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Abstract— In this paper we present a real-time person and car 

detection system suitable for use in Intelligent Car or Advanced 

Driver Assistance System (ADAS). The system is based on 

modified YOLO which uses 7 convolutional neural network 

layers. The grid cells of the system are varied to evaluate its 

effectiveness and ability in detecting small size persons and cars 

in real world images. The experimental results demonstrate that 

even with 7 convolutional layers, the system is able to provide 

good detection accuracy and real time operation. Although the 

mAP scores show reduction in accuracy, the visual qualitative 

evaluation using real world images indicate the 7 layer YOLO 

with 11x11 grid cells can correctly and easily detects small size 

persons and cars. This makes the reduced complexity YOLO a 

suitable candidate for use in ADAS which demands both 

relatively good detection accuracy and real time operation. 

 
Index Terms— ADAS; CNN; mAP; YOLO. 

 

I. INTRODUCTION 

 

Vision-based object detection and dimension measurement 

[1,2] is a hot reseach topic among the computer vision 

research community. In particular, the person and vehicle 

detection have a direct application in Advanced Driver 

Assistance System (ADAS), Intelligent Vehicle and Visual 

Surveillance System. Various methods have been proposed 

for person, car detection or general object detection, however 

majority of the techniques focus on achieving high detection 

accuracy at the expense of high computational complexity. 

Hence many of these methods are not suitable for real time 

applications such as ADAS. 

Before the emergence of convolutional neural network 

(CNN), deformable part model (DPM) [3] using handcrafted 

features such as HOG [4] has been the state-of-the art object 

detector for many years. Inspired by the impressive 

performance demonstrated on image classification, CNN has 

been applied to object detection and achieves impressive 

results [5-6]. Most notably, Girshick et al. [7] proposed the 

regions with convolutional neural network (R-CNN) 

framework for object detection and demonstrated state-of-

the-art performance on standard detection benchmarks (e.g., 

PASCAL VOC [11,12]) with a large margin over the 

previous arts, which are mostly DPM based. R-CNN uses 

handcrafted Selective Search algorithm to generate object 

proposals and CNN classifier for detection tasks. The R-CNN 

is however computationally expensive due to the forward 

pass computation required for each proposal. Girshick [8] 

then proposed Fast-RCNN which reduces computational 

complexity by sharing convolutional features and pooling 

object proposals from the last convolutional layer.   

While Fast-CNN achieves excellent detection accuracy, its 

speed is still limited by the bottleneck due to the object 

proposal generation. A faster version called Faster R-CNN 

[9] was later proposed which replaces the Selective Search by 

a region proposal network (RPN) which uses convolutional 

feature maps to generate object proposals.  This allows the 

object proposal generator to share full-image convolutional 

features with the detection network, hence enabling the 

system to achieve further speed-up. 

Although Faster-RCNN achieves excellent object 

detection accuracy, it is computationally intensive and not 

suitable for use in real time application such as ADAS. To 

meet the combined requirement of high object detection 

accuracy and real time operation, a different approach of 

CNN-based object detection named YOLO was proposed by 

Redmon et al. [10]. In contrast to region proposal-based 

object detection algorithm such as faster-RCNN, YOLO 

CNN-based algorithm predicts bounding boxes and class 

probabilities directly from full images in a single evaluation. 

Since the whole detection pipeline is a single network, it can 

be optimized end-to-end directly on detection performance. 

The YOLO model runs in real-time at 45 frames per second 

on nVidia Titan X with mean average precision (mAP) of 

63.4% on the PASCAL VOC 2007 dataset. The fast YOLO 

achieves a mAP of 52.7% at 150 frame per second (fps) while 

Faster R-CNN runs at 7 fps and attains a mAP of 73.2% on 

the VOC 2007 test set 

Our person and car detection system is based on modified 

YOLO architecture, where the number of convolutional 

layers and classes has been reduced to 7 and 2 respectively. 

This will result in some reductions in computational 

complexity but accuracy is expected to degrade. We 

investigate the performance of the modified YOLO especially 

for detection of small size person and cars by varying the grid 

cells from 7x7 to 11x11. 

The remainder of this paper is organized as follows. 

Section 2 provides a brief description of the YOLO 

architecture. Section 3 briefly describes the datasets used and 

how training is performed. Section 4 describes experimental 

results using the system. Section 5 provides the conclusion of 

this paper. 
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Figure 1: Original YOLO architecture [10] 

 

II. YOU ONLY LOOK ONCE (YOLO) 

 

The YOLO (You Only Look Once) architecture is made up 

of 27 CNN layers, with 24 convolutional layers, followed by 

2 Fully Connected layers and a final detection layer as shown 

in Figure 1. It divides input image into S × S grid cells and 

within each grid cell predicts B bounding boxes and a score 

for each of the C classes. Each bounding box consists of 5 

predictions which are center x, center y, width, height and 

confidence of the bounding box. For each grid cell, there will 

only be one set of class scores C for all bounding boxes in 

that region. Hence, the output of the YOLO network will be 

a vector of S× S × (5B + C) numbers for each image. The 

fully connected layers use the features extracted from the 

convolutional layers and use the information to predict the 

probabilities of the object and at the same time for the 

bounding box constructions.  YOLO final detection layer is a 

regression that maps the output of the last fully connected 

layer to the final bounding box and class assignments. The 

original YOLO network is trained on PASCAL VOC 2007 

and PASCAL VOC 2012 dataset with 20 classes of objects 

with a grid size of 7x7. Figure 2 and 3 show how the network 

divides the image into grid cells and predict bounding boxes 

and probabilities for each grid cell. Figure 4 shows the final 

objects after thresholding is applied.  

 

 
 

Figure 2: Image is divided into S x S grid cells 

 

 
 

Figure 3: Bounding box is predicted for the image 
 

 
 

Figure 4: Filtering and filter out best probabilities 

 

III. EXPERIMENTAL SETUP 

 
A. The Datasets  

 INRIA Dataset [4] is used to train our models. In this 

paper, two classes of object which are person and cars with 

varying shapes and colours are being used. The resolutions of 

the images are either 640 x 480 or 480 x 640. The images 

were generated from different cameras with background of 

the urban streets. There are 162 training images and 162 test 

images. In the datasets, the number of the ground truth might 

be more than one. Usually, the object takes up a small portion 

of the image and might be distorted from lighting brightness, 

disorientation and occlusions. Figure 5 shows some of the 

images in the INRIA datasets used for the experiments. 

 

 
 

Figure 5: Examples of datasets 

 

B. Training 

As for the training, the annotations have been reproduced 

to indicate the bounding box for the ground truth. The 

bounding box labelling tool is used for the ground truth 

coordinate creation. The PYTHON GUI is a modified version 

of labelling software created by puzzledqs [13] with the 

interface shown in Figure 6. The labelling tool will generate 

four points for the coordinate (x1, x2, y1, y2) and class id. 

The details of the ground truths are saved into a text file and 

are used during the training. The training for the network is 

accelerated using Nvidia K40 GPU accelerator which is faster 

than the normal CPU training speed. After every thousands 
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of iteration, the weight files are stored to a backup directory 

and can be used as a checkpoint if the training needs to be 

stopped. 

 

 
 

Figure 6: Python GUI for ground truth coordinate labelling 

 

IV. RESULTS 

 

Adopting the YOLO architecture, the parameter of the 

second last layer has been reduced from twenty classes to 

only two classes. The last layer of the convolution is 

connected with the fully connected layer and the final outputs 

for prediction are varied from 7x7(2 x 5 +2) tensor, 9 x 9(2 x 

5 +2) tensor and 11 x 11(2 x 5 + 2) tensor. The prediction 

from each tensor is compared in terms of accuracy and speed 

performance. 

To evaluate the quantitative performance of the person and 

car detection system, the system is tested with test images 

from the INRIA dataset. The test results are provided in Table 

1. The system is also tested with images taken from the 

dashboard camera to evaluate the qualitative performance of 

the system. Figure 7, 8 and 9 show that the system is capable 

to detect both cars and persons successfully in different 

backgrounds. 

 

 
 

Figure 7: Car detection Result (11 x11 grid cells) 

 

 
 

Figure 8:  Car and Person Detection Result (11x11 grid cells) 

 

 
 

Figure 9:  Car and Person Detection Result (11x11 grid cells) 

 

Shown in Figures 10-12 are the test results from the weights 

produced with grid cells of 7x7, 9x9 and 11x11 respectively. 

Each of the weights produced is able to locate the person and 

cars in the images. It can be observed that the accuracy of the 

object detection in each image increases with the larger 

number of grid cells. Figure 12 clearly demonstrates that by 

using 11x11 grid cell allows the system to detect small size 

car, which is not detected by the other systems that use 7x7 

and 9x9 grid cells (see Figure 10 and 11). 

 

 
 

Figure 10: Detection Result with 7x7 grid cells 

 

 
 

Figure 11: Detection Result with 9x9 grid cells 

 

 
 

Figure 12: Detection result with 11x11 grid cells 

 

The intersection over union (IOU) accuracy during training 

is recorded for checking purposes. It is important to observe 

the trend of the IOU accuracy in order to ensure that YOLO 

is being trained properly. From the analysis shown in Figure 

13, the accuracy level of the IOU for 11 x 11 grid cells 

implementation gradually increases from 0 to 0.92 for 40,000 

iterations.  
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Figure 13: IOU accuracy and training loss 

 

Precision and accuracy of the system is also tested using 

several methods. The tools and methodology of Hoiem [14] 

is utilized for each class testing to look at the top-ranked false 

positives. Each prediction is classified as correct or fall under 

certain types of error according to the following constraints. 

 Correct: correct class and IOU > 0.5 

 Localization: correct class, 0.1 < IOU < 0.5 

 Similar: class is similar, IOU > 0.1 

 Other: class is wrong, IOU > 0.1 

 Background: IOU < 0.1 for any object 

Figures 14 and Figure 15 show the division of error type 

across the two classes tested using modified YOLO model 

utilizing 11 x 11 grid cells alongside with the original YOLO 

model using 7 x 7 grid cells. The correct classification of the 

modified YOLO model is rated at 54% which is slightly 

lower than the original YOLO model. This reduction in 

accuracy is expected due to the lower number of 

convolutional layers used in the modified YOLO model. 

 

 
 

Figure 14: Error Analysis This chart show the percentage of localization 
and background errors of YOLO. 

 

 
 

Figure 15: Error Analysis This chart show the percentage of localization 
and background errors of YOLO_11x11. 

 

The average mean average precision (mAP) is the integral 

over the precision p(r) . 

𝑚𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0

 (1) 

 

And the precision is represented by: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑁
 (2) 

 

where TP is the True Positives,  

           FP is the False Positives and  

          N is equal to the total number of objects retrieved  

          (TP + FP).  

 

Table 1 shows the calculated average precision for the 

original YOLO, YOLO_7x7, YOLO_9x9, and 

YOLO_11x11. The real-time speed performance in fps is also 

provided for all of the tested networks running on Nvidia 

GTX970 GPU. 

 
Table 1 

mAP, frame per second and AP performance 

 

Architecture mAP 
Person 

(AP) 

Car 

(AP) 

Frame per 

Second(fps) 

YOLO 59.2 63.1 55.3 26 

YOLO_7 x 7 37.9 42.3 33.5 35 

YOLO_9 x 9 39.6 43.8 35.3 32 

YOLO_11x11 41.1 44.1 38.2 30 

 

From Table 1, it is observed that the detection accuracy 

improves as the number of the grid cells increases. Using 

larger grid cells allows the modified YOLO to improve on the 

detection of small objects. The mAP of YOLO_11x11 is 

higher than YOLO_7x7 and YOLO_9x9 by 1.5% and 3.2% 

respectively. YOLO_11x11 with mAP of 41.1% is lower 

compared to the YOLO with mAP of 59.2% by 18.3%. Since 

the limitation of original YOLO framework is to detect the 

small objects, changing the parameter of the grid cell is 

believed to be a good alternative in improving the accuracy.  

As for the speed performance (fps), the size of the grid cells 

is affecting the speed performance as it requires longer time 

to process larger grid cells. As for YOLO_7x7 network, it 

produced the highest speed; however it possesses the lowest 

precision compared to other network. Therefore, the best 
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trade-off between speed and precision is achieved by 

YOLO_11x11 network with 30 fps and 41.1 mAP. The higher 

fps with better precision would enable the modified YOLO 

model to be integrated in the real-time implementation of 

ADAS system. 

 

V. CONCLUSION 

 

In this paper we have presented a CNN-based person and 

car detector with the focus on achieving highest possible 

detection speeds without significantly sacrificing on 

detection quality. Our real-time detector is based on modified 

YOLO which uses 7 convolutional layers. This reduction of 

number of layers has the impact of reducing the 

computational complexity at the expense of acceptable loss 

in detection accuracy. The experimental results demonstrate 

that although the convolutional layers have been reduced to 7 

layers, using larger 11x11 grid cells (or higher) can improve 

the detection accuracy on small objects. This makes the 

reduced number of convolutional layers in YOLO with higher 

number of grid cells a good candidate for use in ADAS which 

demands both relatively high detection accuracy and real time 

operation. 
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