables countless usage scenarios and a

combination of interactions [1]. This characteristic makes the

application of event sequences even more complex compared

to traditional applications due to the possibility of the former

having infinite input domain. Within a defined timeframe, it

is not practical, and impossible to test every possible input.

TCP has been proven to be beneficial in testing activities

[2]. In recent years, numerous researches have proposed

methods that combined multiple factors and applied the

assigning-weight value approach in their TCP techniques.

One of the challenges in TCP is to prioritize test cases that

may have the same priority value during these TCP processes.

Based on the literature review, most researchers would apply

the random technique to break the ties. The random technique

is a fundamental testing method in which the test cases will

be selected randomly from the test suites [3]. Although the

random technique is popular, its effectiveness has been

argued by many since it creates bias issues [3], [4]. Based on

that reason, researchers have concluded that there is a need

for a unique weight approach to solve the same priority value

issues. Therefore, this SLR paper aims to represent the

techniques and factors that can influence the process to

produce unique weight in TCP. This paper is structured as

follows; Section II will present details of the systematic

review process. Section III will discuss the extraction of

information to answer the research questions. Section IV will

present discussions of the results. The conclusion will be

expressed in Section V.

II. REVIEW METHOD

The review processes for this SLR used the guidelines

proposed by [5], [6]. According to [5], three main phases are

involved in this SLR; planning the review, conducting the

review, and reporting the review, as shown in Figure 1.

Figure 1: SLR phases and stages in this study

A. Research Questions

Over the years, different methods, approaches, and

techniques have been proposed to reduce the effort, time, and

cost taken during testing. This SLR seeks to understand and

summarise the existing evidence on TCP techniques.

Furthermore, this review endeavours to identify the

techniques and factors that affect the effectiveness of the

existing TCP techniques. According to [6], five components

can be used to formulate research questions for the SLR,

which are known as the PICOC. Table 1 shows the criteria

and scope of such research questions.

To achieve the aim of this study, the two research questions

are:

RQ1 : What are the existing techniques used to prioritize

test case?

1) Planning
• Identify the

need for a

review

• Specify the

research
question(s)

• Develop a

review

protocol

• Evaluate the

review

protocol

2) Conducting

• Identification

of the research

• Selection of

primary
studies

• Study quality

assessment

• Data

extraction and

monitoring

• Data

Synthesis

3) Reporting
• Results and

Discussion

• Format the

main report

• Evaluate the

report

Journal of Telecommunication, Electronic and Computer Engineering

120 e-ISSN: 2289-8131 Vol. 10 No. 1-4

RQ2 : What are the factors that can affect the

effectiveness of TCP technique?

Table 1

Criteria and Scope of Research Questions

Criteria Scope

Population
Sequence Based, Event Based, Search Based, State

Based
Intervention Test case prioritization technique

Comparison NA

Outcomes

Techniques and factors of TCP technique applied in
Sequence-Based, Event Based, Search Based, State-

Based

Context
Review(s) of any empirical studies of the test case

prioritization

B. Data Sources

Ten electronic databases were used to primarily extract

data, namely, the ACM Digital Library, Emerald Insight,

Elsevier, Google Scholar, IEEE Xplore Digital Library,

ScienceDirect, Scopus, SpringerLink, Taylor & Francis

Group, and Wiley. These selections were based on the online

databases subscribed by the University Putra Malaysia's

Library under the Computer Science subject category.

C. Search Strategy

The initial search strings were software, test case

prioritization, sequence based, search based, event based, and

state based. Trial searches with a combination of terms were

derived from the research questions. The proceeding search

string was then constructed using the Boolean "and", and

Boolean "or" operators for alternatives synonyms, and world-

class variants of each keyword. The following search

keywords were used to find relevant studies based on the title,

abstract, and metadata:

("Software" AND "Test") OR ("Test Case Prioritization")

OR ("Test Case Prioritization" AND "Sequence-Based")

OR ("Test Case Prioritization" AND "Search Based") OR

("Test Case Prioritization" AND "Event Based") OR ("Test

Case Prioritization" AND “State-Based")

D. Study Selection

Study selection is evidence of the research question.

During the first search stage, 2,314 prospective studies were

selected. The next stage was the process of eliminating

duplicates, and irrelevant studies. After screening the titles

and abstracts, only 135 were potentially relevant [5]. These

were then subjected to the inclusion and exclusion criteria.

Once the 135 primary studies have been selected, the quality

of the selected primary studies were evaluated using quality

assessment questions, which were proposed by [5]. The

quality assessment questions are shown in Table 2.

E. Inclusion and Exclusion Criteria

The inclusion and exclusion criteria for this SLR were

based on the research questions [5]. The inclusion criteria for

this SLR are as follows:

• All papers must be published in English

• All papers must be published from 1 January 2005 to

18 December 2016

• All papers must focus on test case generation and test

case prioritization

Next, each paper was filtered using the exclusion criteria

before being accepted for the next stage. The exclusion

criteria are as follows:

• Papers that are not published in English

• Duplicated study areas

• Papers that only contain opinion pieces, viewpoints,

progress research or incomplete results

• Exclude thesis

• Exclude papers with less than three pages

• Papers that do not report any empirical study

F. Data Extraction and Quality Assessments

Quality assessment (QA) for this study was achieved by

weighting or scoring to obtain relevant studies that would be

capable of addressing each research question. Most

researchers agree that the quality assessment study checklist

can be used to ensure that the data extraction process meets

the quality criteria [7]. Some researchers stated that quality

assessment can be used to evaluate the completeness and

relevance of the selected studies. Table 2 lists the general

questions to measure the quality of selected studies. Three

scales are coded for the quality assessment checklist, and

given scores; Yes =1; Partially = 0.5; No = 0. Based on the

item checklist, each article was measured from 0 (very poor)

to 4 (very good).

Table 2

Quality Assessment Checklist

No Item Answer

SQ1 Were the aim and objective clearly stated? Yes/No

SQ2 Was the research design clearly specified? Yes/No/Partially

SQ3 Did the researcher(s) carry out the process of
data collection well? Yes/No/Partially

SQ4 Do the researcher(s) discuss the work

limitations clearly? Yes/No/Partially

SQ5 Did the researcher(s) state enough data to

support their proposed factors?
Yes/No/Partially

III. FINDING

After the titles and abstracts have been screened, only 135

papers were potentially relevant. At this stage, irrelevant

studies and duplicate studies were eliminated. Then, each full

paper was read whenever the title and abstract were

insufficient to categorize whether the paper was relevant or

not. Finally, 70 primary studies were selected for providing

answers to the formulated research questions. Figure 2

depicts the results of the paper search and selection process.

Figure 2: Paper search and selection stage for this SLR

of studies retrieved from online databases
n = 2,314

of studies after excluding irrelevant
studies = 135

Total studies selected
n = 70

Detailed assessments of full text

Screening of tittles and abstracts

Factor Determination to Prioritize Test Cases for Event Sequences: A Systematic Literature Review

 e-ISSN: 2289-8131 Vol. 10 No. 1-4 121

A. Quality of Factors

Table 3 indicates the quality assessment scores for the final

identified papers. Six studies (9%) were rated fair, nine

studies (13%) were good, and 55 studies (78%) were of very

good quality. None of these papers were rated as being of

poor quality. As such, all selected papers were included in the

next phase for further analysis.

Table 3

Quality Assessment Scores

Quality
Scale

Very

Poor

(>=1)

Poor
(>=2)

Fair
(>=3)

Good
(>=4)

Very

Good

(=5)

Answer

Number of
studies

0 0 6 9 55 70

Percentage

(%)
0 0 9 13 78 100

IV. DISCUSSION

This section presents and discusses the results related to

the research questions. A detailed description of the findings

will be presented with the aim of investigating the major

utilised techniques and factors that can affect the performance

of the TCP techniques.

A. What Are the Existing Techniques Used to Prioritize

Test Case?

Based on this SLR, numerous techniques have been

adapted and applied in prioritising test cases. 26% of the

selected papers have combinations of more than one

technique, as proposed by [8], [9], and [10]. They believe that

adopting multiple criteria can maximise the number of

discovered faults, thus, improving the effectiveness and

efficiency of the proposed technique [11]. In fact, some

researchers agree that the multiple criteria could break ties if

they are present during the TCP processes. As previously

mentioned, a majority of the papers reported the application

of the random technique to solve the same priority value

issues. Some researchers believe that if one criterion is not

performing as expected, the remaining criteria can make up

for it to provide the expected result. Table 4 represents the

identified techniques used to prioritize a test case.

Table 4

Identified Techniques Used to Prioritize Test Case

No. Techniques Authors

1 Code
Coverage

[8], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28],

[29], [30], [31], [32], [33]

2 Requirement
Coverage

[8], [17], [24], [26], [34], [35], [36], [37], [38]

3 Execution

Time

[9], [25], [26], [27], [28], [39], [40]

4 Fault

Coverage

[24], [25], [28], [31], [41], [42]

5 Historical

Data

[36], [42], [43], [44], [45]

Code coverage is the most utilised technique to prioritize

test cases at 40% of these papers. The second is the

requirement coverage at 17%. This is followed by execution

time at 13%, fault coverage at 10%, and historical data at 8%.

The remaining 2% is for other techniques, such as event

coverage, interaction coverage, and state-based behaviour.

The following researchers applied for code coverage:[8],

[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],

[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], and

[33]. Higher code coverage can be a good indicator of fault

detection capability [46]. There are a number of coverage

criteria for code coverage, such as function coverage,

statement coverage, branch coverage, and condition

coverage. Meanwhile, a combination of branch coverage and

function coverage is called the decision coverage. Normally,

the decision coverage is applied for safety critical

applications, whereby each condition in the program could

affect the decision outcome independently. The code

coverage is also widely used in the industry. Code coverage

becomes one of the requirements in the automotive safety

standard, ISO 26262, Road Vehicles-Functional Safety [75].

In terms of the requirement coverage, researchers applied

it to maximize user satisfaction [8]. Test cases are mapped

with the given requirements, and the requirement coverage

will ignore the actual behaviour and the structure of the

application. According to [36], requirements complexity and

requirements volatility are some of the weight factors

proposed by previous researchers to prioritize test cases based

on the requirement coverage technique. A recent research had

shown that the implementation of requirements complexity

and requirements volatility can significantly affect the rate of

fault detection in test suites [36].

B. What Are the Factors That Can Affect the Effectiveness

of TCP Technique?

As shown in Table 5, 10 factors were identified based on

the data extracted from 70 primary studies. All identified

factors were found to have affected the effectiveness and

efficiency of the TCP technique. Three factors were the most

addressed by the primary studies, which include fault matrix

in 46 papers, redundancy in 20 papers, and complexity in 18

papers. 57% of the papers applied more than three factors in

their TCP technique to achieve more than one competing

objective. This shows the interrelation between the identified

factors. It also shows the importance of using more than one

factor to increase the performance of the TCP technique. In

addition, 14% of these papers addressed only one factor. Most

of these papers also applied execution time as a factor to

prioritize test cases. It was stated that this technique is

expected to cover all the statements with a minimal execution

time [27].

Table 5

Factors That Affect the Effectiveness of TCP Technique

No. Factors Authors

1 Fault [8], [9], [14], [15], [17], [18], [19], [20], [21],

[23], [24], [25], [26], [28], [30], [33], [35],
[37], [38], [40], [41], [43], [44], [45], [47],

[48], [49], [50], [51], [52], [53], [54], [55],

[56], [57], [58], [59], [60], [61], [62], [63]

2 Redundancy [9], [11], [15], [21], [22], [23], [24], [28], [33],

[35], [36], [37], [44], [50], [53], [54], [55],

[57], [62], [64]

3 Complexity [14], [18], [26], [28], [30], [33], [35], [37],

[43], [47], [49], [50], [51], [52], [53], [54],

[62]

4 Frequency [14], [16], [21], [28], [34], [43], [45], [47],
[50], [51], [54], [56], [64], [65], [66], [67]

5 Requirements [8], [24], [26], [33], [34], [35], [37], [39], [41],

[55], [59], [65], [68], [69]

6 Time [9], [12], [15], [18], [25], [26], [34], [39], [48],
[49], [62], [65]

7 Distance [11], [23], [32], [42], [45], [49], [53], [54],

[68], [70]

8 Cost [8], [17], [34], [36], [44], [45], [60], [65], [71]

Journal of Telecommunication, Electronic and Computer Engineering

122 e-ISSN: 2289-8131 Vol. 10 No. 1-4

No. Factors Authors

9 Permutation [11], [42], [44], [49], [51]

10 Others [1], [13], [16], [19], [20], [22], [23], [24], [27],

[28], [29], [31], [32], [33], [35], [38], [40], [41],
[43], [44], [45], [48], [50], [55], [59], [63], [64],

[65], [66], [67], [69], [72], [73]

Most of these papers emphasized that fault matrix plays an

important in selecting potential factors for the TCP technique.

Fault matrix represents the minimal set that covers all faults

[9]. The weight of a test case is given based on the ratio of the

fault coverage value. Furthermore, the execution time will be

reduced with early fault detection, which can affect the

effectiveness and efficiency of the TCP technique. Based on

the literature, redundancy becomes the second popular factor

because of the high possibility for a large test suite to have

redundancies. Minimization is one of the techniques to

remove redundancy in a test suite. Previous experiments have

shown that the implementation of redundancy in TCP

technique can save resources and time [14].

The complexity of a system can be considered as a

subjective measure. Based on Table 5, 17 papers addressed

complexity as one of the factors that can influence the

performance of their TCP technique. Some researchers stated

in their respective papers that by reducing the test suite, and

the program size, the value of complexity for the system can

be decreased [14]. High complexity value shows that the

system is more complex. Furthermore, the complexity can

also be a measure for the case of requirement changes. The

complexity is calculated based on the number of times the

requirement changes. Numerous complexity metrics are

available for measuring complexity, such as McCabe, Lines

of Codes, and unique complexity metric. According to [35],

requirements with complex functionality can introduce a

higher number of faults. Thus, it was concluded that the

complexity factor can influence the TCP processes.

The data presented in Table 5 shows that only five papers

have considered permutation as one of the factors that can

influence the weight of the priority value in TCP. However,

based on the literature, previous researchers believed that

permutation is actually one of the important factors that help

to generate an optimum number of test cases. Furthermore,

permutation can also remove redundancies. Due to resource

and time constraint, it would be impractical to execute all test

cases as some of these test suites can grow very large,

especially in event sequences applications [74]. Thus,

permutation is needed to select a subset of possible

combinations of events.

There were 19% of the selected papers that combined fault

matrix, redundancy, frequency, and complexity factors.

Based on Table 5, all four factors are in the top rank. 6%

papers combined fault matrix and time factors. A similar

condition was found with the combination of fault matrix and

redundancy factors. On the other hand, 13% of these papers

combined fault matrix with other factors, such as dependence

structure, relationships among test cases, and the execution of

information of the modified program. Thus, it was concluded

that there is a need to combine all four factors that belong in

the top rank to obtain a high performance TCP technique.

However, some limitations can still be found with the existing

TCP technique, which may still require enhanced

effectiveness and efficiency. Therefore, changes in the

existing combinations of factors may be needed to fill the gap

in that research area.

V. CONCLUSION

This paper has presented and discussed the results obtained

from 70 primary studies. This study is a part of the research

to propose a unique weight approach in TCP technique for

event sequences. Therefore, the aim of this SLR paper was to

investigate and identify the factors used to develop an

effective TCP technique for event sequences. Collecting and

identifying the most utilized factors in TCP techniques were

useful for the potential improvement of the overall research.

The SLR results have 10 factors that should be considered to

enhance the existing TCP technique. Moreover, code

coverage is widely used in TCP technique, to detect faults as

early as possible. Thus, code coverage should be taken under

considerations for future researches. However, in order to

maximize the number of detected faults, there is a possibility

of combining code coverage with other techniques, such as

requirement coverage, which was done by [8]. It measured

the amount of requirements that can be covered by the test

case. Overall, the results confirmed that the 10 identified

factors played significant roles in the performance of the TCP

technique.

ACKNOWLEDGMENT

The authors would like to acknowledge the Ministry of

Higher Education Malaysia (MOHE) for the financial support

under the Fundamental Research Grant Scheme

(FRGS);Project code-08-01-15-1723FR.

REFERENCES

[1] C. Klammer, R. Ramler, and H. Stummer, “Harnessing automated test

case generators for GUI testing in industry,” 2016 42th Euromicro
Conf. Softw. Eng. Adv. Appl., pp. 227–234, 2016.

[2] R. Krishnamoorthi and S. a. Sahaaya Arul Mary, “Factor oriented

requirement coverage based system test case prioritization of new and
regression test cases,” Inf. Softw. Technol., vol. 51, no. 4, pp. 799–808,

2009.

[3] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, “Code coverage of
adaptive random testing,” IEEE Trans. Reliab., vol. 62, no. 1, pp. 226–

237, 2013.

[4] T. Menzies and B. Cukic, “Focus,” Ieee Softw., pp. 107–112, 2000.
[5] B. Kitchenham and S. Charters, “Guidelines for performing systematic

literature reviews in software engineering,” Engineering, vol. 2, p.

1051, 2007.
[6] M. Petticrew and H. Roberts, Systematic Reviews in the Social

Sciences: A Practical Guide. 2006.

[7] N. H. Hassan, Z. Ismail, and N. Maarop, “Information security culture :
a systematic,” no. 205, pp. 456–463, 2015.

[8] M. M. Islam, A. Marchetto, A. Susi, and G. Scanniello, “A multi-

objective technique to prioritize test cases based on latent semantic
indexing,” 2012 16th Eur. Conf. Softw. Maint. Reengineering, no. 3,

pp. 21–30, 2012.

[9] M. Tyagi and S. Malhotra, “Test case prioritization using multi
objective particle swarm optimizer,” 2014 Int. Conf. Signal Propag.

Comput. Technol. (ICSPCT 2014), pp. 390–395, 2014.

[10] H. Srikanth, M. Cashman, and M. B. Cohen, “Test case prioritization
of build acceptance tests for an enterprise cloud application: An

industrial case study,” J. Syst. Softw., vol. 119, pp. 122–135, 2016.

[11] X. Zhang, X. Xie, and T. Y. Chen, “Test case prioritization using
adaptive random sequence with category-partition-based distance,”

2016 IEEE Int. Conf. Softw. Qual. Reliab. Secur., pp. 374–385, 2016.

[12] H. Srikanth and M. B. Cohen, “Regression testing in software as a
service: An industrial case study,” 2011 27th IEEE Int. Conf. Softw.

Maint., pp. 372–381, 2011.

[13] R. Blanco, J. García-Fanjul, and J. Tuya, “A first approach to test case
generation for BPEL compositions of web services using scatter

search,” 2009 Int. Conf. Softw. Testing, Verif. Valid. Work., pp. 131–
140, 2009.

[14] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for

regression test case prioritization,” IEEE Trans. Softw. Eng., vol. 33,

Factor Determination to Prioritize Test Cases for Event Sequences: A Systematic Literature Review

 e-ISSN: 2289-8131 Vol. 10 No. 1-4 123

no. 4, pp. 225–237, 2007.
[15] P. K. Mishra, “Analysis of test case prioritization in regression testing

using genetic algorithm,” vol. 75, no. 8, pp. 1–10, 2013.

[16] P. R. Srivastava, A. Vijay, B. Bariikha, P. S. Senear, and R. Sharma,
“An optimized technique for test case generation and prioritization

using ‘tabu’ search and data clustering,” Proc. 4th Indian Int. Conf.

Artif. Intell. IICAI 2009, pp. 30–46, 2009.
[17] D. D. N. B, A. Panichella, A. Zaidman, and A. De Lucia, “Search-

Based Software Engineering,” vol. 9275, pp. 157–172, 2015.

[18] M. N. Nawar and M. M. Ragheb, “Multi-heuristic based algorithm for
test case prioritization,” pp. 449–460, 2014.

[19] V. Panthi and D. P. Mohapatra, “Generating and evaluating

effectiveness of test sequences using state machine,” Int. J. Syst. Assur.
Eng. Manag., no. Jorgensen 2008, 2016.

[20] C. R. Panigrahi and R. Mall, “Regression test size reduction using

improved precision slices,” Innov. Syst. Softw. Eng., vol. 12, no. 2, pp.
153–159, 2015.

[21] B. Miranda and A. Bertolino, “Scope-aided test prioritization, selection

and minimization for software reuse,” J. Syst. Softw., vol. 0, pp. 1–22,

2016.

[22] S. U. R. Khan, S. P. Lee, R. W. Ahmad, A. Akhunzada, and V. Chang,

“A survey on Test Suite Reduction frameworks and tools,” Int. J. Inf.
Manage., vol. 36, no. 6, pp. 963–975, 2016.

[23] B. S. Ahmed, “Test case minimization approach using fault detection

and combinatorial optimization techniques for configuration-aware
structural testing,” Eng. Sci. Technol. an Int. J., vol. 19, no. 2, pp. 737–

753, 2015.
[24] H. Srikanth, C. Hettiarachchi, and H. Do, “Requirements based test

prioritization using risk factors: An industrial study,” Inf. Softw.

Technol., vol. 69, pp. 71–83, 2016.
[25] P. Parashar, A. Kalia, and R. Bhatia, “Pair-wise time-aware test case

prioritization,” pp. 176–186, 2012.

[26] N. Prakash and K. Gomathi, “Improving Test Efficiency through
Multiple Criteria Coverage Based Test Case Prioritization,” Int. J. Sci.

Eng. Res., vol. 5, no. 4, pp. 430–435, 2014.

[27] Y. B. B, S. Kirbas, M. Harman, Y. Jia, and Z. Li, “Search-based
software engineering,” vol. 9275, pp. 221–227, 2015.

[28] S. Chaudhury, A. Singhal, and O. P. Sangwan, “Event- driven software

testing – an overview,” vol. 5, no. 4, 2016.
[29] Z. Li, Y. Bian, R. Zhao, and J. Cheng, “A fine-grained parallel multi-

objective test case prioritization on GPU,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 8084 LNCS, pp. 111–125, 2013.

[30] F. Yuan, Y. Bian, Z. Li, and R. Zhao, “Search-based software

engineering,” vol. 9275, pp. 109–124, 2015.
[31] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke, “Empirical

evaluation of pareto efficient multi-objective regression test case

prioritisation,” Proc. 2015 Int. Symp. Softw. Test. Anal. - ISSTA 2015,
pp. 234–245, 2015.

[32] J. F. Silva Ouriques, E. G. Cartaxo, and P. D. Lima Machado,

“Revealing influence of model structure and test case profile on the
prioritization of test cases in the context of model-based testing,” J.

Softw. Eng. Res. Dev., vol. 3, no. 1, p. 1, 2015.

[33] C.-Y. Huang, C.-S. Chen, and C.-E. Lai, “Evaluation and analysis of
incorporating Fuzzy Expert System approach into test suite reduction,”

Inf. Softw. Technol., vol. 79, pp. 79–105, 2016.

[34] L. S. De Souza, P. B. C. De Miranda, R. B. C. Prudencio, and F. D. a.
Barros, “A multi-objective particle swarm optimization for test case

selection based on functional requirements coverage and execution

effort,” 2011 IEEE 23rd Int. Conf. Tools with Artif. Intell., pp. 245–
252, 2011.

[35] C. Hettiarachchi, H. Do, and B. Choi, “Risk-based test case

prioritization using a fuzzy expert system,” Inf. Softw. Technol., vol.
69, pp. 1–15, 2016.

[36] S. Roongruangsuwan and J. Daengdej, “Test case prioritization

techniques,” J. Theor. Appl. Inf. Technol., pp. 45–60, 2010.
[37] R. Krishnamoorthi and S. a. Sahaaya Arul Mary, “Factor oriented

requirement coverage based system test case prioritization of new and

regression test cases,” Inf. Softw. Technol., vol. 51, no. 4, pp. 799–808,
2009.

[38] D. Hao, X. Zhao, and L. Zhang, “Adaptive test-case prioritization

guided by output inspection,” 2013 IEEE 37th Annu. Comput. Softw.
Appl. Conf., pp. 169–179, 2013.

[39] A. Ansari, A. Khan, A. Khan, and K. Mukadam, “Optimized regression

test using test case prioritization,” Procedia Comput. Sci., vol. 79, pp.
152–160, 2016.

[40] S. S. and A. Singh, “Model based test case prioritization using greedy
approach,” Int. J. Emerg. Trends Eng. Dev., vol. 6, no. 5, pp. 80–88,

2016.

[41] Y. T. Yu and M. F. Lau, “Fault-based test suite prioritization for

specification-based testing,” Inf. Softw. Technol., vol. 54, no. 2, pp.
179–202, Feb. 2012.

[42] B. Jiang, W. K. Chan, and T. H. Tse, “PORA: proportion-oriented

randomized algorithm for test case prioritization,” 2015 IEEE Int.
Conf. Softw. Qual. Reliab. Secur., no. 61202077, pp. 131–140, 2015.

[43] J. A. Parejo, A. B. Sánchez, S. Segura, A. Ruiz-Cortés, R. E. Lopez-

Herrejon, and A. Egyed, “Multi-objective test case prioritization in
highly configurable systems: a case study,” J. Syst. Softw., vol. 122, pp.

287–310, 2016.

[44] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost-
cognizant test case prioritization technique in regression testing,” J.

Syst. Softw., vol. 85, no. 3, pp. 626–637, 2012.

[45] A. K. Pandey and V. Shrivastava, “Early fault detection model using
integrated and cost-effective test case prioritization,” Int. J. Syst. Assur.

Eng. Manag., vol. 2, no. 1, pp. 41–47, 2011.

[46] X. Cai and M. R. Lyu, “The effect of code coverage on fault detection
under different testing profiles categories and subject descriptors,” pp.

1–7.

[47] K. K. Aggarwal, Y. Singh, and A. Kaur, “A multiple parameter test

case prioritization model,” J. Stat. Manag. Syst., vol. 8, no. 2, pp. 369–

386, 2005.

[48] A. P. Conrad, R. S. Roos, and G. M. Kapfhammer, “Empirically
studying the role of selection operators duringsearch-based test suite

prioritization,” Proc. 12th Annu. Conf. Genet. Evol. Comput. - GECCO

’10, p. 1373, 2010.
[49] R. Huang, J. Chen, T. Zhang, R. Wang, and Y. Lu, “Prioritizing

variable-strength covering array,” 2013 IEEE 37th Annu. Comput.
Softw. Appl. Conf., pp. 8–11, 2013.

[50] F. Belli, M. Eminov, and N. Gokce, “A Comparative Soft-Computing

Approach and Case Studies,” Comput. Surv., pp. 425–432.
[51] S. Khandai, A. A. Acharya, and D. P. Mohapatra, “Prioritizing test

cases using business criticality test value,” Int. J. Adv. Comput. Sci.

Appl., vol. 3, no. 5, pp. 103–110, 2012.
[52] C. Y. Huang, J. R. Chang, and Y. H. Chang, “Design and analysis of

GUI test-case prioritization using weight-based methods,” J. Syst.

Softw., vol. 83, no. 4, pp. 646–659, 2010.
[53] A. Khajeh-Hosseini, D. Greenwood, J. Smith, and I. Sommerville,

“The cloud adoption toolkit: supporting cloud adoption decisions in the

enterprise,” Softw. - Pract. Exp., vol. 43, no. 4, pp. 447–465, 2012.
[54] A. E. V. B. Coutinho, E. G. Cartaxo, and P. D. de L. Machado, Analysis

of distance functions for similarity-based test suite reduction in the

context of model-based testing, vol. 24, no. 2. 2016.
[55] A. Khalilian, M. Abdollahi Azgomi, and Y. Fazlalizadeh, “An

improved method for test case prioritization by incorporating historical

test case data,” Sci. Comput. Program., vol. 78, no. 1, pp. 93–116,
2012.

[56] S. Sampath and R. C. Bryce, “Improving the effectiveness of test suite

reduction for user-session-based testing of web applications,” Inf.
Softw. Technol., vol. 54, no. 7, pp. 724–738, Jul. 2012.

[57] C. P. Indumathi and K. Selvamani, “Test cases prioritization using open

dependency structure algorithm,” Procedia Comput. Sci., vol. 48, no.
Iccc, pp. 250–255, 2015.

[58] C. Dubois, Y. Fazlalizadeh, A. Khalilian, M. Abdollahi Azgomi, and

S. Parsa, “Incorporating historical test case performance data and
resource constraints into test case prioritization,” Lect. Notes Comput.

Sci., vol. 5668, pp. 43–57, 2009.

[59] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case
prioritization using ordered sequences of program entities,” Softw.

Qual. J., pp. 1–27, 2013.

[60] R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manchester, “Test suite
prioritization by cost-based combinatorial interaction coverage,” Int. J.

Syst. Assur. Eng. Manag., vol. 2, no. 2, pp. 126–134, 2011.

[61] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Jtop: Managing
JUnit test cases in absence of coverage information,” ASE2009 - 24th

IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 677–679, 2009.

[62] R. Huang, J. Chen, D. Towey, A. T. S. Chan, and Y. Lu, “Aggregate-
strength interaction test suite prioritization,” J. Syst. Softw., vol. 99, pp.

36–51, Jan. 2015.

[63] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases to
achieve effective and scalable prioritisation incorporating expert

knowledge,” Proc. ISSTA, pp. 201–212, 2009.

[64] M. Zanoni, F. Perin, F. A. Fontana, and G. Viscusi, “Pattern detection
for conceptual schema recovery in data-intensive systems,” J. Softw.

Evol. Process, vol. 26, no. 12, pp. 1172–1192, 2014.

[65] D. Qiu, B. Li, S. Ji, and H. Leung, “Regression testing of web service:
a systematic mapping study,” ACM Comput. Surv., vol. 47, no. 2, pp.

1–46, 2014.
[66] H. Srikanth and S. Banerjee, “Improving test efficiency through system

test prioritization,” J. Syst. Softw., vol. 85, no. 5, pp. 1176–1187, 2012.

[67] L. Tahat, B. Korel, G. Koutsogiannakis, and N. Almasri, “State-based

Journal of Telecommunication, Electronic and Computer Engineering

124 e-ISSN: 2289-8131 Vol. 10 No. 1-4

models in regression test suite prioritization,” Softw. Qual. J., pp. 1–
40, 2016.

[68] M. Staats, P. Loyola, and G. Rothermel, “Oracle-centric test case

prioritization,” 2012 IEEE 23rd Int. Symp. Softw. Reliab. Eng., pp.
311–320, 2012.

[69] S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S.

Kanduri, “Understanding the effects of changes on the cost-
effectiveness of regression testing techniques,” Softw. Testing, Verif.

Reliab., vol. 13, no. 2, pp. 65–83, 2003.

[70] R. K. Saha, “An information retrieval approach for regression test
prioritization based on program changes,” Proceeding 37th Int. Conf.

Softw. Eng. (ICSE 2015), pp. 268–279, 2015.

[71] L. Briand, Y. Labiche, and K. Chen, “A Multi-objective genetic

algorithm to rank state-based test cases,” pp. 66–80, 2013.
[72] W. Zhang, B. Wei, and H. Du, “Test case prioritization based on

genetic algorithm and test-points coverage evaluation of test case

prioritization,” pp. 644–654, 2014.
[73] S. Kim and J. Baik, “An effective fault aware test case prioritization by

incorporating a fault localization technique,” Proc. 2010 ACM-IEEE

Int. Symp. Empir. Softw. Eng. Meas. - ESEM ’10, p. 1, 2010.
[74] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case

prioritization using ordered sequences of program entities,” Softw.

Qual. J., vol. 22, no. 2, pp. 335–361, 2014.
[75] "ISO 26262-6:2011 - Road vehicles -- functional safety -- part 6:

product development at the software level". ISO. N.p., 2017. Web. 3

Feb. 2017.

