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Abstract—Dependability of an automation system requires 

engineers to implement formal verification procedures in order 

to eliminate the causes of hazardous conditions. These 

conditions may vary from case to case and will jeopardize the 

dependability of manufacturing lines and operators. Therefore, 

dependability analysis of the control systems to check the 

possibility of state transitions from safe to unsafe states, for 

instance, is essential. Formal verification by using model 

checking procedure is proven as an effective method and widely 

used in practice for automatic verification of correctness 

properties against a finite model of a system. Therefore, in the 

present paper, we introduce a novel method of model checking 

for logic control design. A Binary Decision Diagram (BDD) 

based model checking method is used to analyze and design a 

dependable controller that meets the requirement of certain 

properties, defined by specified predetermined functions.  

 

Index Terms—Binary Decision Diagram (BDD); Computation 

Tree Logic (CTL); Programmable Logic Controllers (PLCs). 

 

I. INTRODUCTION 

 

Design phase in the development of an automation system 

could be very critical. The fact is that the design engineers 

who involve in this phase must have technical knowledge and 

experiences, equipped with strong engineering capabilities to 

cope with the design requirements. Although beneficial for 

the engineers, the increasing number of embedded functions 

and features in the design of PLC-based manufacturing 

processes introduce more potential safety risks [1]. Thus, 

their effects on system reliability are much more 

unpredictable. Furthermore, these also lead to design errors 

that affect the functional behavior of the systems. Therefore, 

a successful system design depends on how verification is 

conducted to reduce the possibility of the design errors while 

at the same time eliminate the causes of hazardous 

conditions[2][3]. 

These issues of risks have brought us to the approach of 

formal verification by using model checking. Model checking 

is a formal technique to verify that a mathematical model of 

a system fulfills a formal specification that describes the 

property to be checked. The method is proven to be efficient 

and widely used in practice for automatic verification of 

correctness properties against a finite model of a system. 

Among the popular model checking technique is Binary 

Decision Diagrams (BDDs), that can represent set of states 

symbolically. 

Our present work proposes in this paper is a new technique 

of model checking for logic control design. A Computation 

Tree Logic (CTL) temporal logic is used to analyze and 

design a dependable controller that meets the requirement of 

certain properties, defined by a predetermined function. The 

safety function, for instance, is obtained from hazardous 

conditions which are the property that may put the system into 

unsafe states. In addition, we verify the effectiveness of the 

proposed method by experiments on a pick-and-place arm 

system, controlled using a PLC. We describe the designed 

controller in the ladder diagram (LD) format. The control 

system and specified property functions are then transformed 

into Boolean formulas before analysis on the dependability of 

the system are carried out.  

 

II. RELATED WORKS 

 
The concept of formal methods has inspired design 

engineers to implement it for logic control design and 

synthesis. This is to ensure that no unusual conditions and 

hazardous behaviors occur that may lead to design errors that 

will cause malfunction of control systems. In other words, the 

aim is to improve the dependability of logic controllers. 

Starting from the implementation to digital functions for 

logical analysis [4] in the late 70’s, BDDs have been widely 

applied in numerous research fields because of its ’powerful 

representation’ of various kind of control systems. Bryant’s 

approach of BDD manipulation algorithms to logic design 

verification [5][6] is a cornerstone of the new formalism of 

model checking technique. Burch et. al. introduced a BDD-

based algorithm for symbolic CTL (Computation Tree Logic) 

model checking [7] with several techniques to improve the 

efficiency of verification methods based on reachability 

analysis. Later, instead of BDDs, an alternative approach 

which is SAT-based procedures for propositional 

satisfiability problems has been proposed to cope with the 

state space explosion when using BDDs [8]. This method is 

familiarly known as Bounded Model Checking (BMC). The 

performances of these techniques on diversified hardware 

benchmarks have also been investigated[9]. In addition to 

CTL model checking in formal verification of a system, 

analysis of linear time-based LTL (Linear Temporal Logic) 

specifications to verify safety properties also have been 

carried out thoroughly [10][11], giving the definition of 

safety in different manners.  

On the other hand, one of the methods used [12] to 

synthesize control laws for the logic controllers is by solving 

a Boolean equation that represents all the requirements. Our 

proposed method introduced is basically followed this 

interpretation but uses different notions in the algebraic 

approach. A familiar concept of symbolic and algebraic 

method framework in discrete event system applications was 
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introduced by Gunnarsson [13][14]. He proposed a method of 

control law syntheses by using polynomials over a finite field 

and Gr¨obner bases as the computation tools. Formally 

introduced in 1965 [15], the application of Gr¨obner bases 

currently seems to be borderless. This powerful tool is 

originally developed for algorithmic solutions of polynomial 

ideal theory before it becomes an effective and practical 

method used to solve engineering and mathematical 

problems. Its applications are broad, for example in reliability 

improvement of mathematical structure [16], and also time-

optimal control by solving problems of finding solutions for 

algebraic equations [17]. 

The unique representation of Gröbner bases algorithmic 

solution has given us the idea for applying it in formal 

verification procedures of logic control systems [18]. We also 

have successfully implemented several model checking 

procedures to verify the safety of the sequential systems by 

using this powerful method[19]-[22]. 

 

III. LOGIC CONTROL SYSTEM 

 
Consider a logic control system consisting of discrete 

signals as shown in Figure 1. Here u is the actuator input and 

y is the sensor output. The system shows the relationship 

between the plant and the controller. In this paper, a plant 

represented in Boolean algebra is considered: 

 

    ))(),(()1( kukxfkx ppp                          (1) 

 

        
 

Figure 1: Control system architecture 
 

Assuming that all of the variables, namely, the plant state x 

and input u, represented by vectors formed by the elements of 

a binary set, B of true (1) and false (0), and having 

dimensions of np and m, then the following can be stated: xp(k) 

∈ Bnp is the state vector and u(k) ∈ Bm is the actuator input 

vector of the plant. In addition, k  is a positive integer that 

expresses time. Furthermore, the plant itself is a strictly 

proper system that whose input does not influence the output 

at the same event time. 

Meanwhile, the controller is represented by the following 

state equation: 

 

                 ))(),(()1( kukxhku cc                               (2) 

 

where xc(k) ∈ Bnc represents the state vector of the controller, 

having a dimension of nc at the event time k. Furthermore, the 

state equations of the entire system can also actually be 

represented by combining both the plant model and the 

controller. 

The state space of the system also includes the input state 

space, which consists of both xc and xp. The entire system state 

space with (np + nc) order is a set of 2np+nc state combinations. 

For this kind of system, physically unreachable state space is 

defined as infeasible space; otherwise, it is feasible space. In 

addition, when there is normal state space in certain control 

specification, it is defined as a safe state; otherwise, it is an 

unsafe state. Figure 2 categorizes the state into four patterns 

of combinations of feasible/infeasible and safe/unsafe states. 

A real system is normally controlled within the normal state 

space; however, in the case where disturbances and faults of 

the sensor or actuator occur, it is possible for the system to be 

out of the normal state space. In these situations, the 

controller must be designed so that it will avoid any state 

transitions to the unsafe space. 

 
Figure 2: Category of state space 

 

IV. MODELING OF A CASE STUDY EXAMPLE 

 
In this section, we report the experimental setup and 

modeling Boolean formulas of verifying a logic control 

system by using a pick-and-place arm workstation. We 

provide a plant model that describes the system configuration, 

then we design its control logic based on the regular 

operation. To verify whether the designed control system 

meets the safety specification, we take an example of a 

hazardous state that will be defined as a safety function, 

described in detail in a later subsection. 

The pick-and-place arm workstation uses PLC 

programming software as its controller and the logic 

programming tool is based on the IEC 61131-3. Figure 3 

illustrates the block diagram of the workstation, with a set of 

predetermined input state u and plant state x. 

 

 
 

Figure 3: Schematic diagram pick and place arm 

 

The state's definition, where all variable x stands for state 

inputs and all variable u for actuator outputs are summarized 

in Table 1. 

By referring to Table 1, we create the pre-post condition 

table that shows the relationship between input and output of 

the model. This is the preliminary step in order to get the 

model of the entire pick-and-place system. Table 2 to Table 6 

show the operational models of each arm at different states 

and conditions. 
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Table 1 
States Definition of Inputs and Outputs 

 
Input (Sensors) Output (Actuators) 

x8 Base at workstation u8 Moving from workstation 
to conveyor 

x9 Conveyor sensor uA Moving from conveyor to 

station 
x10 Workstation sensor u10 Moving upward 

x11 Top sensor u11 Moving downward 

x13 Object in suction cup u12 Suction on 

 

For example, in Table 3, the result of pre-post conditions 

of arm 2 is expressed by the following statements (case by 

case from first until the fourth row of the table): 

1) When arm is at conveyor position if arm starts to 

actuate to the workstation, then on the next event time 

(k +1) arm will not be on conveyor nor at workstation 

position. 

2) When the arm is not on the conveyor nor at the 

workstation position, if arm starts to actuate to the 

workstation, then on the next event time arm will be at 

workstation position. 

3) When the arm is at workstation position, if arm starts 

to actuate to the conveyor, then on the next event time 

arm will not be on conveyor nor at workstation 

position. 

4) When the arm is not on the conveyor nor at the 

workstation position, if arm starts to actuate to the 

conveyor, then on the next event time arm will be at 

conveyor position. 

 
Table 2  

Operational Model of Arm 1 
 

Pre-Cond. Input Post-Cond. 

x8 x11 u10 u11 dx8 dx11 

1 1 0 1 1 0 
1 0 1 0 0 0 

0 0 1 0 0 1 

 

By the pre-post condition obtained in Table 2, we get the 

Boolean expressions as in Equations (3) and (4): 

 

          
111011810111188 uuxxuuxxdx                                  (3) 

         
8101111101111811 xuuxuuxxdx                                 (4) 

                               

The procedure is similar to the rest of operational models, 

where we can produce the Boolean equations from the pre- 

postconditions. 

 
Table 3 

Operational Model of Arm 2 

 

Pre-Cond. Input Post-Cond. 

x9 x10 uA u8 dx9 dx10 

1 0 1 0 0 0 

0 0 1 0 0 1 

0 1 0 1 0 0 
0 0 0 1 1 0 

 

From Table 3, we obtained the following equations: 

 

 

           
810981099 uuxxuuxxdx AA                              (5) 

           
AA uuxxuuxxdx 8910810910                              (6) 

 

    

 
 

Figure 4: Flowchart of pick-and-place arm operation 

 

Table 4 and Table 5 are the operational models for suction 

activation, which involves a number of sensors and input 

states. Therefore, the Boolean expression for this model is 

stated in Equation (7). 

 

                    

11121011131098

1211101311109813

uuuxxxxx

uuuxxxxxdx




                    (7) 

 

From Table 5, the mathematical expression for suction 

actuation of arm 1 at conveyor can be written as: 
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11111098121013

1211101311910813

uxxxxuux

uuuxxxxxdx




                   (8) 

 

Table 4  

Operational Model for Suction Activation of Arm 1 at Workstation 

 

Pre-Cond. Input Post-Cond. 
x

8 

x

9 

x1

0 

x1

1 

x1

3 

u1

0 

u1

1 

u1

2 

dx

8 

dx

9 

dx1

0 

dx1

1 

dx1

3 

1 0 1 1 0 0 1 0 1 0 1 0 0 

1 0 1 0 0 0 1 0 1 0 1 0 1 

1 0 1 0 1 1 0 1 1 0 1 1 1 

 
 

Table 5 

Operational Model for Suction Activation of Arm 1 at Conveyor 
 

Pre-Cond. Input Post-Cond. 
x

8 

x

9 

x1

0 

x1

1 

x1

3 

u1

0 

u1

1 

u1

2 

dx

8 

dx

9 

dx1

0 

dx1

1 

dx1

3 

0 1 0 1 1 0 1 1 0 1 0 0 1 

0 1 0 0 1 0 0 1 0 1 0 0 0 
0 1 0 0 0 1 0 0 0 1 0 1 0 

 

The last operational model as in Table 6, is obtained for 

suction activation of arm 2, as in Equation (9). 

 

                    

12812111098

12812111098

12812111098

12812111098

1281211109813

uuuxxxxx

uuuxxxxx

uuuxxxxx

uuuxxxxx

uuuxxxxxdx

A

A

A

A

A











                 (9) 

 

Table 6   

Operational Model for Suction Activation of Arm 2 
 

Pre-Cond. Input Post-Cond. 
x

8 

x

9 

x1

0 

x1

1 

x1

3 

u

A 

u

8 

u1

2 

dx

8 

dx

9 

dx1

0 

dx1

1 

dx1

3 

1 1 0 1 0 1 0 0 1 0 0 1 0 

1 0 0 1 0 1 0 0 1 0 1 1 0 
1 0 1 1 0 1 0 0 1 0 1 1 1 

1 0 1 1 1 0 0 1 0 0 1 1 1 

0 0 1 1 1 0 1 1 0 1 0 1 1 
0 0 0 1 1 0 1 1 0 1 0 1 1 

 

 

V. DESIGN OF CONTROL LOGIC 

 
We use ladder diagram (LD) as a tool of PLC language in 

designing the logic controller. The controller is designed to 

operate and control the plant as the actual operation of the 

pick and place robotic system. Figure 4 shows the logic 

controller for the pick and place system, while Table 7 shows 

the addresses used in the ladder diagram. 

For precautionary steps or safety measures to ensure that 

the controller is safe, every rung needs to include all the 

sensors and outputs. To differentiate, each rung has different 

sensors that need to be activated and deactivated with 

reference to the sensor involve for the actuation to occur. 

From the controller, the Boolean mathematical model is 

generated in order to verify together with the system model 

using Symbolic Model Verifier (SMV) software. The 

following equations are the actuation equations generated 

from the PLC logic controller for every rung of actuation. 
 

 

 
 

Table 7 
Description of the address used in ladder diagram 

 

 

 

                  
121110813910118 uuuuxxxxxduA                   (10) 

               

81011

10813912910811

&

))()((

uuux

xxxxuxxxdu

A


             (11)                

81011

1210913910810

&

))()((

uuux

uxxxxxxdu

A


               (12) 

                

111011

131091291088

&

))()((

uuux

xxxuxxxdu

A


                (13) 

              

Auuxux

uxxxxxxxdu

))(|)(|

)))((()((

11131013

81311109910812 
         (14) 

where, 

 

duA  :  post condition for actuation arm moving from  

conveyor to the workstation (rung 1) 

du11 : post condition for actuation arm moving downward 

(rung 2) 

du10 : post condition for actuation arm moving upward 

(rung 3) 

du8  : post condition for actuation arm moving from 

workstation to conveyor (rung 4) 

du12 : post condition for actuation for suction (rung 5) 

 

VI. INITIAL ANALYSIS ON DEPENDABILITY 

 
In this study, dependability is defined by several properties 

such as safety, resettability and reachability. 

 

A. Property 1: Safety 

Safety property is a forbidden state that is not supposed to 

occur or “nothing bad should happen”. Safety property is 

important in model checking because it determines whether 

the system is safe to operate or not. If the verification result 

is FALSE, then the system is unsafe and there might be an 

error in the designed controller. For the pick and place 

system, the forbidden state is the arm under all circumstances 

will not move from conveyor to workspace (right and left 

movement) when it is at the bottom position.  

 
EG – there exist a path for the specification to hold TRUE 

globally in the future. 
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Figure 5: Logic controller for pick-and-place arm  

 

                         
)))&x(~~((

1,0

11

11

A

A

uEG

ux 
                       (15) 

 

B. Property 2: Reachability 

Reachability property is a property to check can the system 

reach to the certain next state from its present state. Given the 

system in a particular state, could it possibly reach a state 

which satisfies certain given properties sometimes in the 

future. For the pick and place system, the reachability 

specification can be written as Equation (16) which means at 

the present state where the arm is at the conveyor, top 

position, can it reach to the next state, which is at the 

workstation, top position. 

 

AG – for every path the specification holds TRUE globally in 

the future. 

 

EF – there exist a path for the specification to hold TRUE 

sometime in the future. 

 

                 
))&(&x((

1,1,1

1011911

11109

xxEFxAG

xxx




            (16) 

 

C. Property 3: Resettability 

Another property is resettability, which is a property to 

check whether the system at any present state, will be reset 

back to its original position. When arm at the bottom position 

at workstation and suction occurs, eventually it will reset 

back to its home position. The next equation is the 

specification written in the Symbolic Model Verifier (SMV) 

software to verify the robotic pick and place system. 

 

AG – for every path the specification holds true globally in 

the future. 

 

EF – there exist a path for the specification to hold true 

sometime in the future. 

 

          
)))&()&&x((

1,1,0,1,1

119111013

119111013

xxEFxxAG

xxxxx




      (17) 

 

VII. CONCLUSION AND FUTURE WORKS 

             

This paper discussed on designing a dependable logic 

controller for a robotic pick and place system. The context of 

dependable is defined by verification of the logic controller 

whether meets the defined temporal properties or not. In other 

words, the system must be verified before can be operated in 

for real application. To verify the dependability of the logic 

controller, properties such as safety requirement, reachability 

and resettability are the specifications used. In future, The 

simulation by using model checking software will be used to 

determine the independable condition of the system that may 

lead to system errors and malfunction so that precautionary 

steps can be taken earlier. 
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