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Abstract—This paper presents an investigation of a model-

free approach using global simultaneous perturbation stochastic 

approximation (GSPSA) to optimal chiller loading problem. The 

GSPSA based method is employed to optimize the partial load 

ratio (PLR) of each chiller such that the total power 

consumption of multi-chiller systems is minimized. The main 

advantage of GSPSA is that it can produce fast design 

parameter without information of plant model by measuring the 

input-output data of the system. Our model-free design is 

validated using an experimental data from a well-known multi-

chiller system of semiconductor factory in Hsinchu Scientific 

Garden, Taiwan. In addition, the performance of the GSPSA 

based method is compared to the other stochastic optimization 

based approaches. Simulation results illustrate that the GSPSA 

based method has a potential in minimizing power consumption 

of multi-chiller systems with less number of evaluated cost 

functions. 

 

Index Terms—Model-Free; Stochastic Approximation; 

Optimal Chiller Loading Problem; Energy Consumption. 

 

I. INTRODUCTION 

 

Multi-chiller systems, which normally require huge electric 

power consumption, are mainly utilized to produce cooling 

energy for industrial and domestic facilities [1]. Recently, 

investigation on optimizing the partial load ratios (PLRs) to 

reduce the multi-chiller power consumption, which is called 

optimal chiller loading (OCL) problem, has become a popular 

research topic among control engineering researchers. 

Nevertheless, the difficulty in obtaining accurate models of 

the multi-chiller plants will make this problem more complex. 

Even though if it is possible, one requires a lot of time and 

effort to obtain such models. Hence, it is useful to use a 

model-free method for this kind of problem. 

So far, a large number of tuning algorithms have been 

extensively presented to solve OCL problem. There are 

nature inspired algorithms such as particle swarm 

optimization [2], [3] and [4], genetic algorithms (GAs) [5] 

and [6], firefly algorithm [7], differential evolution [8], 

differential search [9], simulated annealing [10], gradient 

method [11], cuckoo search algorithm [12], bee swarm 

optimization [13], teaching learning based optimization 

algorithm [14],  adaptive neuro-fuzzy inference systems and 

GA [15], artificial cooperative search algorithm [16], and  

firefly with opposition based learning [17]. 

However, most of the above approaches, which are based 

on population-based optimization, need large computation 

time during the tuning process. This is because the number of 

evaluated cost functions per iteration is proportional to the 

population number. Therefore, the design of an algorithm that 

produces less computation is important to solve this issue. 

Besides that, a global simultaneous perturbation stochastic 

approximation (GSPSA) [18] is one of the potential model-

free approaches from this point of view. This is because the 

GSPSA method is based on trajectory-based optimization 

method that just use a single agent to update its design 

parameter. Moreover, this method, which is mainly derived 

from the conventional SPSA method [19], is known to be 

practical for various optimization problems even for high-

dimensional design parameter [20], [21], [22], [23]. Also, it 

has been shown that the GSPSA method can achieve better 

local optimal values compared to the standard SPSA [21]. 

However, it is not clear whether it works for optimal chiller 

loading problem since the reports on the utilization of the 

GSPSA to the OCL problem are very few. 

In this study, we explore the potential of the model-free 

based GSPSA approach for minimizing the power 

consumption of multi-chiller systems. As an initial study, our 

model-free design is tested using the experimental data of the 

real multi-chiller system in Hsinchu Scientific Garden in 

Taiwan [24], [25]. Next, we analyze the convergence speed 

and the minimum total power consumption of multi-chiller 

system to evaluate the performance of the model-free based 

GSPSA. Here, the convergence speed is recorded based on 

the number of evaluated cost functions. Finally, performance 

comparison between the GSPSA based method and other 

existing optimization algorithms, which are simulated 

annealing (SA) based method [10] and random search (RS) 

based method [26] is shown. 

The organization of this paper is as follows. In Section 2, 

the problem of minimizing the power consumption of multi-

chiller systems is formulated. Section 3 summarizes the 

GSPSA algorithm and its application in model-free design. In 

Section 4, the proposed method is validated to a given multi-

chiller system. The analysis and comparative assessment 

between the GSPSA based method and SA and RS based 

methods are also discussed in this section. Finally, 

conclusions of our findings are presented in Section 5.  

Notation: The set of real numbers and the set of positive 

real numbers are defined by R  and 
R , respectively. The 

symbol S  is defined as the cardinality of a set S. For 

Rminmax, , nn RR: sat  represents the saturation 

function whose i-th element presented as follows: 
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where Rix  is the i-th element of nRx . 

 

II. PROBLEM FORMULATION 

 

Consider the multi-chiller system consists of n chillers. Let 

Qi (i = 1, 2, …,n) be the partial load ratio (PLR) of chiller i 

and Pi (Qi) (i = 1, 2, …, n) be the power consumption of 

chiller i. In particular, Qi is defined as the ratio of the chiller 

cooling load to the chiller power consumption [24], [25]. 

Note that the relation between Qi and Pi is unknown due to 

the difficulty in developing a precise model of the plant. 

Nevertheless, we assume that the total power consumption of 

the multi-chiller system is measurable, which is given by 

 





n

i

iin QPQQQP
1

21 )(),...,,( .  (1) 

 

Simultaneously, the designed partial load ratio Qi also need 

to fulfil the given demanded cooling load, which is 

formulated by 

 





n

i

ii RQCL
1

,   (2) 

 

where Ri is the capacity of the i-th chiller. Then, the problem 

setting is stated as follows. 

 

Problem 2.1 Let the explicit forms of the total power 

consumption Pi (I = 1, 2, …,n) are not known. Then, obtain 

partial load ratio Qi (I = 1, 2, …,n) that minimizing 

),...,,( 21 nQQQP  subject to (2) and 0.3 <Qi< 1, (I = 1, 

2, …, n). 

 

Remark 2.1 The designed partial load ratio Qi must be 

greater than 0.3 to avoid the power surge in the chiller system 

[10]. 
 

III. DESIGN OF MODEL-FREE APPROACH BASED ON GSPSA 

 

The mechanism to solve the Problem 2.1 is discussed in 

this section. Firstly, the summary of GSPSA algorithm [18] is 

explained. Secondly, we present the procedure to implement 

GSPSA algorithm in model-free design specifically for 

reducing the power consumption of the multi-chiller system. 

 
A. Review on GSPSA 

GSPSA is a stochastic gradient approximation algorithm to 

find the design parameters such that a given cost function is 

minimized. Consider a general optimization problem 

represented by 

 

)(min z
z

h
nR

,   (3) 

 

where RR nh :  is the cost function and nRz  is the 

design parameter. 

Then, the GSPSA algorithm [18] iteratively updates the 

design parameter to search a local optimal solution nR*
z  

of (3). The updated law is given by 

 

)()())(),(()()()1( 21 kkbkkgkakk  zzz  (4) 

 

fork = 0, 1, …, where a(k) and b(k) are the gain sequences and 
nk R )(2
 are random perturbation vectors that are produced 

independently and ))(),(( 1 kkg z  is the gradient 

approximation at the iterate )(kz , which is expressed by 
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In Equation (5), c(k) is another gain and )(1 ki  is the i-th 

element of a random vector nk R )(1
. The detail of the 

GSPSA algorithm and also the procedure to choose a(k), b(k), 

c(k) and the random vectors, and )(2 k  is reported in [18]. 

The termination criterion used in this algorithm is given by 

 

 ))(())1(( khkh zz ,  (6) 

 

where   be a small number. Then, the algorithm stops with 

the optimal solution )(minarg:
)}1(),...,1(),0({

*
zz

zzzz
h

k
 . 

 

Remark 3.1 In Equation (4), the term b(k)2(k) is added to 

the standard update rule of SPSA. This term plays an 

important role in the global convergence of GSPSA. In 

particular, this term gives additional effort to the updated rule 

in avoiding local minima problem in the standard SPSA 

algorithm. 

 

B. Design of Model-free Method 

With the GSPSA algorithm in the previous sub-section, the 

procedure of model-free based GSPSA design for optimal 

chiller problem is given by: 

 

Step 1: Determine the GSPSA gain sequences a(k), b(k) and 

c(k). Determine  and )0(z . Set k = 1. 

 

Step 2: Let the cost function to solve Problem 2.1 is given by 

 





n

i

iinn RQCLwQQQPQQQJ
1

2121 ),...,,(),...,,( ,     (7) 

 

where w is weight. Then perform GSPSA algorithm, i.e., by 

regarding J and Qi (I = 1, 2, …,n) as h and zi (I = 1, 2, …, n), 

respectively. 

 

Step 3: After  ))(())1(( khkh zz , the convergence 

speed of tuning process, the optimal partial load ratio 
**

ii zQ  (I = 1, 2, …, n), and the total power consumption 

),...,,( **

2

*

1 nQQQP are analyzed.  
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In order to solve constraint 0.3 <Qi< 1, (I = 1, 2, …,n), we 

apply a saturation function )(sat 
in (4) and the modified 

updated law is expressed by 

 

))()())(),(()()((sat)1( 21 kkbkkgkakk  zzz 
  (8) 

 

where the value of 1max  and 3.0min  . Here, the modified 

updated law in (8) is used in the model-free based GSPSA 

method throughout this paper. 

 

IV. SIMULATION RESULTS 

 

The performance of the GSPSA based method is evaluated 

in this section. Here, a multi-chiller model is used to realize 

our model-free scheme. Firstly, we summarize the multi-

chiller system in [24], [25]. Secondly, the GSPSA based 

algorithm is implemented to the system. 

 

A. Multi-chiller Model 

A multiple chiller system normally consists more than two 

chillers connected by parallel or series piping to a distributed 

system. This system often applies to air-conditioning systems 

since they provide operational flexibility, standby capacity 

and less disruption maintenance. In a multiple chiller system 

with all-electric cooling, the power consumption of each 

centrifugal chiller is a function of its PLR in a given wet-bulb 

temperature. That is, 

 
2

iiiiii QxQyvP  ,  (9) 

 

where vi, yi and xi are the coefficients of interpolation for Pi-

Qi curve, which is discussed in detail in [6], [11], [24] and 

[25]. 

 

B. Six Chillers Example 

This section presents the evaluation of the GSPSA based 

method performance for the six chillers system using the 

multi-chiller model in the previous sub-section. Also, the 

performances of the GSPSA based method is assessed to 

several demanded cooling loads of multi-chiller systems. The 

coefficients of this six chillers system, which is based on the 

experimental data in a semiconductor factory located in 

Hsinchu Scientific Garden in Taiwan, are given in Table 1. 

 
Table 1 

Values of vi, yi and xi coefficients and Ri 
 

Chiller i vi yi xi Ri 

1 399.345 -122.12 770.46 1280 

2 287.116 80.04 700.48 1280 
3 -120.505 1525.99 -502.14 1280 

4 -19.121 898.76 -98.15 1280 

5 -95.029 1202.39 -352.16 1250 

6 191.750 224.86 524.04 1250 

 

For the parameters of GSPSA, we choose the gain 

sequences of the GSPSA based method a(k) = 0.0002/(k + 

101)0.8, b(k) = 0.005/(((k + 1)0.8)ln((k + 1)0.2 + 500))0.5 and c(k) 

= 0.001/(k + 1)1/6. Furthermore, we also provide the 

parameters of other stochastic optimization parameters, 

which are the SA [10] and RS [26] based methods, for 

comparative assessment evaluation. In particular, the SA 

based approach with initial temperature T0 =120, final 

temperature Tf = 0.0001 and cooling rate ρ = 0.98 are chosen. 

However, for the RS based algorithm, we do not require any 

parameters to be selected. See [10] and [26] for the detail of 

both algorithms. The small number 001.0 , the weight w 

= 1 and the initial conditions Qi (0) = 1, (i = 1, 2, …, 6) are 

used for both GSPSA and SA based approaches. In order to 

see the stochastic effect, we execute 500 runs for the GSPSA, 

SA and RS based methods. Then, after each algorithm is 

terminated, we evaluate the performance of each method 

based on the statistical analysis of the cost function J(Q1, 

Q2, …., Q6), total power consumption ),...,,( 21 nQQQP , 

the error between the demanded cooling load and produced 

cooling load 



6

1i

iiRQCL  and convergence speed. In 

particular, the values of mean, best, worst and standard 

deviation (Std.) of them are recorded after 500 runs. In this 

study, the performance of the convergence speed is obtained 

based on the number of evaluated cost function Nf after the 

termination criterion in (6) is achieved. 

Table 2 shows the statistical analysis of the cost function 

J(Q1, Q2, …., Q6), total power consumption

),...,,( 21 nQQQP , the error between the demanded cooling 

load and produced cooling load 



6

1i

iiRQCL  and the 

convergence speed Nf. The best optimal partial load ratios of 

the GSPSA based method in comparison with the SA and RS 

based methods are shown in Table 3. It shows that, in terms 

of the cost function, total power consumption and error 

between the demanded cooling load and produced cooling 

load, the GSPSA based method obtains the lowest mean, 

worst and standard deviation values than the SA and RS 

based methods for every demanded cooling load. The GSPSA 

based method also obtains the lowest best value in most of 

the performance criteria. Furthermore, the GSPSA based 

method produces a better average number of evaluated cost 

function than SA and RS based methods in all cases. Hence, 

this fact means that the GSPSA based method can reduce the 

power consumption of multi-chiller systems with high 

probability and practical convergence speed. 

 

V. CONCLUSION 

 

In this paper, a study on a model-free approach based on 

global simultaneous perturbation stochastic approximation 

(GSPSA) for optimal chiller loading has been performed. The 

GSPSA based method is validated on a multi-chiller system 

in [24], [25], which is based on real experimental data. The 

numerical results show that the GSPSA based method 

outperforms the SA and RS based approaches from the 

viewpoints of minimum power consumption and 

convergence speed for the various demanded cooling load. 
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Table 2 
Performance comparison of the GSPSA, SA [10] and RS [26] based approaches from 500 runs. 

 

Performance 

criteria 

CL  Model-free approaches 

GSPSA SA [10] RS [26] 

J(Q1, Q2, …., Q6) 

(× 103) 

6858 Mean 4.7465 4.7667 4.7847 

Best 4.7388 4.7386 4.7387 

Worst 4.8757 6.0841 6.2580 
Std. 0.0142 0.1265 0.1770 

6477 Mean 4.4301 4.4762 4.4587 

Best 4.4218 4.4219 4.4218 
Worst 4.5110 6.2746 6.6390 

Std. 0.0130 0.1734 0.2124 

6096 Mean 4.1675 4.2564 4.2380 
Best 4.1441 4.1442 4.1440 

Worst 4.3508 6.9344 7.0200 

Std. 0.0309 0.3465 0.4220 

),...,,( 21 nQQQP

(× 103) 

6858 Mean 4.7327 4.7522 4.7609 

Best 4.6498 4.6979 4.7294 

Worst 4.8130 5.4258 5.4960 
Std. 0.0154 0.0710 0.1218 

6477 Mean 4.4211 4.4632 4.4442 

Best 4.3894 4.4089 4.4140 
Worst 4.4915 5.3525 5.4960 

Std. 0.0106 0.0941 0.1071 

6096 Mean 4.1607 4.2237 4.2005 
Best 4.1249 4.1382 4.1389 

Worst 4.3237 5.4575 5.4960 

Std. 0.0266 0.1662 0.1996 





6

1i

iiRQCL  
6858 Mean 13.7914 16.8690 23.8577 

Best 0.0061 0.0143 0.0098 

Worst 175.5118 658.3284 762.0000 
Std. 19.0308 59.6908 120.8715 

6477 Mean 9.0144 15.8328 14.7250 

Best 0.0760 0.0156 0.0324 
Worst 54.0658 922.0811 1143.0000 

Std. 10.4549 84.2637 107.9464 

6096 Mean 6.8530 36.1287 37.5326 
Best 0.0057 0.0084 0.0181 

Worst 118.6105 1476.9119 1524.0000 

Std. 12.0426 182.9972 224.1947 

Nf 6858 Mean 1756.42 2841.30 2721.95 
Best 42.00 70.00 1.00 

Worst 5170.00 6010.00 14963.00 

Std. 1112.04 595.67 2115.57 

6477 Mean 2322.60 2921.40 2826.85 

Best 198.00 280.00 1.00 

Worst 5934.00 5400.00 11262.00 
Std. 1263.80 614.18 1992.77 

6096 Mean 3060.30 3068.00 3148.50 

Best 76.00 40.00 1.00 

Worst 9482.00 5390.00 12211.00 

Std. 1869.10 761.70 2186.12 
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Table 3 
The best optimal PLR and its total power consumption of the GSPSA, SA [10] and RS [26] based methods from 500 runs. 

 

CL Optimal values GSPSA SA [10] RS [26] 

6858 *

1Q  0.8058 0.8127 0.8052 

*

2Q  0.7606 0.7422 0.7545 

*

3Q  1.0000 1.0000 1.0000 

*

4Q  1.0000 1.0000 1.0000 

*

5Q  1.0000 1.0000 1.0000 

*

6Q  0.8341 0.8461 0.8412 

),...,,( *

6

*

2

*

1 QQQP  4737.80 4739.13 4738.10 

6477 *

1Q  0.7319 0.7107 0.7251 

*

2Q  0.6482 0.6662 0.6567 

*

3Q  1.0000 1.0000 1.0000 

*

4Q  1.0000 1.0000 1.0000 

*

5Q  0.9999 1.0000 1.0000 

*

6Q  0.7204 0.7237 0.7185 

),...,,( *

6

*

2

*

1 QQQP  4421.47 4424.77 4421.36 

6096 *

1Q  0.6485 0.6365 0.6398 

*

2Q  0.5620 0.5660 0.5717 

*

3Q  1.0000 0.9981 1.0000 

*

4Q  0.9996 1.0000 1.0000 

*

5Q  0.9995 1.0000 1.0000 

*

6Q  0.6902 0.5994 0.5882 

),...,,( *

6

*

2

*

1 QQQP  4144.25 4146.27 4143.86 

 

ACKNOWLEDGMENT 

 

Our study for this project was assisted by Research Grant 

RDU1703149 from the Research and Innovation Department, 

University of Malaysia Pahang (UMP) and RDU170104 from 

Ministry of Higher Education (MOHE) under Fundamental 

Research Grant Scheme. 

 

REFERENCES 

 
[1] D. Zupančič, M. Luštrek, and M. Gams,“Trade-off between energy 

consumption and comfort experience in smart buildings,” Information 

Technology and Control,vol. 44, no. 4,pp. 420-432, 2015. 

[2] A. J. Ardakani, F.F. Ardakani, and S.H. Hosseinian, “A novel approach 
for optimal chiller loading using particle swarm optimization,”Energy 

and Buildings, vol. 40, pp.2177-2187, 2008. 

[3] W.-S. Lee and L.-C. Lin, “Optimal chiller loading by particle swarm 
algorithm for reducing energy consumption,”Applied Thermal 

Engineering,”vol. 29 pp.1730-1734, 2009. 

[4] A. Beghi, L. Cecchinato, G. Cosi, and M. Rampazzo,“A PSO-based 
algorithm for optimal multiple chiller systems operation,”Applied 

Thermal Engineering,vol. 32, pp.31-40, 2012. 

[5] Y.-C. Chang, J.-K. Lin, and M.-H. Chuang,“Optimal chiller loading by 
genetic algorithm for reducing energy consumption,”Energy and 

Buildings,vol. 37, pp.147-155, 2005 

[6] Y.-C. Chang,“Genetic algorithm based optimal chiller loading for 
energy conservation,”Applied Thermal Engineering,vol. 25, pp.2800-

2815, 2005. 

[7] L.S. Coelho and V.C. Mariani,“Improved firefly algorithm approach 
applied to chiller loading for energy conservation,”Energy and 

Buildings,vol. 59, pp.273-278, 2013. 

[8] W.-S. Lee, Y.-T. Chen, and Y. Kao,“Optimal chiller loading by 
differential evolution algorithm for reducing energy 

consumption,”Energy and Buildings,vol. 43, pp. 599-604, 2011. 

[9] M.H. Sulaiman, H. Ibrahim, H. Daniyal, and M.R. Mohamed,“A new 

swarm intelligence approach for optimal chiller loading for energy 

conservation,”Procedia - Social and Behavioral Sciences,vol. 129, 

pp.483-488, 2014. 

[10] Y.-C. Chang,“An innovative approach for demand side management 

optimal chiller loading by simulated annealing,” Energy,vol. 31, 
pp.1883-1896, 2006. 

[11] Y. -C. Chang, T.-S. Chan, and W.-S. Lee,“Economic dispatch of chiller 

plant by gradient method for saving energy,”Applied Energy,vol. 87, 
pp.1096-1101, 2010. 

[12] M.H. Sulaiman, M.I.M. Rashid, M.R. Mohamed, O. Aliman, and H. 

Daniyal,“An Application of Cuckoo Search Algorithm for Solving 
Optimal Chiller Loading Problem for Energy Conservation,”Applied 

Mechanics and Materials,vol. 793, pp.500-504, 2015. 

[13] C.C. Lo, S.H. Tsai and B.S. Lin,“Economic dispatch of chiller plant by 
improved ripple bee swarm optimization algorithm for saving 

energy,”Applied Thermal Engineering,vol. 100, pp.1140-1148, 2016. 

[14] R.V. Rao,Teaching Learning Based Optimization Algorithm: And Its 
Engineering Applications. Cham, Switzerland: Springer, 2016, pp. 

115-128. 

[15] J.T. Lu, Y.C. Chang, and C.Y. Ho,“The optimization of chiller loading 
by adaptive neuro-fuzzy inference system and genetic 

algorithms,”Mathematical Problems in Engineering,pp. 1-10, 2015. 

[16] O.E. Turguta, M. Asker, and M.T. Çoban,“Artificial Cooperative 
Search Algorithm for Optimal Loading Of Multi-Chiller 

Systems,” Turkish Journal of Engineering, vol. 1, pp.47-66, 2015. 

[17] H. Wang, W. Wang, and H. Sun,“Firefly algorithm with generalised 
opposition-based learning,” International Journal of Wireless and 

Mobile Computing,vol. 9, no. 4, pp.370-376, 2015. 

[18] J.L. Maryak and D.C. Chin,“Global random optimization by 
simultaneous perturbation stochastic approximation,”IEEE 

Transactions on Automatic Control,vol. 53, no. 3, pp. 780-783, 2008. 

[19] J.C. Spall,“Multivariate stochastic approximation using a simultaneous 
perturbation gradient approximation,”IEEE Transactions on Automatic 

Control,vol. 37, no. 3, pp.332–341, 1992. 



Journal of Telecommunication, Electronic and Computer Engineering 

50 e-ISSN: 2289-8131   Vol. 10 No. 1-3  

[20] B.B. Alagoz, A. Ates, and C. Yeroglu,“Auto-tuning of PID controller 
according to fractional-order reference model approximation for DC 

rotor control,”Mechatronics,vol. 23, no. 7, pp.789-797, 2013. 

[21] M.A. Ahmad, S. Azuma, and T. Sugie,“Performance analysis of model-

free PID tuning of MIMO systems based on simultaneous perturbation 

stochastic approximation,”Expert Systems with Applications,vol. 41, 

no. 14, pp.6361-6370, 2014. 
[22] M.A. Ahmad, S. Azuma, and T. Sugie,“A model-free approach for 

maximizing power production of wind farm using multi-resolution 

simultaneous perturbation stochastic approximation,”Energies,vol. 7, 
no. 9, pp. 5624-5646, 2014. 

[23] M.A. Ahmad, S. Azuma, and T. Sugie,“Identification of continuous-

time Hammerstein systems by simultaneous perturbation stochastic 

approximation,”Expert Systems with Applications,vol. 43, pp.51-58, 
2016. 

[24] American Society of Heating Refrigerating and Air-conditioning 

Engineers, “Supervisory control strategies and optimization,” in 

1999ASHRAE Handbook, Atlanta: ASHRAE, 1999, ch. 40. 

[25] American Society of Heating Refrigerating and Air-conditioning 

Engineers,“Liquid chilling system,” in 2000ASHRAE Handbook, 
Atlanta: ASHRAE, 2000, ch. 38. 

[26] J. Feng and W.Z. Shen,“Solving the wind farm layout optimization 

problem using random search algorithm,” Renewable Energy,vol. 78, 
pp.182-192, 2015. 

 

 
 


