

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 47

Requirements Defects Techniques in Requirements

Analysis: A Review

M. Kamalrudin1, L. L. Ow2 and S. Sidek2
1Innovative Software System and Service Group, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian

Tunggal, Melaka, Malaysia

.2Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.

massila@utem.edu.my

Abstract— Defects existing in the systems due to poorly

identified requirements defects are viewed as the major factors

leading to system failure, especially if the requirements defects

are not identified or addressed until at the later stage of software

development life cycle. In response to this, several attempts have

been made to identify defects during the requirements analysis

process. This paper presents a review of the various techniques

to handle requirements defects in the requirements analysis

activity. These techniques are categorised into four categories,

namely reading, inspection, analysis and automated tool. It was

found that these techniques have different focus and lack of

emphasis on the needs of the industry. This study provides the

basis for future research aiming at developing an approach to

automate the process of requirements defects handling.

Index Terms—Requirements Analysis; Requirements

Defects; Requirements Defects Techniques.

I. INTRODUCTION

Requirements engineering, conducted at the earliest stage in

Software Development Life Cycle (SDLC) is considered as

the most important stage. Requirements are pervasive to

affect the continuous activity throughout the process of

requirements engineering and even SDLC [1]. It comprises of

four different activities, namely requirements elicitation,

requirements analysis and validation, requirements

documentation, and requirements management.

Requirements elicitation is the first stage of requirements

engineering which aims to elicit requirements through

communication with the stakeholders. The second stage is the

requirements analysis and validation that aims to detect and

resolve requirements conflict raised between the

stakeholders. The third activity in requirements engineering

is requirements documentation, which focuses on defining

what and how the system should be built. At this stage, all the

agreed functional and non-functional requirements are

documented. The last activity is the requirements

management, whereby the requirements are coordinated,

scheduled and documented. Throughout the process, the

requirements are traceable and manageable in order to

manage any changes made on the requirements [1].

Requirements engineering process is a human-based

activity as it relies much on human decision-making. Hence,

mistakes are common occurrences in the requirements

engineering process. In this case, it is vital to ensure high

quality of requirements in order to avoid or reduce the

likelihood of propagating the defects to the subsequent phases

of software development life cycle. Fixing defects at the early

stage of requirements engineering process is easier, less

expensive and less effort for rework [2]. For these reasons,

we thought it is most appropriate to begin requirements defect

detection in the early stage of SDLC. This paper reports a

comparative study on the existing techniques or approaches

to handle requirements defects at the requirement analysis

stage. It is found that most of the defects checking approaches

start at the stage of requirements analysis in the requirements

engineering. We would like to review the current

requirements defects techniques in the requirements analysis

phase.

The remainder of this paper is structured as follows:

Section II elaborates on the definition of requirements defects

and Section III portrays the literature review. Section IV

presents findings of the comparative analysis and lastly

Section V concludes our finding.

II. REQUIREMENT DETECT

Defects are considered, by IEEE Standard Classification of

Software Anomalies, as an imperfection or deficiency in

specified software whereby the requirements and

specifications from the client are not met [3]. Defects are

normally needed to be either enhanced, repaired or rework

before or after software release. Defects are usually assumed

to be appeared in the line of codes. Besides, defects arise

from inconsistencies or contradictions within or between the

requirements, according to Blackburn et al. [4]. In our context

of requirement defects, requirements defects are found in the

requirements specification instead of the line of codes. Any

imperfection, undesired or vague requirements statements is

defined as requirements defects. For example, unstated

requirements from the client, tacit requirements between

developers and client, misunderstood requirements and etc.

are the typical examples of reported requirements defects [5].

According to the study conducted by author Chen and

Huang [6], requirements issues are included in the top 10

higher severity problems in software development, as shown

in Table 1 below. Besides, study also showed that the effect

of requirements defects is more severe and labour intensive

due to the propagation since the early stage of software

development life cycle and affect the sequential stage. Hence,

software development life cycle is developed based on the

wrong foundation or interpretation of requirements [7].

Journal of Telecommunication, Electronic and Computer Engineering

48 e-ISSN: 2289-8131 Vol. 10 No. 1-7

Table 1

Top 10 Severity Problems in Software Development [6][8]

Software Development Factors Problem Dimension

1 Inadequate of source code comments Programming Quality

2 Documentation obscure/untrustworthy Documentation Quality
3 Changes not adequately documented Documentation Quality

4 Lack of traceability Documentation Quality

5 Lack of adherence to standards Programming Quality
6 Lack of integrity/consistency Documentation Quality

7 Continually changing requirements Systen Requirements

8 Frequent turnover within the project
team

Personnel Resources

9 Improper usage of techniques Programming Quality

10 Lack of consideration for software
quality requirements

Systen Requirements

III. CURRENT TECHNIQUES OF HANDLING REQUIREMENTS

DEFECTS

According to Brykczynski [9], defects found in the testing

phase are usually traceable to requirements and design flaws

which can be detected earlier. Defects in the requirements and

design stage are relatively inexpensive and easy to rectify.

Requirements defects are the most expensive to repair if they

are found in the later stage of software development life cycle

as they are compounded by having to undo the work done

which based on the wrong interpretation of the false

foundation. The cost of fixing the requirements defects in the

early stage of software development life cycle is usually

negligible.

There are reviewers who identify potential requirements

defects in the requirements documents by adopting a

particular reading technique. There are a few techniques in

supporting this activity that has been proven effective.

Researchers have agreed that the choice of reading techniques

has directly impact upon the inspection [10]. Reading

techniques are generally classified into two different

categories which refer to systematic reading technique and

non-systematic reading technique, as shown in Figure 1

below.

Figure 1: Different Types of Reading Techniques

As shown in Figure 1, the systematic reading technique is

a highly explicit structural approach, while the non-

systematic reading technique is an intuitive approach.

Systematic reading technique, including the perspective

based reading and the scenario based reading, provides a set

of structural instructions for the reviewers and explains how

to find requirements defects by adopting perspective based

reading. On the other hand, the non-systematic reading

technique, including ad hoc reading and checklist reading, do

not have any specific framework for requirements defects

detection. As such, it does not offer help in finding defects or

support to the reviewers.

The scenario based Reading (SBR) was developed to

identify defects in requirements documents. In SBR

technique, requirements defects are classified and a set of

questions is developed for each of the defect classes. In this

case, scenario is referred to a collection of procedures for

detecting particular types of requirements defects. The

scenario is also developed and focused on specified

viewpoints. The reviewers are required to answer the

questions based on a specific scenario. Researchers

compared the SBR to ad hoc reading and checklist reading

techniques by conducting a few experiments in order to

confirm the findings[11][12]. The conducted experiment

shows that Scenario based Reading had a higher detection

rate in comparison to ad hoc and checklist approaches. In

addition, they also found that the checklist reading method is

no any better than ad hoc reading method.

On the other hand, the perspective based Reading (PBR) is

an enhanced version of scenario-based reading, which

focuses solely on the point of view or the needs from the

stakeholders. Each scenario consists of a set of questions and

is developed based on the viewpoint of the stakeholders. The

reviewers read the requirements documents from a particular

viewpoint with a physical model for analysis in order to

answer the questions based on the viewpoint. PBR is

expected to reduce any existing gaps or any overlapping

between the reviewers during the inspection process. It is

claimed to be more effective in finding defects in

requirements documents than other less structured reading

inspection methods since it is considered as systematic, goal

oriented, customable, focused and transferable in training

session[13].

Ad hoc reading technique, which is classified as the non-

systematic reading technique, is totally different from the rest

of the three reading techniques. It collects merely very

general viewpoints from the reviewers in identifying

requirements defects. There is neither procedure to adopt nor

training required for ad hoc reading technique. In this case,

reviewers are required to use their own knowledge to identify

requirements defects in requirements documents. Also, there

is no support given to the reviewers in ad hoc reading

technique.

Checklist reading is a more systematic technique in

comparison to ad hoc reading technique. It provides a list of

questions or predefined issues that needs to be checked during

inspection process. Checklist reading techniques aims to

define the responsibilities of the reviewer and guide them in

identifying defects. However, checklist reading technique

usually focuses on questions that aid the reviewer to identify

the major defects.

Despite the reading techniques stated above, the most

effective process for detecting the defects across all stages in

software development life cycle is inspection [9] as manual

approach. Inspection technique was developed by Fagan in

IBM [14], in 1972, aiming to identify defects. By identifying

defects, the process of inspection targeted at reducing the

costs and improving the quality. The inspection technique

was initially applied to hardware logic then to software logic

design and code. It was then been applied to the rest of the

process in software development life cycle including

requirements phase.

Inspection is easy to implement and is claimed to be a

highly effective method for requirements defects detection

[2]. Inspection is a manual review of requirements adopting

formal review procedures in a group setting. In addition,

inspection is known as structured walkthroughs. There are

four crucial aspects to be considered in the method of

requirements formal inspection namely a well-defined group

Requirements Defects Techniques in Requirements Analysis: A Review

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 49

having an assigned role for each of the requirements

inspectors, a checklist for requirements inspection process, an

agenda regarding how the requirements inspection will be

carried out and lastly a procedure for reviewing the

conclusion drew by the inspection team.

Figure 2 below shows the dramatic reduction of the

number of defects found throughout the different stages when

inspections were deployed. The number shown in the

parentheses are the number of defects without inspections.

For example, the defects found in the requirements stage were

initially 20, but it was reduced to 5 defects after applying the

inspections per KLOC, thousands (Kilos) of Lines of Codes.

In addition, the amount of rework to correct requirements

defects is significantly reduced and productivity is increased

simultaneously. Overall, the methods of inspections reduce

the cost of software development, increase the quality of

software and improve the productivity and the quality of the

decision making from the management [10].

Figure 2: Profile of Defects with Inspections [9]

Despite the advantages of adopting inspections on

identifying requirements defects, there are some reasons why

inspections are not widely adopted. For example, inspections

method required upfront cost for building inspections

infrastructure. Some organizations would rather adopt

informal review process on identifying requirements defects

in order to save cost.

Another experiment carried out by using N-fold inspection

method for fault detection in user requirements documents

instead of formal inspection method [2]. N-fold inspection

method adopts N number of independent efficient teams in

identifying defects that might not be found by just a single

team. This approaches expected to find different types of

defects by different teams of inspection. In their experiment,

nine independent teams were asked to locate as many as

requirements defects in the given user requirements

document by applying N-fold inspection method. The result

gained from their experiment was favorable to the initial

results reported by Martin and Tsai [15]. In fact, the N-fold

inspection method originated from Martin and Tsai was

applied on requirements analysis of mission critical system.

The N-fold requirements inspection method produces a

significant improvement in locating and correcting

requirements defects in user requirements document in

comparison to the common traditional requirements

inspection method. However, requirements faults still found

to be occurred in the later stage of development since the

basic requirements inspection techniques do not identify or

detect all the defects presented [16]. This fault slippage

motivates researchers to investigate improvement on the fault

detection process. Other researchers had been investigating

on various supporting mechanisms as added quality

improvement process

Researchers [17] presented a study on Fault Tree Analysis

(FTA) to identify potential hazards, fault and failures from a

hardware system. FTA is found to be effective in mitigating

the risks of potential faults and failures of the system. FTA

has been extent for the application in the field of software

called Software Fault Tree Analysis (SFTA) due to the

effectiveness in mitigating risk. SFTA used to model the

intrusion is a backward search. Software Fault Tree Analysis

includes the information in a tree diagram of events and logic

gates leading to possible hazards. SFTA is recommended to

be applied to the requirements and design stage of software

development. The main objective of applying SFTA in

requirements is to identify weaknesses that lied in

requirements specification. Weak requirements are modified

or additional requirements to be included in order to eliminate

the weak requirements. The other objective of applying SFTA

is to identify the requirement that has a direct effect on the

system safety issue. The requirements will be able to trace via

requirement traceability matrix throughout software

development life cycle once the requirements with safety

considerations are identified. However, the study focused

only on software design, in particular OODs using UML,

instead of requirements stage. Their study is still immature

and at the very basic stage of investigating application of

SFTA on the design stage. They adopted simple design for

illustration of SFTA concept and there is no significant result

on the usefulness of SFTA on OOD so far.

In the same context of SFTA, researches [18] adopted

SFTA in analyzing the intrusion domain to identify and verify

the requirements for Intrusion Detection System (IDS). There

have been no separate requirements specifications created in

their IDS prototypes. The intrusion fault trees are interpreted

as specifications of the events combinations that must be

detected instead of requirements specifications. SFTA model

of intrusion describes requirements indirectly for the design

of IDS and assists in verification process. A SFTA related

aspect development is considered tedious, detailed work and

required expert analysis which is hard for automation. It has

to be paired with machine learning approaches in order to

automate the development of SFTA.

In the year of 2001, Blackburn et al. [4] described a model

based verification approach for locating and correcting

requirements defects in the early stage of the development

process. Their approach refers to Test Automation

Framework (TAF) which integrates available model

development and test generation tools in order to support

defect prevention and test automation. They believed that

automate test generation eliminates the common manual and

error prone test design activities. TAF has been demonstrated

that it can be integrated into existing approach for reducing

cost and schedule saving.

Despite the manual requirements inspections and

requirements defects detection, Lami et al. [19] presented a

methodology and a tool named QuARS, Quality Analyzer for

Requirement Specifications, to analyze and validate natural

language requirements in a automated systematic way.

Requirements engineers are allowed to perform an initial

parsing of the requirements with purpose to detect potential

linguistic defects in requirements automatically by adopting

QuARS tool. In addition, QuARS tool also supports the

consistency and completeness analysis of requirements

automatically via requirements clustering in accordance to a

specific topic. QuARS tools performed analysis based on the

corresponding dictionary that comprised of a predefined

Journal of Telecommunication, Electronic and Computer Engineering

50 e-ISSN: 2289-8131 Vol. 10 No. 1-7

precise set of terms and linguistic constructions. Dictionaries

are considered the passive component in QuARS tool due to

the variety application domain and user needs. However, the

effectiveness of QuARS tools is strictly depends on the

accuracy, completeness and adequacy-to-domain of the

dictionary mentioned above. QuARS tool is only limited to

analyze syntax related issues from a natural language

requirements documents only.

An approach was introduced in 2009 named as R-Tool,

automation of use case driven requirement analysis, with aim

to support the analysis stage of software development in an

object oriented framework [20]. In the environment of object

oriented, the goal of the R-Tool is to understand the domain

of the problem and the responsibilities of the system. The

object oriented analysis aids in determining the system

requirements via identification of the classes and their

relationship to the classes in the problem domain which differ

from the others current tools. The R-Tool natural language

processing based CASE tool takes requirements as the input

and produce the elements of object oriented system for

example classes, attributes, methods and etc. The generation

of the class diagram is treated as output of the R-Tool. In their

initial experiment of adopting the R-Tool, it is found to

supplement the manual approach in identifying the

inconsistencies between manual approach and automated

approach in order to identify the system requirements

properly. One of the constraints of the R-Tool is the

complexity of the requirements as input. The requirements

input must be split into two simple sentences if it is a complex

sentence with the existence of conjunction.

The Goddard Space Flight Center’s (GSFC) Software

Assurance Technology Center (SATC) developed a tool for

assessing requirements in natural language during the early

life cycle [21]. The tool, Automated Requirements

Measurements (ARM) searches the occurrence of each of the

quality primitives in requirements document defined by

SATC. Eight primitives were implied in the quality attributes

including complete, correct, ranked, unambiguous,

consistent, modifiable, traceable and verifiable. Based on the

subject study conducted, three initial conclusions have been

drawn. Firstly, it is beneficial to the quality of the

requirements specifications adopting ARM via the usage of

data gathered by automated processing of the requirements

specification file. Besides, the relatively simple and readily

of ARM improves greatly the effectiveness of expressing the

requirements specifications in natural language. Lastly,

requirements specifications developed using a proven

methodology are found to be better in structure, more

consistent in number and contain crisper specification

statements in comparison to those requirements specification

developed based on a common documentation standard.

IV. COMPARATIVE ANALYSIS

This section summarizes and synthesizes the findings in

our literature review. We have categorized the existing

approaches to handle requirements defects into four different

categories from our conducted literature review above. The

four different categories refer to reading technique,

inspection technique, analysis technique and automated tool.

Table 2 illustrates the categorization of the findings.

Table 2

 Comparative Analysis of Current Techniques in Handling
Requirements Defects

Techniques to Handle Requirements Defects

1.0 Reading Technique

1.1 Systematic Reading Technique
1.2 Non-systematic Reading Technique

[9][10][11][12][13]

2.0 Inspection Technique

 2.1 N-fold Inspection Technique

[14]

[2][15]
3.0 Analysis Technique

3.1 Software Fault Tree Analysis (SFTA)

[18]

4.0 Automated Tool [19][20][21]

Based on Table 2, we found that the existing techniques for

requirements defects detection are mainly adopting manual

approaches. The implementation of automation tool in

requirements defects detection in requirements analysis is

scarce according to our conducted review.

Despite of these research advancements, empirical

evidence suggests that quality is still an issue because

developers lack of understanding on the source of problems,

inability to learn from the previous mistakes, lack of effective

tools and there is none complete verification process found

yet [4][16]. This study provides recommendation to the

industry and researches on the existing techniques in handling

requirements defects in order to propose a better approach or

automated tool.

V. CONCLUSION

In this paper, we presented a comparative study on the

existing techniques to handle requirements defects including

reading techniques, inspection technique, analysis technique

or automation tool technique. There is a need to consider the

needs from the industrial upon handling requirements defects.

The tool in the future should be evolved with respect to the

needs from the industrial and not only theoretical with aim to

improve the quality of the requirements by minimizing

requirements defects in requirements engineering activities.

A future work of this comparative study on requirements

defects proposes for a framework or tool that improved

execution of requirements analysis activity.

ACKNOWLEDGMENT

I would like to thank UTeM, zamalah UTeM and FRGS

grant for the funding research:

FRGS/1/2015/ICT01/FTMK/02/ F00291.

REFERENCES

[1] O. L. Lee, M. Kamalrudin, and S. Sidek, “Pair in software requirements

engineering: A review,” Int. J. Appl. Eng. Res., vol. 10, no. 14, pp.

34238–34243, 2015.
[2] G. Michael, “An Experimental Study of Fault Detection User

Requirements Documents,” no. 2, pp. 188–204, 1992.

[3] IEEE Standard Classification for Software Anomalies. 2010.
[4] M. R. Blackburn, R. Busser, and A. Nauman, “Removing Requirement

Defects and Automating Test,” 2001.

[5] S. Lauesen and O. Vinter, “Preventing Requirement Defects,” pp. 1–10,
2000.

[6] J. Chen and S. Huang, “The Journal of Systems and Software An

empirical analysis of the impact of software development problem
factors on software maintainability,” vol. 82, pp. 981–992, 2009.

[7] S. Ahmad, S. A. Asmai, and N. A. Rosmadi, “A Significant Study of

Determining Software Requirements Defects : A Survey,” WSEAS
Press, pp. 117–122, 2015.

[8] I. L. Margarido, J. P. Faria, and M. Vieira, “Classification of Defect

Types in Requirements Specifications : Literature Review , Proposal and
Assessment,” no. 1, 2009.

Requirements Defects Techniques in Requirements Analysis: A Review

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 51

[9] B. Brykczynski and D. A. Wheeler, “Software Inspection : Eliminating

Software Defects,” 1994.
[10] A. Aybuke;, P. Hakan;, and W. Claes, “State-of-the-Art : Software

Inspections after 25 Years,” vol. 12, no. 3, pp. 133–154, 2002.

[11] A. A. Porter, L. G. Votta, and C. Park, “An Experiment To Assess
Different Defect Detection Methods For Software Requirements

Inspections,” 1994.

[12] A. A. Porter, L. G. Votta, and V. R. Basili, “Comparing Detection
Methods For Software Requirements Inspections : A Replicated

Experiment,” 1998.

[13] F. Shull, I. Rus, and V. Basili, “How Perspective-Based Reading Can
Improve Requirements Insoections,” no. July, 2000.

[14] M. E. Fagan, “Advances in Software Inspections,” no. 7, pp. 744–751,

1986.
[15] J. Martin; and W. T. Tsai, “N-Fold inspection: a requirements analysis

technique,” Commun. ACM 33, pp. 225–232, 1990.

[16] G. S. Walia and J. C. Carver, “A systematic literature review to identify
and classify software requirement errors,” Inf. Softw. Technol., vol. 51,

no. 7, pp. 1087–1109, 2009.

[17] M. Towhidnejad, D. R. Wallace, A. M. Gallo, N. Goddard, and S. Flight,
“Fault Tree Analysis for Software Design,” 2003.

[18] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller, and R. Lutz, “A

Software Fault Tree Approach to Requirements Analysis of an Intrusion

Detection System,” no. 2, 2002.

[19] G. Lami, S. Gnesi, F. Fabbrini, M. Fusani, and G. Trentanni, “An

Automatic Tool for the Analysis of Natural Language Requirements,”
2005.

[20] S. Vinay, S. Aithal, and P. Desai, “An Approach towards Automation of
Requirements Analysis,” vol. I, 2009.

[21] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, “Automated Analysis

of Requirement Specifications,” pp. 1–11, 2005.
[22] G. O. Young, “Synthetic structure of industrial plastics (Book style with

paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed.

New York: McGraw-Hill, 1964, pp. 15–64.
[23] W.-K. Chen, Linear Networks and Systems (Book style).Belmont, CA:

Wadsworth, 1993, pp. 123–135.

[24] H. Poor, An Introduction to Signal Detection and Estimation. New
York: Springer-Verlag, 1985, ch. 4.

[25] B. Smith, “An approach to graphs of linear forms (Unpublished work

style),” unpublished.
[26] E. H. Miller, “A note on reflector arrays (Periodical style—Accepted for

publication),” IEEE Trans. Antennas Propagat., to be published.

[27] J. Wang, “Fundamentals of erbium-doped fiber amplifiers arrays
(Periodical style—Submitted for publication),” IEEE J. Quantum

Electron., submitted for publication.

[28] C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private
communication, May 1995.

[29] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interfaces
(Translation Journals style),” IEEE Transl. J. Magn.Jpn., vol. 2, Aug.

1987, pp. 740–741 [Dig. 9th Annu. Conf. Magnetics Japan, 1982, p.

301].
[30] M. Young, The Techincal Writers Handbook. Mill Valley, CA:

University Science, 1989.

[31] J. U. Duncombe, “Infrared navigation—Part I: An assessment of
feasibility (Periodical style),” IEEE Trans. Electron Devices, vol. ED-

11, pp. 34–39, Jan. 1959.

[32] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for

digital communications channel equalization using radial basis function

networks,” IEEE Trans. Neural Networks, vol. 4, pp. 570–578, Jul.

1993.
[33] R. W. Lucky, “Automatic equalization for digital communication,” Bell

Syst. Tech. J., vol. 44, no. 4, pp. 547–588, Apr. 1965.
[34] S. P. Bingulac, “On the compatibility of adaptive controllers (Published

Conference Proceedings style),” in Proc. 4th Annu. Allerton Conf.

Circuits and Systems Theory, New York, 1994, pp. 8–16.
[35] G. R. Faulhaber, “Design of service systems with priority reservation,”

in Conf. Rec. 1995 IEEE Int. Conf. Communications, pp. 3–8.

[36] W. D. Doyle, “Magnetization reversal in films with biaxial anisotropy,”
in 1987 Proc. INTERMAG Conf., pp. 2.2-1–2.2-6.

