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Abstract—The application of radio frequency (RF) mirror 

media-based modulation (MbM) for the Golden code (GcMbM) 

is investigated. GcMbM improves upon the achievable spectral 

efficiency/error performance of the conventional Golden code. 

The analytical error performance of the conventional Golden 

code has not been presented in the literature; hence, the 

analytical average bit error probability (ABEP) based on the 

union bound is presented and validates Monte Carlo simulation 

results at high signal-to-noise ratios (SNRs). The ABEP analysis 

is extended to GcMbM and validates simulation results at high 

SNRs. 

 

Index Terms—Golden Codes; Media-Based Modulation; RF 

Mirror; Space-Time Block Codes; Space-Time Channel 

Modulation. 

 

I. INTRODUCTION 

 

The evolution of wireless communication systems demands 

higher data rates and improved reliability while conserving 

bandwidth and power. To this end, multiple-input-multiple-

output (MIMO) systems have shown significant benefits. 

However, the practicability of MIMO systems remains a 

bottleneck to unleashing its full benefits. The Alamouti 

space-time block code (ASTBC) [1] exploits some of the 

benefits of MIMO. For instance, the scheme achieves full-

diversity, while employing a simple maximum-likelihood 

(ML) detector in quasi-static frequency-flat Rayleigh fading 

channels. The Golden code [2, 3] improves upon the spectral 

efficiency of ASTBC, additionally achieving both full-

diversity and full-rate. Furthermore, the Golden code has 

been included in the 802.16e WiMAX standard. In [3], a 

detector for the Golden code, which reduces the detection 

complexity from 𝑂(𝑀4) to 𝑂(𝑀2) was presented. 

Recently, media-based modulation (MbM) [4]-[8] has been 

investigated in the literature. The key idea behind MbM is to 

employ techniques that vary the RF properties (permittivity, 

permeability and resistivity) of the air medium in the vicinity 

of the transmitter. Hence, in a rich-scattering environment, 

multiple independent end-to-end channels may be realised, 

which may be exploited for the embedding of information. 

Numerous advantages and disadvantages of MbM have been 

discussed in detail in [4]-[6]. Amongst these, MbM is capable 

of achieving very high spectral and energy efficiencies. 

In [6]-[7], MbM based on the use of radio frequency (RF) 

mirrors was investigated and showed very promising results. 

In [8], space-time channel modulation (STCM) was proposed 

and investigates the application of RF mirror MbM to 

ASTBC. A substantial improvement in performance is 

demonstrated.  

Based on the above background, in this paper, we are 

motivated to investigate RF mirror MbM for the Golden code 

(GcMbM). Since the Golden code employs a similar 

transmission structure to ASTBC, the schemes investigated 

for STCM [8], are also considered for GcMbM. Three 

schemes are investigated for GcMbM. Each scheme uses a 

particular configuration for activation of the RF mirrors [8]. 

Additionally, the analytical average bit error probability 

(ABEP) based on the union bound is formulated for the 

conventional Golden code and extended to GcMbM. 

The remainder of the paper is organised as follows: In 

Section II, the analytical ABEP for the Golden code is 

presented. Section III presents the system model of the 

proposed GcMbM. In Section IV, the analytical ABEP for the 

Golden code is extended to GcMbM. Numerical results are 

presented in Section V. Finally; conclusions are drawn in 

Section VI. 

 

Notation: (∙)𝐻 , |∙| and ‖⋅‖𝐹  represents Hermitian, Euclidean 

norm and Frobenius norm, respectively. 𝑄(∙) represents the 

Gaussian Q-function,  𝐸{∙} is the expectation operator. 

argmin
𝑤

(∙) represents the minimum value of an argument with 

respect to 𝑤, 𝑅𝑒{⋅} is the real part of a complex argument and 

𝑗 represents a complex number. 

 

II. UNION BOUND ON ABEP FOR THE GOLDEN CODE 

 

Assume a Golden code transmits four amplitude and/or 

phase modulation (APM) symbols, 𝑠𝑖, where 𝑖 ∈ [1, 2,⋯ ,4] 
and 𝑠𝑖 ∈ 𝐒, |𝐒| = 𝑀, in two time-slots using a transmission 

matrix, defined as [2]: 

 

𝐗 =
1

√5
[
𝛼(𝑠1 + 𝑠2𝜃) 𝛼(𝑠3 + 𝑠4𝜃)

𝛾𝛼̅(𝑠3 + 𝑠4𝜃̅) 𝛼̅(𝑠1 + 𝑠2𝜃̅)
] (1) 

 

where 𝜃 =
1+√5

2
 is the Golden number, 𝜃̅ = 1 − 𝜃 , 𝛼 = 1 +

𝑗𝜃̅, 𝛼̅ = 1 + 𝑗𝜃 and 𝛾 = 𝑗. 
Based on Equation (1), considering a frequency-flat 

Rayleigh fading channel, where the channel gains remain 

constant during a time-slot but assume independent values 

from one time-slot to another, the received signal vector 

(employing 𝑁𝑅 receive antennas) over two time-slots may be 

defined as: 

 

𝐲1 = √
𝜌
10⁄ (

𝐡1𝛼(𝑠1 + 𝑠2𝜃) +

𝐡2𝛼(𝑠3 + 𝑠4𝜃)
) + 𝛈1 

(2) 

𝐲2 = √
𝜌
10⁄ (

𝐡3𝛾𝛼̅(𝑠3 + 𝑠4𝜃̅) +

𝐡4𝛼̅(𝑠1 + 𝑠2𝜃̅)
) + 𝛈2 
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where 𝐲1 and 𝐲2 are the 𝑁𝑅 × 1 received signal vectors in 

time-slot 1 and 2, respectively. The factor 
𝜌
10⁄  is the average 

signal-to-noise ratio (SNR) at each receive antenna. The 

𝑁𝑅 × 1 channel gain vectors are defined as 𝐡𝑖, 𝑖 ∈
[1, 2,⋯ , 4]. The 𝑁𝑅 × 1 vectors 𝛈1 and 𝛈2 represent additive 

Gaussian noise. The entries of 𝐡𝑖, 𝛈1 and 𝛈2 are complex 

Gaussian independent and identically distributed (i.i.d.) 

random variables (RVs) with zero mean and unit variance. 

The ABEP based on the union bound approach [1],[9] may 

be formulated accordingly as: 

 

𝑃𝑒 ≤
1

𝑀4
∑∑

𝑁(𝐗, 𝐗̂)𝑃(𝐗 → 𝐗̂)

4 log2𝑀
𝐗̂𝐗

 (3) 

 

where 𝐗̂ =
1

√5
[
𝛼(𝑠̂1 + 𝑠̂2𝜃) 𝛼(𝑠̂3 + 𝑠̂4𝜃)

𝛾𝛼̅(𝑠̂3 + 𝑠̂4𝜃̅) 𝛼̅(𝑠̂1 + 𝑠̂2𝜃̅)
] = [

𝑥̂1 𝑥̂2
𝑥̂3 𝑥̂4

] is 

the erroneously detected transmission matrix given 𝐗 =

[
𝑥1 𝑥2
𝑥3 𝑥4

] (refer (1)) was transmitted, 𝑁(𝐗, 𝐗̂) is the number 

of bit errors associated with the pairwise error probability 

(PEP) event 𝑃(𝐗 → 𝐗̂). 

The conditional PEP 𝑃(𝐗 → 𝐗̂|𝐇) may be formulated as: 

 

𝑃(𝐗 → 𝐗̂|𝐇) = 𝑃 (‖𝒚1 − √
𝜌
2⁄ (𝐡1𝑥̂1 + 𝐡2𝑥̂2)‖

𝐹

2

+ ‖𝐲2 −√
𝜌
2⁄ (𝐡3𝑥̂3 + 𝐡4𝑥̂4)‖

𝐹

2

< ‖𝛈1‖𝐹
2 + ‖𝛈2‖𝐹

2) 

(4) 

 

Simplifying similar to [9], the conditional PEP may be 

validated as: 

 

𝑃(𝐗 → 𝐗̂|𝐇) = 

𝑄(√
𝜌

8
(‖𝐇12 [

𝑥1 − 𝑥̂1
𝑥2 − 𝑥̂2

]‖
𝐹

2

+ ‖𝐇34 [
𝑥3 − 𝑥̂3
𝑥4 − 𝑥̂4

]‖
𝐹

2

)) 
(5) 

 

where 𝐇12 = [𝐡1 𝐡2] and 𝐇34 = [𝐡3 𝐡4]. 
 

Employing the moment generating function, similar to [9] 

(refer to Equations (6) - (9) in [9]), and solving, we arrive at 

the unconditional PEP: 

𝑃(𝐗 → 𝐗̂)

=
1

2𝑛

[
 
 
 
 
 

1

2
𝑀1 (

1

2
)𝑀2 (

1

2
) +

∑𝑀1 (
1

2 sin2 (
𝑘𝜋
2𝑛
)
)𝑀2 (

1

2 sin2 (
𝑘𝜋
2𝑛
)
)

𝑛−1

𝑘=1 ]
 
 
 
 
 

 
(6) 

 

where 𝑀𝑖(𝑠) = (
1

1+2𝜎𝛼𝑖
2 𝑠
)
𝑁𝑅

, 𝑖 ∈ [1: 2] and 𝜎𝛼1
2 =

𝜌

8
‖[
𝑥1 − 𝑥̂1
𝑥2 − 𝑥̂2

]‖
𝐹

2

, 𝜎𝛼2
2 =

𝜌

8
‖[
𝑥3 − 𝑥̂3
𝑥4 − 𝑥̂4

]‖
𝐹

2

 and 𝑛 ≥ 10 is chosen 

for convergence of the trapezoidal approximation [9], used to 

arrive at Equation (6). 

 

 

III. SYSTEM MODEL OF GCMBM 

 

Consider a MIMO configuration with 𝑁𝑇 = 2 transmit 

antennas and 𝑁𝑅 receive antennas as illustrated in Figure 1. 

 

 
 

Figure 1: System Model of GcMbM. 
 

Each transmit antenna is surrounded by a set of 𝑚𝑅𝐹 RF 

mirrors in a mirror unit [7]. We refer to the antenna and the 

associated mirror unit as an MbM transmit unit (MbM-TU). 

The individual mirrors of the MbM-TU are activated or 

deactivated by switching them ON/OFF via a mirror 

activation control interface. Hence, 𝑚𝑅𝐹 mirrors create 𝑁𝑚 =
2𝑚𝑅𝐹  distinct permutations or mirror activation patterns 

(MAPs). 

GcMbM employs two consecutive time slots to transmit 

four APM symbols. Given 𝑟 = log2𝑀 and 𝑠 = 𝑀𝑅𝐹, where 

𝑀𝑅𝐹 is the number of MAP bits, a (4𝑟 + 𝑠)-tuple message is 

partitioned into four 𝑟-tuple vectors 𝐦𝑟
𝑖 =

[𝑚1,𝑖 𝑚2,𝑖
⋯ 𝑚𝑟,𝑖], 𝑖 ∈ [1, 2,⋯ , 4] and an 𝑠-tuple 

vector 𝐦𝑠 = [𝑚1 𝑚2
⋯ 𝑚𝑠]. The vectors 𝐦𝑟

𝑖 , 𝑖 ∈
[1, 2,⋯ , 4] are then mapped onto 𝑀-ary quadrature 

amplitude modulation (MQAM) (we consider MQAM but 

this may be easily extended to MPSK) Gray-coded symbol 

constellation points 𝑠𝑖, 𝑖 ∈ [1, 2,⋯ , 4], 𝑠𝑖 ∈ 𝐒, |𝐒| = 𝑀 and 

𝐸{|𝑠𝑖|
2} = 1. As assumed earlier,  

 

𝐗 =
1

√5
[
𝛼(𝑠1 + 𝑠2𝜃) 𝛼(𝑠3 + 𝑠4𝜃)

𝛾𝛼̅(𝑠3 + 𝑠4𝜃̅) 𝛼̅(𝑠1 + 𝑠2𝜃̅)
] = [

𝑥1 𝑥2
𝑥3 𝑥4

]. 

 

GcMbM is essentially the extension of RF mirror MbM to 

the Golden code, and since the transmit antenna usage of the 

Golden code is identical to the Alamouti STBC, we may 

employ the transmit antenna usage of STCM [8]. Hence, 

given 𝑁𝑚 distinct MAPs at each transmit antenna, the vector 

𝐦𝑠 is used to select indices 𝑗𝑘, 𝑗ℓ and 𝑗𝑚, 𝑗𝑛, 𝑗 ∈ [1: 𝑁𝑚] at 

the first and second transmit antennas, in time-slot 1 and 2, 

respectively. The activation of these MAPs at each transmit 

antenna may be performed as follows [8]: a) Scheme 1: 

𝑀𝑅𝐹 = 2𝑚𝑅𝐹, 𝑗𝑘 = 𝑗𝑚,  𝑗ℓ = 𝑗𝑛, Scheme 2: 𝑀𝑅𝐹 = 𝑚𝑅𝐹, 𝑗𝑘 =
𝑗ℓ = 𝑗𝑚 = 𝑗𝑛 and Scheme 3: 𝑀𝑅𝐹 = 2𝑚𝑅𝐹, 𝑗𝑘 = 𝑗𝑛,  𝑗ℓ = 𝑗𝑚. 

Hence, the 𝑁𝑅 × 1 received signal vectors for GcMbM, 

over two time slots, may be formulated as: 

 

𝐲1 = √
𝜌
2⁄ (𝐇1𝑥1𝐞𝑗𝑘 + 𝐇2𝑥2𝐞𝑗ℓ) + 𝛈1 

(7) 

𝐲2 = √𝜌 2⁄ (𝐇3𝑥3𝐞𝑗𝑚 +𝐇4𝑥4𝐞𝑗𝑛) + 𝛈2 

 

where 
𝜌
2⁄  is the average SNR, 𝐇𝑖, 𝑖 ∈ [1, 2,⋯ , 4] is the 

𝑁𝑅 × 𝑁𝑚 frequency-flat Rayleigh fading channel gain matrix, 

as assumed earlier. The vectors 𝐞𝑗𝑘, 𝐞𝑗ℓ, 𝐞𝑗𝑚  and 𝐞𝑗𝑛  are of 

RF Chain 1

RF Chain 2

GcMbM Transmitter

GcMbM

Receiver

N

1

2

Mirror
unit



MAP Control

Unit

mr

s

R

m

Golden code

Transmitter
i

]4,,2,1[ i
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dimension 𝑁𝑚 × 1 with a single non-zero unit entry at 

location 𝑗𝑘, 𝑗ℓ, 𝑗𝑚 and 𝑗𝑛. 𝛈𝑖, 𝑖 ∈ [1: 2], represents the 𝑁𝑅 × 1 

additive Gaussian noise vector. Note, the entries of 𝐇𝑖, 𝑖 ∈
[1, 2,⋯ , 4] and 𝛈𝑖, 𝑖 ∈ [1: 2] are i.i.d. according to 𝒞𝑁(0,1). 

Given complete knowledge of the channel at the receiver, 

the ML detector may be formulated as: 

 
[𝑥̂1, 𝑥̂2, 𝑥̂3, 𝑥̂4, 𝑗𝑘̂, 𝑗ℓ̂] = 

argmin
𝑠𝑖∈𝐒

𝑗∈[1,2,⋯,𝑁𝑚]

{
 
 

 
 ‖𝐲1 − √

𝜌
2⁄ (𝐇1𝑥1𝐞𝑗𝑘 + 𝐇2𝑥2𝐞𝑗ℓ)‖

𝐹

2

+

‖𝐲2 − √
𝜌
2⁄ (𝐇3𝑥3𝐞𝑗𝑚 +𝐇4𝑥4𝐞𝑗𝑛)‖

𝐹

2

}
 
 

 
 

 
(8) 

 

Given 𝐇1𝐞𝑗𝑘 = 𝐡𝑗𝑘
1 , 𝐇2𝐞𝑗ℓ = 𝐡𝑗ℓ

2 , 𝐇3𝐞𝑗𝑚 = 𝐡𝑗𝑚
3  and 

𝐇4𝐞𝑗𝑛 = 𝐡𝑗𝑛
4 , it may be further validated that the first and 

second norm terms in Equation (8), may be simplified as 

follows: 

 

𝜖1 = √
𝜌

2
‖𝐠𝑗𝑘

1 ‖ + √
𝜌

2
‖𝐠𝑗ℓ

2 ‖ − 2𝑅𝑒{𝐲1
𝐻𝐠𝑗𝑘

1 }

− 2𝑅𝑒{𝐲1
𝐻𝐠𝑗ℓ

2 }

+ √2𝜌𝑅𝑒 {𝐠𝑗𝑘
1 𝐻

𝐠𝑗ℓ
2 } 

(9) 

𝜖2 = √
𝜌

2
‖𝐠𝑗𝑚

3 ‖ + √
𝜌

2
‖𝐠𝑗𝑛

4 ‖ − 2𝑅𝑒{𝐲1
𝐻𝐠𝑗𝑚

3 }

− 2𝑅𝑒{𝐲1
𝐻𝐠𝑗𝑛

4 }

+ √2𝜌𝑅𝑒 {𝐠𝑗𝑚
3 𝐻

𝐠𝑗𝑛
4 } 

 

where 𝐠𝑗𝑘
1 = 𝐡𝑗𝑘

1 𝑥1, 𝐠𝑗ℓ
2 = 𝐡𝑗ℓ

2 𝑥2, 𝐠𝑗𝑚
3 = 𝐡𝑗𝑚

3 𝑥3 and 𝐠𝑗𝑛
4 =

𝐡𝑗𝑛
4 𝑥4. 

In terms of computational complexity, Equation (8) 

requires 𝑀4𝑁𝑚
2  metric calculations [8] for Scheme 1, 3 and 

𝑀4𝑁𝑚 metric calculations for Scheme 2. 

 

IV. UNION BOUND ON ABEP FOR GCMBM 

 

Given that the matrix 𝐗𝑒 = [
𝑥1𝐞𝑗𝑘 𝑥2𝐞𝑗ℓ
𝑥3𝐞𝑗𝑚 𝑥4𝐞𝑗𝑛

] was 

transmitted 

and the matrix 𝐗̂𝑒 = [
𝑥̂1𝐞𝑗̂𝑘 𝑥̂2𝐞𝑗̂ℓ
𝑥̂3𝐞𝑗̂𝑚 𝑥̂4𝐞𝑗̂𝑛

] was erroneously 

received, the ABEP for GcMbM may be formulated as: 

 

𝑃𝑒 ≤
1

2𝑀𝑅𝐹𝑀4
∑∑

𝑁(𝐗𝑒 , 𝐗̂𝑒)𝑃(𝐗𝑒 → 𝐗̂𝑒)

4 log2𝑀 +𝑀𝑅𝐹
𝐗̂𝑒𝐗𝑒

 (10) 

 

Based on Equation (7), the conditional PEP may be defined 

as: 

 

𝑃(𝐗𝑒 → 𝐗̂𝑒|𝐇) = 

𝑃 (‖𝐲1 − √
𝜌
2⁄ (
𝐇1𝑥̂1𝐞𝑗̂𝑘 +

𝐇2𝑥̂2𝐞𝑗̂ℓ
)‖

𝐹

2

+ ‖𝐲2 − √
𝜌
2⁄ (
𝐇3𝑥̂3𝐞𝑗̂𝑚 +

𝐇4𝑥̂4𝐞𝑗̂𝑛
)‖

𝐹

2

< ‖𝛈1‖𝐹
2 + ‖𝛈2‖𝐹

2) 

(11) 

 

As earlier (refer to [9]), simplifying Equation (11), it may 

be validated that 𝑃(𝐗𝑒 → 𝐗̂𝑒|𝐇) is given by: 

 

𝑃(𝐗𝑒 → 𝐗̂𝑒|𝐇)

= 𝑄 (√
𝜌

8
(‖𝐇12𝐒𝑘ℓ‖𝐹

2 + ‖𝐇34𝐒𝑚𝑛‖𝐹
2)) 

(12) 

 

where 𝐒𝑘ℓ = [
𝑥1𝐞𝑗𝑘 − 𝑥̂1𝐞𝑗̂𝑘
𝑥2𝐞𝑗ℓ − 𝑥̂2𝐞𝑗̂ℓ

], 𝐒𝑚𝑛 = [
𝑥3𝐞𝑗𝑚 − 𝑥̂3𝐞𝑗̂𝑚
𝑥4𝐞𝑗𝑛 − 𝑥̂4𝐞𝑗̂𝑛

], 

𝐇12 = [𝐇1 𝐇2] and 𝐇34 = [𝐇3 𝐇4]. 
 

The unconditional PEP may then be evaluated using 

Equation (6), where 𝜎𝛼1
2 =

𝜌

8
‖𝐒𝑘ℓ‖𝐹

2  and 𝜎𝛼2
2 =

𝜌

8
‖𝐒𝑚𝑛‖𝐹

2 . 

 

V. NUMERICAL RESULTS 

 

In this section, we first validate the simulation results of the 

Golden code using the bound given by Equation (3). We 

assume complete channel knowledge and an ML detector for 

the Golden code [3]. We have considered both MPSK and 

MQAM. The notation employed is (𝑁𝑅 , 𝑀). In both cases 

(refer to Figure 2), it may be seen that the theoretical results 

agree closely with the simulation results, especially at high 

SNRs for 𝑀 = 4, 8 and 16. Next, we present the error 

performance results for GcMbM (refer to Figure 3). 

Comparisons are drawn with ASTBC, the conventional 

Golden code and STCM (Schemes 1-3). The notation 

employed for ASTBC and the Golden code is (𝑁𝑅 , 𝑀), while 

the notation (𝑁𝑅 , 𝑀,𝑚𝑅𝐹) is employed for STCM and 

GcMbM. In all instances, complete channel knowledge is 

assumed. A spectral efficiency of 6 bits per channel use 

(bpcu) is considered. 

 

 
Figure 2: Validation of Monte Carlo simulation results for the Golden code 

with MPSK and MQAM. 

 

It is evident that GcMbM-1 loses transmit diversity [8]; 

hence, performing more poorly than STCM-1, while 

GcMbM-2 and GcMbM-3 retain full-diversity and yield 

significant SNR gain. For example, at a BER of 10−6, 

GcMbM-2 yields an SNR gain of approximately 2.9 dB 

compared to STCM-2, while GcMbM-3 yields a gain of 3 dB 

over STCM-3. Furthermore, GcMbM-1, 2 and 3 yield SNR 

gains of 1 dB, 4.8 dB and 4.2 dB, respectively, compared to 

the Golden code, and 5.3 dB, 9.3 dB and 8.5 dB, respectively, 

compared to ASTBC. 
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In all cases, it is evident that the theoretical ABEP given by 

Equation (10), agrees well with simulation results at high 

SNR, hence validating the error performance of the proposed 

GcMbM. 

 
Figure 3: Comparison of numerical results for GcMbM at a spectral 

efficiency of 6 bpcu. 

 

VI. CONCLUSION 

 

An analytical ABEP (union bound) expression for the 

Golden code was formulated and validates simulation results 

at high SNRs. GcMbM was then proposed and exhibits an 

improved spectral efficiency/error performance. The 

analytical ABEP of the Golden code was extended to 

GcMbM and validated simulation results at high SNRs. 

Possible future work is the investigation of low-complexity 

detection schemes for GcMbM. 
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