

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 67

Convolutional Neural Network for Person and Car

Detection using YOLO Framework

M. H. Putra, Z. M. Yussof, K. C. Lim, S. I. Salim

Centre for Telecommunication Research and Innovation (CeTRI),

Faculty of Electronics and Computer Engineering (FKEKK),

Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia

zulkalnain@utem.edu.my

Abstract— In this paper we present a real-time person and car

detection system suitable for use in Intelligent Car or Advanced

Driver Assistance System (ADAS). The system is based on

modified YOLO which uses 7 convolutional neural network

layers. The grid cells of the system are varied to evaluate its

effectiveness and ability in detecting small size persons and cars

in real world images. The experimental results demonstrate that

even with 7 convolutional layers, the system is able to provide

good detection accuracy and real time operation. Although the

mAP scores show reduction in accuracy, the visual qualitative

evaluation using real world images indicate the 7 layer YOLO

with 11x11 grid cells can correctly and easily detects small size

persons and cars. This makes the reduced complexity YOLO a

suitable candidate for use in ADAS which demands both

relatively good detection accuracy and real time operation.

Index Terms— ADAS; CNN; mAP; YOLO.

I. INTRODUCTION

Vision-based object detection and dimension measurement

[1,2] is a hot reseach topic among the computer vision

research community. In particular, the person and vehicle

detection have a direct application in Advanced Driver

Assistance System (ADAS), Intelligent Vehicle and Visual

Surveillance System. Various methods have been proposed

for person, car detection or general object detection, however

majority of the techniques focus on achieving high detection

accuracy at the expense of high computational complexity.

Hence many of these methods are not suitable for real time

applications such as ADAS.

Before the emergence of convolutional neural network

(CNN), deformable part model (DPM) [3] using handcrafted

features such as HOG [4] has been the state-of-the art object

detector for many years. Inspired by the impressive

performance demonstrated on image classification, CNN has

been applied to object detection and achieves impressive

results [5-6]. Most notably, Girshick et al. [7] proposed the

regions with convolutional neural network (R-CNN)

framework for object detection and demonstrated state-of-

the-art performance on standard detection benchmarks (e.g.,

PASCAL VOC [11,12]) with a large margin over the

previous arts, which are mostly DPM based. R-CNN uses

handcrafted Selective Search algorithm to generate object

proposals and CNN classifier for detection tasks. The R-CNN

is however computationally expensive due to the forward

pass computation required for each proposal. Girshick [8]

then proposed Fast-RCNN which reduces computational

complexity by sharing convolutional features and pooling

object proposals from the last convolutional layer.

While Fast-CNN achieves excellent detection accuracy, its

speed is still limited by the bottleneck due to the object

proposal generation. A faster version called Faster R-CNN

[9] was later proposed which replaces the Selective Search by

a region proposal network (RPN) which uses convolutional

feature maps to generate object proposals. This allows the

object proposal generator to share full-image convolutional

features with the detection network, hence enabling the

system to achieve further speed-up.

Although Faster-RCNN achieves excellent object

detection accuracy, it is computationally intensive and not

suitable for use in real time application such as ADAS. To

meet the combined requirement of high object detection

accuracy and real time operation, a different approach of

CNN-based object detection named YOLO was proposed by

Redmon et al. [10]. In contrast to region proposal-based

object detection algorithm such as faster-RCNN, YOLO

CNN-based algorithm predicts bounding boxes and class

probabilities directly from full images in a single evaluation.

Since the whole detection pipeline is a single network, it can

be optimized end-to-end directly on detection performance.

The YOLO model runs in real-time at 45 frames per second

on nVidia Titan X with mean average precision (mAP) of

63.4% on the PASCAL VOC 2007 dataset. The fast YOLO

achieves a mAP of 52.7% at 150 frame per second (fps) while

Faster R-CNN runs at 7 fps and attains a mAP of 73.2% on

the VOC 2007 test set

Our person and car detection system is based on modified

YOLO architecture, where the number of convolutional

layers and classes has been reduced to 7 and 2 respectively.

This will result in some reductions in computational

complexity but accuracy is expected to degrade. We

investigate the performance of the modified YOLO especially

for detection of small size person and cars by varying the grid

cells from 7x7 to 11x11.

The remainder of this paper is organized as follows.

Section 2 provides a brief description of the YOLO

architecture. Section 3 briefly describes the datasets used and

how training is performed. Section 4 describes experimental

results using the system. Section 5 provides the conclusion of

this paper.

Journal of Telecommunication, Electronic and Computer Engineering

68 e-ISSN: 2289-8131 Vol. 10 No. 1-7

Figure 1: Original YOLO architecture [10]

II. YOU ONLY LOOK ONCE (YOLO)

The YOLO (You Only Look Once) architecture is made up

of 27 CNN layers, with 24 convolutional layers, followed by

2 Fully Connected layers and a final detection layer as shown

in Figure 1. It divides input image into S × S grid cells and

within each grid cell predicts B bounding boxes and a score

for each of the C classes. Each bounding box consists of 5

predictions which are center x, center y, width, height and

confidence of the bounding box. For each grid cell, there will

only be one set of class scores C for all bounding boxes in

that region. Hence, the output of the YOLO network will be

a vector of S× S × (5B + C) numbers for each image. The

fully connected layers use the features extracted from the

convolutional layers and use the information to predict the

probabilities of the object and at the same time for the

bounding box constructions. YOLO final detection layer is a

regression that maps the output of the last fully connected

layer to the final bounding box and class assignments. The

original YOLO network is trained on PASCAL VOC 2007

and PASCAL VOC 2012 dataset with 20 classes of objects

with a grid size of 7x7. Figure 2 and 3 show how the network

divides the image into grid cells and predict bounding boxes

and probabilities for each grid cell. Figure 4 shows the final

objects after thresholding is applied.

Figure 2: Image is divided into S x S grid cells

Figure 3: Bounding box is predicted for the image

Figure 4: Filtering and filter out best probabilities

III. EXPERIMENTAL SETUP

A. The Datasets

 INRIA Dataset [4] is used to train our models. In this

paper, two classes of object which are person and cars with

varying shapes and colours are being used. The resolutions of

the images are either 640 x 480 or 480 x 640. The images

were generated from different cameras with background of

the urban streets. There are 162 training images and 162 test

images. In the datasets, the number of the ground truth might

be more than one. Usually, the object takes up a small portion

of the image and might be distorted from lighting brightness,

disorientation and occlusions. Figure 5 shows some of the

images in the INRIA datasets used for the experiments.

Figure 5: Examples of datasets

B. Training

As for the training, the annotations have been reproduced

to indicate the bounding box for the ground truth. The

bounding box labelling tool is used for the ground truth

coordinate creation. The PYTHON GUI is a modified version

of labelling software created by puzzledqs [13] with the

interface shown in Figure 6. The labelling tool will generate

four points for the coordinate (x1, x2, y1, y2) and class id.

The details of the ground truths are saved into a text file and

are used during the training. The training for the network is

accelerated using Nvidia K40 GPU accelerator which is faster

than the normal CPU training speed. After every thousands

Convolutional Neural Network for Person and Car Detection using YOLO Framework

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 69

of iteration, the weight files are stored to a backup directory

and can be used as a checkpoint if the training needs to be

stopped.

Figure 6: Python GUI for ground truth coordinate labelling

IV. RESULTS

Adopting the YOLO architecture, the parameter of the

second last layer has been reduced from twenty classes to

only two classes. The last layer of the convolution is

connected with the fully connected layer and the final outputs

for prediction are varied from 7x7(2 x 5 +2) tensor, 9 x 9(2 x

5 +2) tensor and 11 x 11(2 x 5 + 2) tensor. The prediction

from each tensor is compared in terms of accuracy and speed

performance.

To evaluate the quantitative performance of the person and

car detection system, the system is tested with test images

from the INRIA dataset. The test results are provided in Table

1. The system is also tested with images taken from the

dashboard camera to evaluate the qualitative performance of

the system. Figure 7, 8 and 9 show that the system is capable

to detect both cars and persons successfully in different

backgrounds.

Figure 7: Car detection Result (11 x11 grid cells)

Figure 8: Car and Person Detection Result (11x11 grid cells)

Figure 9: Car and Person Detection Result (11x11 grid cells)

Shown in Figures 10-12 are the test results from the weights

produced with grid cells of 7x7, 9x9 and 11x11 respectively.

Each of the weights produced is able to locate the person and

cars in the images. It can be observed that the accuracy of the

object detection in each image increases with the larger

number of grid cells. Figure 12 clearly demonstrates that by

using 11x11 grid cell allows the system to detect small size

car, which is not detected by the other systems that use 7x7

and 9x9 grid cells (see Figure 10 and 11).

Figure 10: Detection Result with 7x7 grid cells

Figure 11: Detection Result with 9x9 grid cells

Figure 12: Detection result with 11x11 grid cells

The intersection over union (IOU) accuracy during training

is recorded for checking purposes. It is important to observe

the trend of the IOU accuracy in order to ensure that YOLO

is being trained properly. From the analysis shown in Figure

13, the accuracy level of the IOU for 11 x 11 grid cells

implementation gradually increases from 0 to 0.92 for 40,000

iterations.

Journal of Telecommunication, Electronic and Computer Engineering

70 e-ISSN: 2289-8131 Vol. 10 No. 1-7

Figure 13: IOU accuracy and training loss

Precision and accuracy of the system is also tested using

several methods. The tools and methodology of Hoiem [14]

is utilized for each class testing to look at the top-ranked false

positives. Each prediction is classified as correct or fall under

certain types of error according to the following constraints.

 Correct: correct class and IOU > 0.5

 Localization: correct class, 0.1 < IOU < 0.5

 Similar: class is similar, IOU > 0.1

 Other: class is wrong, IOU > 0.1

 Background: IOU < 0.1 for any object

Figures 14 and Figure 15 show the division of error type

across the two classes tested using modified YOLO model

utilizing 11 x 11 grid cells alongside with the original YOLO

model using 7 x 7 grid cells. The correct classification of the

modified YOLO model is rated at 54% which is slightly

lower than the original YOLO model. This reduction in

accuracy is expected due to the lower number of

convolutional layers used in the modified YOLO model.

Figure 14: Error Analysis This chart show the percentage of localization
and background errors of YOLO.

Figure 15: Error Analysis This chart show the percentage of localization
and background errors of YOLO_11x11.

The average mean average precision (mAP) is the integral

over the precision p(r) .

𝑚𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0

 (1)

And the precision is represented by:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑁
 (2)

where TP is the True Positives,

 FP is the False Positives and

 N is equal to the total number of objects retrieved

 (TP + FP).

Table 1 shows the calculated average precision for the

original YOLO, YOLO_7x7, YOLO_9x9, and

YOLO_11x11. The real-time speed performance in fps is also

provided for all of the tested networks running on Nvidia

GTX970 GPU.

Table 1

mAP, frame per second and AP performance

Architecture mAP
Person

(AP)

Car

(AP)

Frame per

Second(fps)

YOLO 59.2 63.1 55.3 26

YOLO_7 x 7 37.9 42.3 33.5 35

YOLO_9 x 9 39.6 43.8 35.3 32

YOLO_11x11 41.1 44.1 38.2 30

From Table 1, it is observed that the detection accuracy

improves as the number of the grid cells increases. Using

larger grid cells allows the modified YOLO to improve on the

detection of small objects. The mAP of YOLO_11x11 is

higher than YOLO_7x7 and YOLO_9x9 by 1.5% and 3.2%

respectively. YOLO_11x11 with mAP of 41.1% is lower

compared to the YOLO with mAP of 59.2% by 18.3%. Since

the limitation of original YOLO framework is to detect the

small objects, changing the parameter of the grid cell is

believed to be a good alternative in improving the accuracy.

As for the speed performance (fps), the size of the grid cells

is affecting the speed performance as it requires longer time

to process larger grid cells. As for YOLO_7x7 network, it

produced the highest speed; however it possesses the lowest

precision compared to other network. Therefore, the best

Convolutional Neural Network for Person and Car Detection using YOLO Framework

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 71

trade-off between speed and precision is achieved by

YOLO_11x11 network with 30 fps and 41.1 mAP. The higher

fps with better precision would enable the modified YOLO

model to be integrated in the real-time implementation of

ADAS system.

V. CONCLUSION

In this paper we have presented a CNN-based person and

car detector with the focus on achieving highest possible

detection speeds without significantly sacrificing on

detection quality. Our real-time detector is based on modified

YOLO which uses 7 convolutional layers. This reduction of

number of layers has the impact of reducing the

computational complexity at the expense of acceptable loss

in detection accuracy. The experimental results demonstrate

that although the convolutional layers have been reduced to 7

layers, using larger 11x11 grid cells (or higher) can improve

the detection accuracy on small objects. This makes the

reduced number of convolutional layers in YOLO with higher

number of grid cells a good candidate for use in ADAS which

demands both relatively high detection accuracy and real time

operation.

ACKNOWLEDGMENT

The authors would like to thank Centre for

Telecommunication Research and Innovation (CeTRI),

Faculty of Electronics and Computer Engineering (FKEKK),

Universiti Teknikal Malaysia Melaka (UTeM), and the

MyBrain15 program from the Ministry of Higher Education

(MoHE) and Government of Malaysia for sponsoring this

study. The authors also would like to thank Centre for

Research and Innovation Management Universiti Teknikal

Malaysia Melaka (CRIM-UTeM) for sponsoring this paper.

Apart from that, the authors also would like to thanks

Collaborative Research in Engineering, Science and

Technology (CREST) Malaysia for sponsoring the related

work and equipments under the research grant

(GLUAR/CREST/2015/FKEKK/I00005).

REFERENCES

[1] C. Chen, A. Seff, A. Kornhauser and J. Xiao, DeepDriving: Learning

Affordance for Direct Perception in Autonomous Driving Proceedings
of 15th IEEE International Conference on Computer Vision

(ICCV2015)

[2] J.E. Hoo, KC. Lim, Accuracy and Error Study Of Horizontal and
Vertical Measurements with Single View Metrology for Road

Surveying, ARPN Journal of Engineering and Applied Sciences.

11(12):7872-6, 2016
[3] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, Object

detection with discriminatively trained part based models. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
32(9):1627–1645, 2010.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection, In CVPR, 2005.
[5] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object

detection using deep neural networks. In CVPR, 2014.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu,
Alexander C. Berg. SSD: Single Shot MultiBox Detector,

arXiv:1512.02325 [cs.CV], 2015
[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In

CVPR, 2014.
[8] R. Girshick. Fast R-CNN, arXiv preprint arXiv: 1504.08083, 2015.

[9] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-

time object detection with region proposal networks, arXiv preprint
arXiv: 1506.01497, 2015.

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look

once: Unified, real-time object detection, arXiv preprint arXiv:
1506.02640, 2015.

[11] M. Everingham, L. Van Gool, C. K. I.Williams, J.Winn, and A.

Zisserman. The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results, 2007

[12] M. Everingham, L. Van Gool, C. K. I.Williams, J.Winn, and A.

Zisserman. The PASCAL Visual Object Classes Challenge 2010
(VOC2010) Results, 2010.

[13] https://github.com/puzzledqs/BBox-Label-Tool

[14] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error object
detectors. In Computer Vision–ECCV 2012, pages 340–353. Springer,

2012.

