
 e-ISSN: 2289-8131 Vol. 10 No. 1-3 153

Dependability Analysis of Logic Controller Based

on Formal Verification Procedures

Saifulza Alwi and Nurrafidah Jaafar
Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya,

Melaka, Malaysia.

saifulza@utem.edu.my

Abstract—Dependability of an automation system requires

engineers to implement formal verification procedures in order

to eliminate the causes of hazardous conditions. These

conditions may vary from case to case and will jeopardize the

dependability of manufacturing lines and operators. Therefore,

dependability analysis of the control systems to check the

possibility of state transitions from safe to unsafe states, for

instance, is essential. Formal verification by using model

checking procedure is proven as an effective method and widely

used in practice for automatic verification of correctness

properties against a finite model of a system. Therefore, in the

present paper, we introduce a novel method of model checking

for logic control design. A Binary Decision Diagram (BDD)

based model checking method is used to analyze and design a

dependable controller that meets the requirement of certain

properties, defined by specified predetermined functions.

Index Terms—Binary Decision Diagram (BDD); Computation

Tree Logic (CTL); Programmable Logic Controllers (PLCs).

I. INTRODUCTION

Design phase in the development of an automation system

could be very critical. The fact is that the design engineers

who involve in this phase must have technical knowledge and

experiences, equipped with strong engineering capabilities to

cope with the design requirements. Although beneficial for

the engineers, the increasing number of embedded functions

and features in the design of PLC-based manufacturing

processes introduce more potential safety risks [1]. Thus,

their effects on system reliability are much more

unpredictable. Furthermore, these also lead to design errors

that affect the functional behavior of the systems. Therefore,

a successful system design depends on how verification is

conducted to reduce the possibility of the design errors while

at the same time eliminate the causes of hazardous

conditions[2][3].

These issues of risks have brought us to the approach of

formal verification by using model checking. Model checking

is a formal technique to verify that a mathematical model of

a system fulfills a formal specification that describes the

property to be checked. The method is proven to be efficient

and widely used in practice for automatic verification of

correctness properties against a finite model of a system.

Among the popular model checking technique is Binary

Decision Diagrams (BDDs), that can represent set of states

symbolically.

Our present work proposes in this paper is a new technique

of model checking for logic control design. A Computation

Tree Logic (CTL) temporal logic is used to analyze and

design a dependable controller that meets the requirement of

certain properties, defined by a predetermined function. The

safety function, for instance, is obtained from hazardous

conditions which are the property that may put the system into

unsafe states. In addition, we verify the effectiveness of the

proposed method by experiments on a pick-and-place arm

system, controlled using a PLC. We describe the designed

controller in the ladder diagram (LD) format. The control

system and specified property functions are then transformed

into Boolean formulas before analysis on the dependability of

the system are carried out.

II. RELATED WORKS

The concept of formal methods has inspired design

engineers to implement it for logic control design and

synthesis. This is to ensure that no unusual conditions and

hazardous behaviors occur that may lead to design errors that

will cause malfunction of control systems. In other words, the

aim is to improve the dependability of logic controllers.

Starting from the implementation to digital functions for

logical analysis [4] in the late 70’s, BDDs have been widely

applied in numerous research fields because of its ’powerful

representation’ of various kind of control systems. Bryant’s

approach of BDD manipulation algorithms to logic design

verification [5][6] is a cornerstone of the new formalism of

model checking technique. Burch et. al. introduced a BDD-

based algorithm for symbolic CTL (Computation Tree Logic)

model checking [7] with several techniques to improve the

efficiency of verification methods based on reachability

analysis. Later, instead of BDDs, an alternative approach

which is SAT-based procedures for propositional

satisfiability problems has been proposed to cope with the

state space explosion when using BDDs [8]. This method is

familiarly known as Bounded Model Checking (BMC). The

performances of these techniques on diversified hardware

benchmarks have also been investigated[9]. In addition to

CTL model checking in formal verification of a system,

analysis of linear time-based LTL (Linear Temporal Logic)

specifications to verify safety properties also have been

carried out thoroughly [10][11], giving the definition of

safety in different manners.

On the other hand, one of the methods used [12] to

synthesize control laws for the logic controllers is by solving

a Boolean equation that represents all the requirements. Our

proposed method introduced is basically followed this

interpretation but uses different notions in the algebraic

approach. A familiar concept of symbolic and algebraic

method framework in discrete event system applications was

Journal of Telecommunication, Electronic and Computer Engineering

154 e-ISSN: 2289-8131 Vol. 10 No. 1-3

introduced by Gunnarsson [13][14]. He proposed a method of

control law syntheses by using polynomials over a finite field

and Gr¨obner bases as the computation tools. Formally

introduced in 1965 [15], the application of Gr¨obner bases

currently seems to be borderless. This powerful tool is

originally developed for algorithmic solutions of polynomial

ideal theory before it becomes an effective and practical

method used to solve engineering and mathematical

problems. Its applications are broad, for example in reliability

improvement of mathematical structure [16], and also time-

optimal control by solving problems of finding solutions for

algebraic equations [17].

The unique representation of Gröbner bases algorithmic

solution has given us the idea for applying it in formal

verification procedures of logic control systems [18]. We also

have successfully implemented several model checking

procedures to verify the safety of the sequential systems by

using this powerful method[19]-[22].

III. LOGIC CONTROL SYSTEM

Consider a logic control system consisting of discrete

signals as shown in Figure 1. Here u is the actuator input and

y is the sensor output. The system shows the relationship

between the plant and the controller. In this paper, a plant

represented in Boolean algebra is considered:

))(),(()1(kukxfkx ppp  (1)

Figure 1: Control system architecture

Assuming that all of the variables, namely, the plant state x

and input u, represented by vectors formed by the elements of

a binary set, B of true (1) and false (0), and having

dimensions of np and m, then the following can be stated: xp(k)

∈ Bnp is the state vector and u(k) ∈ Bm is the actuator input

vector of the plant. In addition, k is a positive integer that

expresses time. Furthermore, the plant itself is a strictly

proper system that whose input does not influence the output

at the same event time.

Meanwhile, the controller is represented by the following

state equation:

))(),(()1(kukxhku cc (2)

where xc(k) ∈ Bnc represents the state vector of the controller,

having a dimension of nc at the event time k. Furthermore, the

state equations of the entire system can also actually be

represented by combining both the plant model and the

controller.

The state space of the system also includes the input state

space, which consists of both xc and xp. The entire system state

space with (np + nc) order is a set of 2np+nc state combinations.

For this kind of system, physically unreachable state space is

defined as infeasible space; otherwise, it is feasible space. In

addition, when there is normal state space in certain control

specification, it is defined as a safe state; otherwise, it is an

unsafe state. Figure 2 categorizes the state into four patterns

of combinations of feasible/infeasible and safe/unsafe states.

A real system is normally controlled within the normal state

space; however, in the case where disturbances and faults of

the sensor or actuator occur, it is possible for the system to be

out of the normal state space. In these situations, the

controller must be designed so that it will avoid any state

transitions to the unsafe space.

Figure 2: Category of state space

IV. MODELING OF A CASE STUDY EXAMPLE

In this section, we report the experimental setup and

modeling Boolean formulas of verifying a logic control

system by using a pick-and-place arm workstation. We

provide a plant model that describes the system configuration,

then we design its control logic based on the regular

operation. To verify whether the designed control system

meets the safety specification, we take an example of a

hazardous state that will be defined as a safety function,

described in detail in a later subsection.

The pick-and-place arm workstation uses PLC

programming software as its controller and the logic

programming tool is based on the IEC 61131-3. Figure 3

illustrates the block diagram of the workstation, with a set of

predetermined input state u and plant state x.

Figure 3: Schematic diagram pick and place arm

The state's definition, where all variable x stands for state

inputs and all variable u for actuator outputs are summarized

in Table 1.

By referring to Table 1, we create the pre-post condition

table that shows the relationship between input and output of

the model. This is the preliminary step in order to get the

model of the entire pick-and-place system. Table 2 to Table 6

show the operational models of each arm at different states

and conditions.

Dependability Analysis of Logic Controller Based on Formal Verification Procedures

 e-ISSN: 2289-8131 Vol. 10 No. 1-3 155

Table 1
States Definition of Inputs and Outputs

Input (Sensors) Output (Actuators)

x8 Base at workstation u8 Moving from workstation
to conveyor

x9 Conveyor sensor uA Moving from conveyor to

station
x10 Workstation sensor u10 Moving upward

x11 Top sensor u11 Moving downward

x13 Object in suction cup u12 Suction on

For example, in Table 3, the result of pre-post conditions

of arm 2 is expressed by the following statements (case by

case from first until the fourth row of the table):

1) When arm is at conveyor position if arm starts to

actuate to the workstation, then on the next event time

(k +1) arm will not be on conveyor nor at workstation

position.

2) When the arm is not on the conveyor nor at the

workstation position, if arm starts to actuate to the

workstation, then on the next event time arm will be at

workstation position.

3) When the arm is at workstation position, if arm starts

to actuate to the conveyor, then on the next event time

arm will not be on conveyor nor at workstation

position.

4) When the arm is not on the conveyor nor at the

workstation position, if arm starts to actuate to the

conveyor, then on the next event time arm will be at

conveyor position.

Table 2

Operational Model of Arm 1

Pre-Cond. Input Post-Cond.

x8 x11 u10 u11 dx8 dx11

1 1 0 1 1 0
1 0 1 0 0 0

0 0 1 0 0 1

By the pre-post condition obtained in Table 2, we get the

Boolean expressions as in Equations (3) and (4):

111011810111188 uuxxuuxxdx  (3)

8101111101111811 xuuxuuxxdx  (4)

The procedure is similar to the rest of operational models,

where we can produce the Boolean equations from the pre-

postconditions.

Table 3

Operational Model of Arm 2

Pre-Cond. Input Post-Cond.

x9 x10 uA u8 dx9 dx10

1 0 1 0 0 0

0 0 1 0 0 1

0 1 0 1 0 0
0 0 0 1 1 0

From Table 3, we obtained the following equations:

810981099 uuxxuuxxdx AA  (5)

AA uuxxuuxxdx 8910810910  (6)

Figure 4: Flowchart of pick-and-place arm operation

Table 4 and Table 5 are the operational models for suction

activation, which involves a number of sensors and input

states. Therefore, the Boolean expression for this model is

stated in Equation (7).

11121011131098

1211101311109813

uuuxxxxx

uuuxxxxxdx




 (7)

From Table 5, the mathematical expression for suction

actuation of arm 1 at conveyor can be written as:

Journal of Telecommunication, Electronic and Computer Engineering

156 e-ISSN: 2289-8131 Vol. 10 No. 1-3

11111098121013

1211101311910813

uxxxxuux

uuuxxxxxdx




 (8)

Table 4

Operational Model for Suction Activation of Arm 1 at Workstation

Pre-Cond. Input Post-Cond.
x

8

x

9

x1

0

x1

1

x1

3

u1

0

u1

1

u1

2

dx

8

dx

9

dx1

0

dx1

1

dx1

3

1 0 1 1 0 0 1 0 1 0 1 0 0

1 0 1 0 0 0 1 0 1 0 1 0 1

1 0 1 0 1 1 0 1 1 0 1 1 1

Table 5

Operational Model for Suction Activation of Arm 1 at Conveyor

Pre-Cond. Input Post-Cond.
x

8

x

9

x1

0

x1

1

x1

3

u1

0

u1

1

u1

2

dx

8

dx

9

dx1

0

dx1

1

dx1

3

0 1 0 1 1 0 1 1 0 1 0 0 1

0 1 0 0 1 0 0 1 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 1 0

The last operational model as in Table 6, is obtained for

suction activation of arm 2, as in Equation (9).

12812111098

12812111098

12812111098

12812111098

1281211109813

uuuxxxxx

uuuxxxxx

uuuxxxxx

uuuxxxxx

uuuxxxxxdx

A

A

A

A

A











 (9)

Table 6

Operational Model for Suction Activation of Arm 2

Pre-Cond. Input Post-Cond.
x

8

x

9

x1

0

x1

1

x1

3

u

A

u

8

u1

2

dx

8

dx

9

dx1

0

dx1

1

dx1

3

1 1 0 1 0 1 0 0 1 0 0 1 0

1 0 0 1 0 1 0 0 1 0 1 1 0
1 0 1 1 0 1 0 0 1 0 1 1 1

1 0 1 1 1 0 0 1 0 0 1 1 1

0 0 1 1 1 0 1 1 0 1 0 1 1
0 0 0 1 1 0 1 1 0 1 0 1 1

V. DESIGN OF CONTROL LOGIC

We use ladder diagram (LD) as a tool of PLC language in

designing the logic controller. The controller is designed to

operate and control the plant as the actual operation of the

pick and place robotic system. Figure 4 shows the logic

controller for the pick and place system, while Table 7 shows

the addresses used in the ladder diagram.

For precautionary steps or safety measures to ensure that

the controller is safe, every rung needs to include all the

sensors and outputs. To differentiate, each rung has different

sensors that need to be activated and deactivated with

reference to the sensor involve for the actuation to occur.

From the controller, the Boolean mathematical model is

generated in order to verify together with the system model

using Symbolic Model Verifier (SMV) software. The

following equations are the actuation equations generated

from the PLC logic controller for every rung of actuation.

Table 7
Description of the address used in ladder diagram

121110813910118 uuuuxxxxxduA  (10)

81011

10813912910811

&

))()((

uuux

xxxxuxxxdu

A


 (11)

81011

1210913910810

&

))()((

uuux

uxxxxxxdu

A


 (12)

111011

131091291088

&

))()((

uuux

xxxuxxxdu

A


 (13)

Auuxux

uxxxxxxxdu

))(|)(|

)))((()((

11131013

81311109910812 
 (14)

where,

duA : post condition for actuation arm moving from

conveyor to the workstation (rung 1)

du11 : post condition for actuation arm moving downward

(rung 2)

du10 : post condition for actuation arm moving upward

(rung 3)

du8 : post condition for actuation arm moving from

workstation to conveyor (rung 4)

du12 : post condition for actuation for suction (rung 5)

VI. INITIAL ANALYSIS ON DEPENDABILITY

In this study, dependability is defined by several properties

such as safety, resettability and reachability.

A. Property 1: Safety

Safety property is a forbidden state that is not supposed to

occur or “nothing bad should happen”. Safety property is

important in model checking because it determines whether

the system is safe to operate or not. If the verification result

is FALSE, then the system is unsafe and there might be an

error in the designed controller. For the pick and place

system, the forbidden state is the arm under all circumstances

will not move from conveyor to workspace (right and left

movement) when it is at the bottom position.

EG – there exist a path for the specification to hold TRUE

globally in the future.

Dependability Analysis of Logic Controller Based on Formal Verification Procedures

 e-ISSN: 2289-8131 Vol. 10 No. 1-3 157

Figure 5: Logic controller for pick-and-place arm

)))&x(~~((

1,0

11

11

A

A

uEG

ux 
 (15)

B. Property 2: Reachability

Reachability property is a property to check can the system

reach to the certain next state from its present state. Given the

system in a particular state, could it possibly reach a state

which satisfies certain given properties sometimes in the

future. For the pick and place system, the reachability

specification can be written as Equation (16) which means at

the present state where the arm is at the conveyor, top

position, can it reach to the next state, which is at the

workstation, top position.

AG – for every path the specification holds TRUE globally in

the future.

EF – there exist a path for the specification to hold TRUE

sometime in the future.

))&(&x((

1,1,1

1011911

11109

xxEFxAG

xxx




 (16)

C. Property 3: Resettability

Another property is resettability, which is a property to

check whether the system at any present state, will be reset

back to its original position. When arm at the bottom position

at workstation and suction occurs, eventually it will reset

back to its home position. The next equation is the

specification written in the Symbolic Model Verifier (SMV)

software to verify the robotic pick and place system.

AG – for every path the specification holds true globally in

the future.

EF – there exist a path for the specification to hold true

sometime in the future.

)))&()&&x((

1,1,0,1,1

119111013

119111013

xxEFxxAG

xxxxx




 (17)

VII. CONCLUSION AND FUTURE WORKS

This paper discussed on designing a dependable logic

controller for a robotic pick and place system. The context of

dependable is defined by verification of the logic controller

whether meets the defined temporal properties or not. In other

words, the system must be verified before can be operated in

for real application. To verify the dependability of the logic

controller, properties such as safety requirement, reachability

and resettability are the specifications used. In future, The

simulation by using model checking software will be used to

determine the independable condition of the system that may

lead to system errors and malfunction so that precautionary

steps can be taken earlier.

ACKNOWLEDGEMENT

The authors are pleased to acknowledge the financial and

administrative support from the Minister of Higher Education

(MOHE), Malaysia and Universiti Teknikal Malaysia Melaka

under the FGRS/1/2015/TK04/FKE/02/F00263 research

grant project entitled “A Novel Method of Groebner Bases

Computation for Distributed Discrete Controllers “.

REFERENCES

[1] IEC, Functional safety of electrical/electronic/programmable

electronic safety-related systems-Part 6: Guidelines on the application
of IEC 61508-2 and IEC 61508-3, International Standard IEC 61508-

6, International Electrotechnical Commission, 2010.

[2] P. J. G. Ramadge and W. M. Wonham, “The Control of Discrete Event
Systems,” Proc. of the IEEE, vol.77, pp. 81-97, 1989.

[3] C. G. Cassandras and S. Lafortune, “Introduction to Discrete Event

Systems,” Springer Science + Business Media, Inc. 1999.
[4] S. B. Akers, “Binary Decision Diagrams,” IEEE Trans. Comput.,

vol.C-27, pp. 509-516, June 1978.

[5] R. E. Bryant, “Graph-based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Comp., vol. C-35, Aug. 1986.

Journal of Telecommunication, Electronic and Computer Engineering

158 e-ISSN: 2289-8131 Vol. 10 No. 1-3

[6] K. S. Brace, R. L. Rudell and R. E. Bryant, “Efficient Implementation
of a BDD Package,” in Proc. 27th ACM/IEEE Design Automation

Conf., pp. 759-764, 1990.

[7] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan and D. L. Dill,

“Symbolic Model Checking for Sequential Circuit Verification,” IEEE

Trans. Computer-Aided Design of Integ. Circuits and Syst., vol. 13, no.

4, pp. 401-424, April 1994.
[8] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu,“Symbolic Model

Checking Using SAT Procedures Instead of BDDs,” in Proc. 36th

Annual ACM/IEEE Design Automation Conference, pp. 317-320, 1999.
[9] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan and K. L.

McMillan,“An Analysis of SAT-based Model Checking Techniques in

An Industrial Environment,” Lecture Notes in Computer Science,
SpringerLink, 2005.

[10] O. Kupferman and M. Vardi, “Model Checking of Safety Properties,”

in Formal Methods in System Design, 2001.
[11] T. Latvala, “Efficient Model Checking of Safety Properties,” in Model

Checking Software, 10th Int. SPIN Workshop, USA.

[12] Y. Hietter, J. M. Roussel and J. J. Lesage, “Algebraic synthesis of
dependable logic controllers,” in 17th IFAC World Congress,

Seoul,Korea, 2008.

[13] J. Gunnarsson, “Symbolic Methods and Tools for Discrete Event
Dynamic Systems,” Ph.D. Thesis, Linköping University, Sweden,

1997.

[14] J. Gunnarson, “Algebraic Methods for Discrete Event Systems – A

Tutorial,” Proc. of IEE WODES’96, Edinburgh (GB), pp. 18-30, 1996.

[15] B. Buchberger, “Gröbner Bases: An Algorithmic Method in
Polynomial Ideal Theory,” in N. K. Bose Ed., Multidimensional

Systems Theory, D. Reidel Publishing, pp. 184-232, 1985.

[16] B. Giglio, Daniel Q. Naiman and H. P. Wynn, “Gröbner Bases,

Abstract Tubes, and Inclusion-Exclusion Reliability Bounds,” IEEE

Trans. Reliability, vol. 51, no. 3, pp. 358-366, Sept. 2002.

[17] U. Walther, T. T. Georgiou and A. Tannenbaum, “On the Computation
of Switching Surfaces in Optimal Control: A Gr¨obner Bases

Approach,” in IEEE Trans. Auto. Control, vol.46, no.4, pp. 534-540,

April 2001.
[18] S. Alwi and Y. Fujimoto, “Formal Verification of Logic Control

Systems with Nondeterministic Behaviors”, in IEEJ Journal of

Industry Applications 2(16), pp. 306-314, 2013.
[19] Saifulza bin Alwi, “Verification and Validation of Logic Control

Systems by Model Checking”, Ph.D Thesis, Yokohama National

University, 2013.
[20] S. Alwi and Y. Fujimoto, “Safety Property Comparison between

Gr¨obner Bases and BDD-based Model Checking method” in 13th

International Conference on Control, Automation, Robotics and Vision
(ICARCV), Singapore. 2014.

[21] S. Alwi and Y. Fujimoto, “On A Safety of Sequential Control System

based on Gr¨obner Bases Computation” in 2010 Int. Conf. On Control,
Automation and Systems (ICCAS2010), KINTEX, Korea.

[22] S. Alwi and Y. Fujimoto, “A Gr¨obner Bases approach for Safety

Evaluation of Logic Control System”, in Proc. IEEE Industrial

Informatics (INDIN), Osaka, Japan, 2010.

