

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 5

A Preliminary Study: Challenges in Capturing

Security Requirements and Consistency Checking

by Requirement Engineers

Massila Kamalrudin1, Nuridawati Mustafa2, Safiah Sidek1

1Innovative Software System and Service Group (IS3), Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian

Tunggal, Melaka, Malaysia.
2Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.

massila @utem.edu.my

Abstract— There has been a growing concern on the

importance of security with the rise of phenomena, such as e-

commerce and nomadic and geographically distributed work.

Realizing the security early, especially in the requirement

analysis phase, is important so that security problems can be

tackled early enough before going further in the development

process and avoid re-work. Ensuring the consistency of elicited

functional security requirement of requirements specification is

also crucial as the requirements should be well understood and

agreed upon by all the stakeholders and end-users. Therefore,

the aim of this paper is to further discuss on the challenges faced

by Requirement Engineers (REs) in: (1) capturing Security

Requirement and (2) Consistency Checking in Requirement

Engineering. Motivated from the need to ensure consistency in

functional security requirement for developing secure software

and the gaps found in the existing works, a survey has been

conducted involving 38 experts in software engineering in the

industry. The survey aims to identify the current problems faced

by them during the elicitation process, security standards used

as the reference, elicitation and validation method, and the

important properties considered while developing secure

software. Results of the survey show that REs face difficulties to

understand the security needs and the existing standards are

difficult to understand. Therefore, it is proposed that an

automated tool to elicit security requirements should be

developed.

Index Terms— Consistency Management; Secure Software;

Security Requirements; Security Requirements Validation.

I. INTRODUCTION

The success of secure software development depends on

quality security requirements. However, the process of

eliciting security requirements is tedious and complex. It also

requires REs to have security experience when eliciting

consistent security requirements from the clients-

stakeholders. Most of the REs also face problems in eliciting

consistent security compliance requirements from the clients-

stakeholders as they tend to misunderstand the real needs and

the use of security terms. ‘‘If you don’t know what you want,

it’s hard to do it right.’’ Unless the clients-stakeholders know

what to secure, against whom, and to what extent, it is

obviously very difficult to construct a secure system or to

make a substantial statement about its security [1]. All of

these issues may contribute to eliciting inconsistent security

requirements.

Inconsistency in elicitation may lead to the development of

incorrect and insecure software systems as well as the

disruptions of schedule and the increase in a project's

expenditure. In relation to this, finding errors at the later stage

of system development are costly because correcting such

errors may need changes in the whole specification and

implementation. There are efforts to solve security leakages

during the system development process for the purpose of

increasing quality, but this may lead to extra cost and wastage

of time to organizations [2]. In this case, it is vital to address

the security issues as early as possible in software

development

Whenever inconsistencies are discovered during the

runtime of a system, it may not be possible to fix the problems

since the causes of the problem cannot be identified or

located, and a common practice to address this issue is to

redevelop the system from the beginning. In this case, it is

crucial to ensure the consistency of functional security

requirements during the early stage of requirements

specification to avoid a waste of time and high cost. However,

as stated in [3], one of the challenges is to ensure that the set

of identified security requirements is consistent and complete

so that no necessary security requirements are left

undiscovered, and that the set of security requirements jointly

indeed enforces the security needs.

This paper is organized as follows. In Section 2, we

discussed a survey of the literature by outlining the challenges

faced by REs in capturing security requirements. Together

with that, we discuss the existing consistency management

works in handling inconsistencies in security requirements.

Next, in Section 3, we explained the results from the survey

conducted among the experts to see the current problems

faced by them during the elicitation process, the elicitation

and validation method used and also the important properties

being considered in developing secure software in industries.

Then, in Section 4, we discuss the thread of validity of this

study. Finally, this paper ends with a conclusion in Section 5

that proposes an agenda for future work.

II. LITERATURE SURVEY

Several works related to capturing and consistency

checking in security requirements have been discovered and

these works are presented in this section.

Sindre et al. in [4], [5], [6] and [7] elicited the security

requirements based on use cases, with the emphasis on

description and method guidelines. The approach is an

extension of the traditional use cases. The authors claimed

Journal of Telecommunication, Electronic and Computer Engineering

6 e-ISSN: 2289-8131 Vol. 10 No. 1-7

two new concepts, which are the misuse cases and misusers,

along with suitable relationships using a diagram notation,

templates for textual descriptions, and method guidelines.

However, the method guidelines are still too general and

imprecise as the number of potentially critical assets and

associated threats that must be considered are large. Further,

the misuse case approach itself is not equally suitable for all

kinds of threats, specifically because the misuse does not

always involve or exploit neither an identifiable sequence of

actions nor an identifiable misuser.

As being explained by Lin et al. in [8] and [9], they derived

the security requirements based on problem frames. It was

implemented using Jackson's Problem Frames by analyzing

security problems in order to determine security threats and

vulnerabilities.

According to Houmb et al. [3], they proposed a security

requirements engineering methodology called SecReq, which

is an extension of security requirements engineering by

seamlessly integrating elicitation, traceability and analysis

activities. This methodology combines three techniques: the

Common Criteria (CC), the heuristic requirements editor

HeRA, and the UMLsec. The integrated SecReq method

supports early detection of security-related issues (HeRA).

Their systematic refinement is guided by the CC, and it has

the ability to trace security requirements into UML design

models. A feedback loop helps reusing the experience within

SecReq and turns the approach into an iterative process for

the secure system life-cycle. It is also in the presence of

system evolution. However, it has several limitations: The

consistency of the elicited security requirements during Step

1 is not being considered; and there is still no guarantee that

these requirements will be correct and consistently

represented in the solution design and then the

implementation.

Similar to the previous work, El-Hadary and El-Kassas [10]

also proposed a methodology for security requirement

elicitation based on problem frames, which is to assist

developers to elicit adequate security requirements during the

requirement engineering process with the aid of previous

security knowledge. This methodology adopted a security

catalog based on the problem frames. It was constructed to

help identify security requirements with the aid of previous

security knowledge. Abuse frames were used to model

threats, while security problem frames were used to model

security requirements. They claimed their methodology can

extract more complete security requirements compared to

other relevant methodologies. However, the results are still

immature since the comparison was made with two security

requirement elicitation methodologies only. Perhaps, the

consistency level has not been proven in their paper since

more empirical studies on large-scale software systems are

needed in order to evaluate the methodology.

Kamalrudin et al. [11] has introduced an automated tool

support called MaramaAIC using semi-formal models: EUCs

and EUI for managing business requirements consistency and

validation. This tool provides an end-to-end rapid prototyping

approach together with a patterns library that helps to capture

requirements and check the consistency of requirements

expressed in textual natural language requirements and then

extracted to semi-formal abstract interactions, essential use

cases (EUCs) and user interface prototype models. However,

this tool does not consider the consistency for functional

security requirement.

Security requirements engineering process with a generic

system model core has been proposed as in [12]. Decke

explains the system model core and demonstrates its

extensibility using the example of vehicular systems. They

explained two methods for formal inspection of the system

model, which are how security engineer can be assisted by

consistency checking of the system model, and how to verify

the sum of generated security requirements to ascertain the

correctness of the security concept. Even though the

consistency checking is included in this model, the

implementation is still tedious because no automated tool is

provided. The implementation suggestion requires the REs to

choose the checking on their own, depending on the type of

the implementation of the methodology. However, their

recommendation to use lambda functions in C++ 11 or Java

8 does not provide a guarantee that the result of consistency

checking is achieved.

In summary, there are a number of works done in checking

the consistency of requirements. However, only a few were

found in security requirements, especially the functional

security requirements. In addition, the existing consistency

management approaches are still immature and have tedious

implementation.

III. PRELIMINARY STUDY: SOFTWARE PRACTITIONERS

Based on the challenges found in the previous section, we

have conducted a quantitative survey with few software

industries such as IBM Malaysia, Cyber Security Malaysia

and other software companies in the area of Lembah Klang,

Malaysia. This survey was participated with 38 software

experts with various position inclusive of software

developers, system engineer and software tester. Further, this

surveys was conducted through paper-based and online-based

method, where all participants are and treated anonymously.

The aims of this survey are threefold: First, to analyze the

current problems faced by them during the elicitation process;

second, to identify the security standards used as reference,

elicitation and validation method; and third, to identify the

important properties being considered while developing

secure software.

The followings were carried out during the survey: Firstly,

nine questions were designed to address the aims of the

survey. Next, the questionnaires were distributed to software

engineering experts and a total of 38 software engineering

experts from established companies took part in this survey.

The results were analyzed using ATLAS.ti to identify the

percentages of similar variables (responses). In order to do

this, the variables were prepared based on the possible

answers that correspond to the respective questions. To avoid

biasness, all of the variables were validated by an expert.

The subsequent part of this section presents the findings of

this survey. It begins with the background of the sample. The

background of the sample was characterized by work

experience. As shown in Figure 1, 68% of the respondents

had less than 5 years work experiences as Software

practitioners, while 32% of the respondents had more than 5

years work experience as software practitioners. This

indicates that more than three quarter of the respondents

having at least 2 years as software practitioners.

A Preliminary Study: Challenges in Capturing Security Requirements and Consistency Checking by Requirement Engineers

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 7

Figure 1: Respondents Working Experiences Distribution

Subsequently, as shown in Figure 2, most of the software

practitioners involved in this survey are the software

developer with 32% and follow by 18% of them are system

engineer and 13% are software tester. This indicates that all

of the respondents have experience working with software

requirements.

Figure 2: Respondents Roles and Positions

The respondents were also requested to indicate the

problems they faced working as Requirements engineers. As

shown in Figure 3, most of the RE’s reported that their clients

do not clearly know and understands the security needed by

their systems. The second highest problems was the difficulty

of RE’s to understand the security terms in security standards

documents. This is followed by the difficulty to write the

security requirements. A possible reason why they are having

this difficulty is that none of the template/best practice

template is easily used and available to be used as template.

Furthermore, the majority of the respondents, which is 79%

of the respondents, do not refer to any security requirement

template when preparing the documents, as shown in Figure

4. This is also proven in Figure 3 as most of the respondents

have difficulty in understanding the security terms in the

existing templates. Only a small number of them refer to the

companies’ template and other existing standards, such as

FIPS, SSL, NIST and US Security Layer/Standards. This

clearly shows that the existing standards is difficult to

understand and not user-friendly.

Figure 3: Problem in Security Requirements

Figure 4: Security Requirement Template/Standards

In terms of security requirement consideration phase, as

shown in Figure 5, the majority (66% of the respondents)

mentioned that they considered the security requirements

during Requirement Analysis phase. While others, (34% of

the respondents) only considered the security requirement

during the design, implementation and testing phase. It can

be concluded that although the security requirements have

been considered at the early stage, it is not taken into

consideration seriously or fully explored.

Figure 5: Security Requirement Consideration Phase

21%

39%
8%

32%

Respondents Working Experience

0-1 year 2-3 years

4-5 years More than 5 years

11%

18%

8%

32%

13%

3% 3% 3% 3%
5%

3%

Respondents Roles/ Positions

49%

29%

20%

2%

Problems commonly face in dealing with security

requirement

User do not clear/understand the security needs by their system

Difficulty to understand security terms in security standards

Difficulty to write the security requirement document

Others

79%

21%

Security Requirement Template/Standards

No Yes

56%31%

11%

2%

Security Requirement Consideration Phase

Requirement Analysis Design

Implementation Others (Testing)

Journal of Telecommunication, Electronic and Computer Engineering

8 e-ISSN: 2289-8131 Vol. 10 No. 1-7

According to the respondents, there are a few methods that

have been used to elicit security requirements. Figure 6 shows

that 25% of the IT practitioners which is not even half of them

collect the security requirements based on the feedback of the

users and stakeholders. 20% of them still elicit the security

requirement after the product has been developed, that is

during product testing, which is already late in the software

development cycle. Security is often thought as an after

development issue and it can only proven to be very harmful

once the software has been developed and exist in the market.

It is difficult to remove any kind of virus or vulnerabilities

that might have been introduced in the software during its

development process. However, it would be highly beneficial

if the security problems are understood in the early phases of

SDLC process, especially during the requirement and

analysis phases so that the software developed incorporates

the security issues [13]. Further, others define the security

requirements based on experience, discussion, analysis on

situation, security analysis, depending on data sensitivity and

SOP/ Network Security sharing.

Validation of requirements usually takes place after the

elicitation of security requirements. Figure 7 illustrates the

methods used to validate the elicited security requirements.

As shown in Figure 7, 49% of the respondents used a tool to

validate the requirements, while 27% of them used a model

and 24% of the respondents validate the requirements

manually. This implies that almost half of the respondents

used a tool for validation. In this respect, tool is the most

popular validation method used in validating security

requirements. This result also indicates that there are quite a

number of Software Engineering practitioners depend on the

manual methods in doing the validation process, in which the

existing validation tools are not their preference.

Figure 6: Security Requirement Elicitation Method

Figure 7: Security Requirement Validation Method

While conducting the security requirement validation, the

two main properties that are highly considered are the

correctness and consistency with 32% of the respondents as

shown in Figure 8. These validation are not easily done as

mentioned in [14]. One of the critical tasks of requirements

engineers in this process is to ensure that requirements

specification at each step remains correct, or at least that

errors are found as early as possible. While others 20% of the

respondents and 16% of them respectively are the

completeness and ambiguity. The overall results are shown in

Figure 8.

Considering that the security standards documents are

difficult to understand and the template provided is not user

friendly, it can be concluded that RE’s have difficulties to

write security requirements.

Figure 8: Security Requirement Properties

IV. LIMITATION

In summary, there is few limitations that we need to

overcome in the future study. Firstly is the poll of

respondents are the software practitioners from the medium

to large size company only and mostly located at Klang

Valley. Moreover, in this study, we do not focus on the small

company because we believed they might not use specific

tool and method due to cost and size of the projects. Both

constraints are believed could affect the results as different

demographic and size of company and project could

contribute to different findings of the survey. Therefore, we

plan for a replication of this study in the future to strengthen

the results.

20%

25%

10%
5%

10%

15%

5%

10%

Security Requirement Elicitation Method

Testing the product

Based on user feedback/ Stakeholder

Analysing the design and detect possible security

flaws/ Analysis on situation

Experience

Security Analysis/ Security risk

Discussion

Depend on level of data sensitivity

SOP/Network Security sharing

Tool

49%

Manual

24%

Model

27%

Security Requirement Validation Method

Tool Manual Model

32%

32%

20%

16%

Security Requirement Validation Properties

Correctness Consistency Completeness Ambiguity

A Preliminary Study: Challenges in Capturing Security Requirements and Consistency Checking by Requirement Engineers

 e-ISSN: 2289-8131 Vol. 10 No. 1-7 9

V. CONCLUSION AND FUTURE WORKS

Based on our literature survey and the online survey, we

conclude that there is no automated tool and template that

cater for elicitation of functional security requirements.

Although there are few solutions has been proposed, the

implementation is still tedious because no automated tool is

provided. Furthermore, the result of the proposed model in

terms of consistency checking is still immature. A more

effective approach for security requirement engineering is

needed to provide a more systematic way for eliciting

adequate security requirements. We believed, it is timely to

have an automated tool on eliciting security requirements.

This is based on the results of the survey that found that the

IT practitioners face difficulties in understanding the security

terms when they elicit requirement requirements. As for

future work, we are motivated to develop or propose a new

best-practice template for guidance in writing consistent

functional security requirement with consistency

management checking. We strongly believe that this

approach will improve the quality of elicited security

requirement for secure software development.

VI. ACKNOWLEDGMENT

I would like to thank UTeM and MoE for the funding

research: FRGS/1/2015/ICT01/FTMK/02/ F00291.

REFERENCES

[1] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt, “A

comparison of security requirements engineering methods,” Requir.
Eng., vol. 15, no. 1, pp. 7–40, Mar. 2010.

[2] [2] T. R. Farkhani and M. R. Razzazi, “Examination and

Classification of Security Requirements of Software Systems,” in 2006
2nd International Conference on Information & Communication

Technologies, 2006, vol. 2, pp. 2–7.

[3] [3] S. H. Houmb, S. Islam, E. Knauss, J. Jürjens, and K. Schneider,
“Eliciting security requirements and tracing them to design: an

integration of Common Criteria, heuristics, and UMLsec,” Requir.

Eng., vol. 15, no. 1, pp. 63–93, Mar. 2010.
[4] [4] G. Sindre and A. L. Opdahl, “Templates for Misuse Case

Description,” 7th Int. Work. Requir. Eng. Found. Softw. Qual. REFSQ

2001, vol. 6, pp. 125–136, 2001.
[5] [5] G. Sindre and A. Opdahl, “Capturing security requirements

through misuse cases,” NIK 2001, Nor. Inform. 2001, http// …, 2001.

[6] [6] G. Sindre, D. G. Firesmith, and A. L. Opdahl, “A Reuse Based
Approach to Determining Security Requirements,” 9th Int. Work.

Requir. Eng. Found. Softw. Qual. REFSQ 2003, vol. 8, pp. 127–136,

2003.
[7] [7] G. Sindre and A. L. Opdahl, “Eliciting security requirements with

misuse cases,” Requir. Eng., vol. 10, no. 1, pp. 34–44, Jan. 2005.

[8] [8] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett,
“Introducing abuse frames for analysing security requirements,” in

Proceedings of the IEEE International Conference on Requirements

Engineering, 2003, vol. 2003–Janua, pp. 371–372.

[9] [9] L. Lin, B. a Nuseibeh, D. C. Ince, M. a Jackson, J. D. Moffett,

and F. O. M. a. C. D. of Computing, “Analysing Security Threats and

Vulnerabilities Using Abuse Frames,” 2003.
[10] [10] H. El-Hadary and S. El-Kassas, “Capturing security requirements

for software systems,” J. Adv. Res., vol. 5, no. 4, pp. 463–472, Jul.
2014.

[11] [11] M. Kamalrudin, J. Hosking, and J. Grundy, “MaramaAIC: tool

support for consistency management and validation of requirements,”
Autom. Softw. Eng., Feb. 2016.

[12] [12] H. Decke, “Checking and Verifying Security Requirements With

the Security Engineering System Model Core,” no. c, pp. 26–35, 2015.
[13] [13] R. Jindal, R. Malhotra, and A. Jain, “Automated classification of

security requirements,” in 2016 International Conference on Advances

in Computing, Communications and Informatics (ICACCI), 2016, pp.
2027–2033.

[14] [14] D. Zowghi and V. Gervasi, “The Three Cs of Requirements:

Consistency, Completeness, and Correctness,” Int. Work. Requir. Eng.
Found. Softw. Qual. Essen, Ger. Essener Inform. Beitiage, 2002.

