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Abstract---This paper presents the fusion of accelerometer and 

camera for active vibration prediction for a mobile flexible link 

manipulator based on Extended Kalman filter-based modelled 

predictor. The tip position of the manipulator is unpredictable 

due to the singularity of the mobile flexible manipulator, as 

well as the phase lag in the control system due to the time delay 

between the sensor feedback and the control input. The 

purpose is thus to improve the prediction accuracy of the tip 

position. The time delayed in camera data estimates is used to 

correct the drifting accelerometer’s signal. The dynamic model 

of the mobile flexible link manipulator is derived and is used to 

feed to the prediction stage of the Extended Kalman filter, 

which is used for vibration prediction. In order to investigate 

the efficiency of the proposed method, simulation and 

experimental studies are performed considering a single link 

flexible manipulator on a wheeled base. Experimental 

verifications showed that the proposed method produced good 

vibration prediction of the mobile manipulator compared to 

other model based predictor. 

 

Index terms---Mobile Flexible Manipulator; Sensor Fusion; 

Extended Kalman Filter; Model Based Prediction. 

 

I.   INTRODUCTION 

 

Mobile flexible link manipulators (MFLM) are going 

beyond industrial and space robotic applications due to 

their wide area of the workspace, smaller footprint, smaller 

actuators, better maneuverability and faster as compared to 

their fixed rigid counterpart [1, 2]. The key objective for 

the use of flexible link manipulators is to reduce the power 

consumption, increase payload-to-weight ratio, increase the 

speed of performances, and reduce the overall weight of the 

robot. However, due to the nonlinearity and non-minimum 

phase characteristics of the flexible manipulator, as well as 

the non-collocation of sensors, feedback lag in the 

estimation errors are inevitable [3]. 

To improve the measurement accuracy and provide real-

time feedback for the control system, Kalman filter [4] is 

frequently used to fuse the measurements from both strain 

gauges (or accelerometer) and camera. Luca and Paolo [4] 

fused strain gauge and camera with LED at the tip of the 

flexible manipulator using Kalman filter for tip vibration 

sensing. Dubus [5] proposed an online delay estimator based 

on a cross-correlation technique that computes the time-

delay between the camera and accelerometer. 

A predictive sensor system would provide accurate sensor 

feedback and prediction to the control on flexible 

manipulator on a mobile base and thus an area to explore 

owing to complex and strongly coupled dynamics of the 

mobile platform and the singularity of the flexible arm. 

Having a feedback system to predict and track the flexible 

beam vibration, the predictive control can regulate control 

input to attain desired end-effector trajectory and vibration 

minimisations rather than using a point-to-point manoeuvre. 

The study of vibration estimation and prediction of a 

flexible beam could also be extended to other applications, 

for example, for developing advanced feedback to 

controllers for flexible structures. In order to perform a task 

which requires high precision, it is crucial to acquire the 

actual position of the tip of the flexible manipulator. With 

the information of the tip vibration, the controller would be 

able to control the actuator at the hub accurately so as to 

reduce the vibration and improve the positioning at the tip. 

Consider an application of a mobile robot painting the wall; 

the controller would require the position of the brush and 

also the magnitude of the vibration at the tip in order to 

produce a smooth painting. Accurate prediction of the tip 

position of the MFLM will greatly improve motion planning 

of the mobile base. Thus, this study provides beneficial 

explorations into accurate motion planning of the mobile 

platform with the flexible manipulator.  

The controllers for the flexible manipulators have been 

extensively studied for more than two decades [2]. 

Researchers who addressed this issue from a predictive 

control point of view mainly followed either classical 

predictive approaches or modern predictive approaches, 

which are mainly model-based [6]. Common classical 

predictive approaches include Smith predictor and internal 

model control (IMC). Modern predictive approaches include 

model-based predictive controls (MPC) [7], such as the 

generalized predictive control (GPC). The success of these 

predictive control methods is their ability to explicitly 

handle constraints, nonlinear systems [8], and processes 

with feedback delay or lag [3]. 

In model-based control, closed-loop stability is assured 

assuming that the truncated vibration modes do not affect 

the robot’s dynamics [9]. This approach only considers 

present states in states prediction. To improve the accuracy 

of the prediction, Ghahramani, and Towhidkhah [10] 
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proposed a new incremental form of the GPC algorithm 

with input constraint, where both present and previous states 

were considered. However, the model-based control may 

lead to unsatisfactory performance when an accurate model 

is unavailable, due to parameters uncertainty or truncation 

of high order vibration modes. It is difficult to model such 

system due to its unknown vibrational behaviour. 

Furthermore, model-based control does not provide 

robustness to external disturbances [9]. The study for a 

predictive controller for active vibration suppression is thus 

still lacking [8], making it an exploitable research area. 

This work focuses on the development of a low cost 

predictive sensor system to estimate the vibration of a 

flexible manipulator. Fusion of accelerometer and camera 

using Extended Kalman filter based model predictor is used 

to estimate the vibration at the tip of flexible beam. 

The organization of this article is as follows. Section 2 is 

the problem formulation. Section 3 derives the model of 

MFLM. Section 4 describes the sensor system used in this 

work. Section 5 outlines the proposed Extended Kalman 

filter (EKF) algorithm. The experimental results and 

performance comparison of different types of EKF 

algorithms are included in Section 6. Finally, the conclusion 

is presented in Section 7.  
 

II.   PROBLEM FORMULATION 

 

The sensor system used in this work consists of 

accelerometer and camera. The accelerometer provides an 

instant feedback to the motion of the beam tip with 

cumulative position errors. This is caused by high random 

noise and time-varying bias possess in accelerometer. The 

camera does not suffer from noisy signals but has low data 

rate, slow and memory intensive. Consider a case where the 

image acquisition and processing time is less than 30 ms, it 

turns out that the maximum measurable natural frequency is 

less than 33 Hz. Moreover, increasing the camera frame-rate 

would not resolve the issue as the image acquisition and 

processing time will eventually become the actual 

bottleneck. 

As for the accelerometer, the camera data is used to 

correct the accelerometer’s data errors at a delay. The 

phenomenon of phase hysteresis and time delay degrades 

the performance of the control system or even induces 

instability [11]. On the other hand, the accelerometer signal 

is used to mitigate the delayed visual data into current time. 

 
III.   MATHEMATICAL MODELLING OF MOBILE FLEXIBLE 

LINK MANIPULATOR 

 

A mathematical model is derived for the MFLM. The 

MFLM as shown in Figure 1 has three wheels. The mobile 

base is a three-wheeled platform. The front wheel is the 

driver (driven by a DC geared motor) wheel that has a tire. 

There are two rear follower wheels or caster wheels, which 

are free rolling. Thus the traction/braking and lateral forces 

are negligible for the rear wheels. 

 

 
Figure 1:   Mobile flexible link manipulator with sensors 

    

A.  Modelling the flexible manipulator 

The flexible link manipulator considered in this research 

is a flexible beam with one end fixed to the base of the 

mobile platform, and a free end with a payload of Mp. We 

assumed that the flexible beam could only vibrate 

horizontally. Thus gravity effect can be neglected. Since the 

beam is long and slender, the length of the beam can be 

assumed to be constant and the deformation due to shear, 

the rotary inertia and the effects of axial forces are assumed 

negligible as well. Therefore, the Euler-Bernoulli beam 

theory (which applies to thin beam theory, where the rotary 

inertia and shear deformation are neglected) can be used to 

model the elastic behaviour of the beam. The displacement 

at the end point of the link from the fixed end is designated 

as (x, t). The governing equation of motion based on Euler-

Bernoulli beam model is given by [12] 

 

𝑚


2𝑤

𝑡2
+  𝐸𝐼


4𝑤

𝑥2
= 𝑓(𝑥, 𝑡) 

(1) 

 

where w, m, E, and I are the transverse deflection, mass 

per unit length, Young modulus of elasticity, and second 

moment of area of the cross-section of the beam, and f(x, t) 

is the loading per unit length of the beam. The general 

solution of equation (1) is [13]: 

 

(𝑥, 𝑡) =  𝐴𝑒−𝜔𝑛𝑡 sin(𝜔𝑑𝑡 +  ). (𝜎 (sin(𝑥) 
−   sinh(𝑥)
−  (cos(𝑥) + cosh (𝑥)) 

(2) 

where: 

𝐴 =  
√(𝑣𝑜 +  𝜔𝑛𝑦𝑜)2 + (𝑦𝑜𝜔𝑑)2

𝑤𝑑
2  

 

 = 𝑡𝑎𝑛−1 (
𝑦𝑜𝜔𝑑

𝑣𝑜 + 𝜔𝑛 𝑥𝑜

) 
 

𝜔𝑑 =  𝜔𝑛√1 −   2
 

 

𝜔𝑛 =  √
𝑘

𝑚
 

 

 =  
𝐷

2√𝑘𝑚
 

 

𝑘 =  
3𝐸𝐼

𝐿3
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𝜎 =  − 
sin(𝐿) +  sinh (𝐿)

cos(𝐿) +  𝑐𝑜𝑠h (𝐿)
 

 

 

where vo, yo, n, d, m, k, D, E and I are initial velocity, 

initial displacement, damped natural frequency, the mass of 

beam, beam stiffness and damping coefficient, Young’s 

modulus and area moment of inertia of the beam, 

respectively. With Ll as the length of the beam, Ll are the 

real roots of the equation:  

 

Cos(Ll )Cosh(Ll) = -1  

 

This transcendental equation has an infinite number of 

roots; the first 4 roots are given as Ll = 1.87504, 4.694, 

7.8547 and 10.9955, which can determine the natural 

frequencies of the beam as follows [13]: 

 

𝜔𝑛 = √
𝐸𝐼

𝜌𝐴
𝛽2 

 

 

For the beam used in this system, only first mode of 

vibration is noticed, yielding Ll = 1.87504 and ωn = 9.7474 

rad/s. 

To compute the beam vibration with varying payload at 

the tip, the effective mass of the beam needs to determined, 

where the distributed mass of the beam is represented by a 

discrete, end-mass. The effective mass me is: 

 

𝑚𝑒 =  0.2235𝑚𝑏  
 

where mb is the mass of the beam. To include payload mp 

at the tip of the beam, we compute total mass at the tip will 

be the effective mass me plus the payload mp, 

 

𝑚 =  0.2235𝑚𝑏 +  𝑚𝑝 (3) 

 

B.  Modelling the mobile platform 

The mobile platform is a three wheeled vehicle, with front 

wheel driven by a DC motor, and two rear free rolling 

follower wheels. For the mechanical characteristics, 

Newton’s second law can be applied, yielding the equation: 

 

𝑚 =  𝐾𝑖𝑖 = 𝐽𝑚𝜃̈𝑚 + 𝜃̇ +  
г

Ƞ
 

(4) 

 

where m is the motor torque, Ki is the torque constant, i is 

the current, Jm is the moment of inertia for the motor, m is 

the angular displacement of the motor,  is the viscous 

friction, г is the coupling torque from the motor shaft to the 

wheel, Ƞ is the gear ratio. For the wheel, we have:  

 

𝐽𝑤𝜃̈𝑤 = г − 𝑅𝑤𝐹𝑡 −  𝑅𝑐𝐹𝑤  
 

where Jw is the moment of inertia for the wheel, w is the 

angular displacement for the wheel, Rw is the radius of 

driving wheel, and Rc is the radius of rear wheels, Ft is the 

friction of driving wheel, and Fw is the friction of rear 

wheels. The electrical characteristic of the motor has the 

equation as: 

 

𝑉 =
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + 𝑒 =

𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + 𝐾𝑒𝜃̇𝑚 

(5) 

 

Substituting equation (5) into equation (4), and 

performing mathematical manipulation, we get the transfer 

function as:  

 
𝜃̈(𝑠)

𝑉(𝑠)
= [

𝐾𝑖

(𝐽𝑚𝑠+𝜈)(𝑅+𝑠)+𝐾𝑒𝐾𝑖

−(𝑅+𝑠)

(𝐽𝑚𝑠+𝜈)(𝑅+𝑠)+𝐾𝑒𝐾𝑖
]  

(6) 

 

where 𝜃̇ is the angular velocity of the front wheel, V is the 

voltage input,  L is the armature inductance, R is the 

armature resistance, e is the back-EMF of the motor, Ke is 

the back-EMF constant.  

 

3.3.  Model of mobile flexible link manipulator 

Based on Lagrange’s function formulation , the dynamic 

equation matrix can be written as: 

 

ℒ =  
𝐴𝐿𝜌 (−8𝛿̇𝑜(𝑣 + δ̇o) + 𝜋 (2𝑣2 + 4𝑣δ̇o + 3δ̇o

2
))

4𝜋

+  
1

2
𝑚𝐵𝑣𝐵

2 +  
1

2
𝐼𝐵𝜔𝐵

2 +  
1

2
𝑚𝑃𝛿̇2

−  
1

64
𝜋4 [

EI

𝐿𝑙
3] (𝛿𝑜)2 

(7) 

 

where  is the density of the beam, mB and ʋB are the mass 

and velocity of the mobile base, IB and ωB are the inertia and 

angular velocity of mobile base. mp is the mass of payload 

and o is the initial beam deflection. E and I are Young 

modulus of elasticity and second moment of area of the 

cross-section of the beam. The flexible mobile manipulator 

dynamic equations obtained from the Euler-Lagrange’s 

equations above can be re-written in matrix-vector form as 

follows: 

 

𝑀(𝑞)𝑞̈ +  𝑅(𝑞) = 𝜏 (8) 

 

where M(q) is the resultant forces matrix, R(q) is the 

repulsive matrix,  is the input torque matrix. 

 

𝑀(𝑞) = [
𝐴𝐿 (

−16 + 6𝜋

4𝜋
) 𝜌 + 𝑚𝑃 0

0 𝑚𝐵

] 

 

𝑞̈ = [𝛿̈
𝑣̇

] 
 

𝑅(𝑞) = [
𝐸𝐼𝜋4δo

32𝐿3

0

] 

 

𝜏 = [
0

𝐹𝐵
] 

 

 

The accelerations of the mobile base and deflection rate of 

the flexible beam can be obtained as: 

 

𝑞̈ = 𝑀(𝑞)−1[𝜏 − 𝑅(𝑞)] (9) 

 

The amount of deflection of the beam depends on the 

elasticity of the beam and the acceleration of the platform. 

Thus, we compute equation (9) for the base and the beam’s 

deflection separately. The dynamic of the mobile base gives:  
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𝑚𝐵𝑣̇ = 𝐹𝐵  

𝑣̇ =
𝐹𝐵

𝑚𝐵

 
 

 

The dynamic of the mobile flexible link manipulator 

gives: 

 

{𝐴𝐿𝑙 (
−16 + 6𝜋

4𝜋
) 𝜌 + 𝑚𝑃} 𝛿̈ + 

𝐸𝐼𝜋4δ

32𝐿𝑙
3 = 𝑚𝑣̇ 

(10) 

 

where m = mp + ALl, that is mass of the payload and 

mass of the flexible beam. It is desirable to transform the 

dynamic equation (9) into state-space form. Defining the 

following state vector 

 

𝑋 = [𝑞𝑇 𝑞̇𝑇]𝑇 = [𝑝  𝛿  𝑝̇  𝛿̇] (11) 

 

where p is the displacement of mobile base and  is the 

deflection of the flexible link. We have the corresponding 

linear state-space model, 

 

𝑋̇ = [
02×2 𝐼2×2

−𝑀(𝑞)−1𝑅(𝑞) 0
] 𝑋 + [

02×1

𝑀(𝑞)−1] 𝜏 
(12) 

Y = [I12 012] X  

 

IV.   SENSORS SYSTEM DESCRIPTION 

 

The manipulator is a flexible beam mounted on the mobile 

platform. The sensors are mounted on the MLFM as 

described in section 3. Table 1 depicts the parameter for the 

flexible beam. 

 
Table 1  

Flexible beam parameters 

 

Parameter Name Value 

Young’s Modulus 

Poisson’s Ratio 

E 

 

190 GPa 

0.27 – 0.3 

Area moment of Inertia I 2.123  10-12 kgm2 

Cross-sectional area 

Length 
Density 

Mass of beam 

Stiffness 
Damping coefficient 

A 

Ll 

 

mb 

k 
D 

0.96 x 28.8 mm2 

53 cm 
7308.864 kg/m3 

107.1 g 

9.5376 
0.024 

 

The sensor system consists of: 1) accelerometer mounted at 

the back of the black box; 2) camera to capture the LED 

image inside the black box; 3) webcam for capturing the 

marking on the ceiling; 4) motor encoder. The 

accelerometer attached at the tip of the beam estimates the 

tip’s vibration and the camera mounted at the fixed end of 

the beam captures the LED position at the tip, while 

webcam and encoder are used to estimate the velocity of the 

platform. The weight of the accelerometer is 14 g, while the 

LED with cardboard box has negligible mass. Applying 

equation (3), the total mass at the end of the beam m at no 

payload is 0.03756 kg, which includes the weight of 

accelerometer, the weight of LED, box, the wire connecting 

to the accelerometer and LED, and one-third of the beam 

mass. To validate the measurements from the accelerometer 

and camera, a range sensor (not shown in the picture) 

positioned at the tip to measure the tip vibration. Both the 

signals from the accelerometer and range sensor are 

captured by the data acquisition modules (National 

Instruments, NI 9201, NI 9233 and NI cDAQ 9172 chassis).  

The accelerometer is MMA7260Q triple-axis 

accelerometer having 11 kHz internal sampling rate. The 

camera is the Firefly series FMVU-03MTC-CS, having a 

frame rate of 57 – 60 fps (frame per second), that frames a 

single LED fixed 50 cm over the beam tip. Calibration 

results showed that it has 1 mm accuracy (an averaged scale 

factor of 1 pixel/mm) measuring at 50 cm distance from the 

LED. In order to achieve the aforementioned frame rate, the 

acquired image has been reduced from 640  480 to 430  

64 pixels, corresponding to the arc that the LED describes 

on the image plane. Timestamp exchange is used to predict 

the delayed visual data from the camera. For image 

processing operation, the coordinates of the LED on the 

image plane are evaluated through a blob detection 

operation. 

A high accuracy short range infrared range sensor (Sharp 

GP2Y0A21YK) was used to measure the horizontal 

displacements at the tip of the vibrating flexible 

manipulator, while a long-range infrared distance measuring 

sensor was used to measure the distance travelled by the 

mobile platform. This short range infrared sensor can 

measure range between 0 cm and 80 cm. 

 

A.  Data from the sensors 

A static investigation was carried out to measure the 

vibration at the tip of the beam. Figure 2 depicts the 

displacement computed from the accelerometer, camera and 

direct measurement from the range sensor. It was observed 

that the accelerometer’s signal had a significant drift and the 

error increased overtime rapidly. This is due to the 

accumulation of error caused by double integration of the 

biased acceleration signal. The camera, on the other hand, 

was delayed with low data rate. The exposure time is set to 

the reciprocal value of the frame-rate. The camera operates a 

frame-rate of around 60 fps. Hence the exposure time is 

about 16 ms. A further delay is due to image processing. 

For the experiment performed, information for the input 

signals has been obtained as follows: 

 The accelerometer data acquisition sampled at 11 KHz. 

The acceleration data is double integrated into 

displacement estimates. 

 Total time which includes an image capturing and 

processing the image is 96.8 ms for each coordinate of 

the LED on the image plane. The obtained value is 

then held until the next image is acquired.  
 

 



Extended Kalman Filter Based Modelled Predictor for Fusion of Accelerometer and Camera Signal to Estimate the Vibration of a Mobile 

Flexible Link Manipulator 

  

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 10 No. 2 103 

 

 
Figure 2:   Comparisons of displacement estimation from accelerometer 

and camera (The actual displacement was measured from a range sensor) 

 

An Extended Kalman filter is proposed to fuse the 

accelerometer and camera data. The algorithm works such 

that the drifted displacement estimates from the 

accelerometer is readjusted by the camera data through 

Extended Kalman filtering. 

 

V.   THE PROPOSED EXTENDED KALMAN FILTER 

 

Dubus [14] used sinusoidal regression, which assumes the 

vibration is sinusoidal in shape, to reconstruct the vibration. 

In this paper, the model for the flexible beam system is used 

to reconstruct the vibration, while Extended Kalman filter 

for the nonlinear system has been applied to improve the 

estimation accuracy. This improves the estimation of the tip 

oscillation. 

Figure 3 is the block diagram for the proposed algorithm. 

The algorithm works such that the modelled vibration 

waveform of the beam’s response can be computed, and 

feed to the Extended Kalman filter as input u. 

During the absence of camera data, the sensor update to 

Extended Kalman filter is based on accelerometer data. 

When the camera data is available, cross-correlation is first 

used to compute the delayed frame and the resulting visual 

data being readjusted and fed to the Extended Kalman 

filter’s sensor update. 

Consider the end-point displacement of the flexible beam 

which is tracked by N sensors. For simplicity, assume that 

the sensors’ are having identical sampling rates; the signal 

model can be written as the state equation of the following 

form [15]: 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘, 𝑛𝑘) (13) 

 

where, k is the discrete-time index, x(k) is the state vector, 

f(‧ ) is the generic non-linear functions relating the past 

state and current input, and nk is the white Gaussian system 

noise of assumed known covariance matrix Qk = E[nknk
T]. 

The measurements corresponding to the sensor is [15]: 

 

𝑧𝑖𝑘 = h𝑖(𝑥𝑘 , 𝑏𝑖𝑘) , 𝑖 = 1 … 𝑁 (14) 

 

with zi the measurement vector of the sensor i, bi the white 

Gaussian observation noise for the sensor i with zero mean 

and with assumed known covariance matrix Rik = E[bikbik
T], 

hi is the measurement function associated with the sensor i 

and N is the number of sensors. Let F(k) and H(k) be the 

Jacobian matries of f(∙) and h(∙), denoted by 𝐹(𝑘) =
𝑓𝑘| 𝑥̂(𝑘|𝑘) and 𝐻(𝑘 + 1) =  h | 𝑥̂(𝑘|𝑘).  With the model 

described by equations (13) and (14), the multisensory 

Extended Kalman filter (EKF) can be computed as: 
 

 
 

Figure 3:   Block diagram of displacement estimation algorithm for flexible 

beam of Extended Kalman filter 

 

 The estimation stage 

 
𝑥̂(𝑘 + 1|𝑘 + 1) = 𝑥̂(𝑘 + 1|𝑘)

+ ∑ 𝐾𝑖(𝑘 + 1)[𝑧𝑖(𝑘+1)

𝑁

𝑖=1

− ℎ𝑖(𝑘+1)𝑥̂(𝑘 + 1|𝑘)] 

(15) 

  𝐾𝑖(𝑘 + 1) = 𝑃(𝑘 + 1|𝑘)𝐻𝑖
𝑇(𝑘

+ 1)[𝐻(𝑘 + 1)𝑃(𝑘 + 1|𝑘)𝐻𝑇(𝑘
+ 1) + 𝑅(𝑘 + 1)]−1 

(16) 

𝑃(𝑘 + 1|𝑘 + 1) = [𝐼 − 𝐾(𝑘

+ 1) ∑ 𝐻𝑖
𝑇(𝑘 + 1)]𝑃(𝑘_1|𝑘)    

𝑁

𝑖=1

 

(17) 

 

 The prediction stage 

 
𝑥̂(𝑘 + 1|𝑘) =  𝑓𝑘𝑥̂(𝑘|𝑘) +  Bu(k|k) (18) 

𝑃(𝑘 + 1|𝑘) =  𝐹(𝑘)𝑃(𝑘|𝑘)𝐹𝑇 +  𝑄(𝑘) (19) 

 

where the P matrix provides the uncertainty on the 

estimate and K is the Kalman gain for the data fusion 

associated to the sensor i, and u is the control input. The 

innovation associated to the observation for the sensor i is 

given by [𝑧𝑖(𝑘) − 𝐻𝑖𝑥̂(𝑘|𝑘 − 1)] =  𝑣𝑖(𝑘). 

 

A.   Determine optimum data fusion 

When both camera and accelerometer signals are 

available, Extended Kalman filter takes the fusion of both 

sensor data for estimation. When the camera data is not 

available, the Extended Kalman filter can take either 1) only 

accelerometer data; 2) combines accelerometer data with 
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previous camera data or; 3) combines accelerometer data 

with extrapolation of previous camera data. To determine 

the optimum data fusion during the absence of camera data, 

different methods of EKF algorithms were compared. For 

each set of inputs, the accelerometer data were tested with: 

i) original accelerometer data and, ii) accelerometer data re-

computed at every windowed frame of previous 

accelerometer data of two cycles of vibrations. 

 

 
Figure 4:   Comparison of sensor fusion methods using standard Extended 

Kalman filter 
 

 
Figure 5:   Illustration of case (1) EKF output 

 

The experiments, with the setup as in Figure 1 were 

initiated by manually exciting the beam at the tip, and 

allowing it to vibrate freely. Figure 4 depicts the outputs for 

the design using the standard Extended Kalman filter. In 

case (1) (accelerometer only), there is no drifting but the 

outputs are showing rippling. This is due to during the 

absent of the camera data the EKF only compute the output 

using the accelerometer’s signal. Once the successive data 

from camera arrives, the EKF computes the next output 

using the fusion of the camera’s and accelerometer’s data, 

thus resulting in the rippling output. Figure 5 illustrates the 

phenomenon. 

On the other hand, for outputs that make use of previous 

camera data or extrapolation of previous camera data [case 

(2) and (3)], the output signals are smooth but showing 

output drifts. Here, the camera data is either using the 

previous or the extrapolation of previous camera data to fuse 

with the accelerometer’s data. Thus, both the camera and the 

accelerometer data are always fused to produce the EKF 

output. Consequently, the output drifts could be due to the 

effect of the acceleration drift. Figure 6 illustrates the 

phenomenon. 

 

 
Figure 6:   Illustration of case (2) and case (3) EKF output 

 

 
Figure 7:   Comparison of sensor fusion methods using model-based 

Extended Kalman filter 

 

Figure 7 depicts the outputs for the model-based Extended 

Kalman filter. There is no drifting for all outputs, while case 

(1) output for both with and without windowing of 

accelerometer data showing rippling of the signals (which is 

due to the adjustment of the signal when camera data 

presents). The rest of the outputs are smooth, with 

windowing previous accelerometer data and extrapolation of 

previous camera data showing a best match to the actual 

displacement. 

It is therefore confirmed that the model-based Extended 

Kalman filter sensor fusion algorithm for vibration 

estimation gives accurate and smooth outputs in estimating 

vibration of the flexible beam. 

 

B.   Vibration prediction algorithm 

Predictive controllers were developed in many research 

studies. Examples are model-predictive control (MPC) and 

finite element (FE) MPC. However, the literature on MPCs 

as effective vibration reduction strategy on flexible systems 

is very limited [16]. Abdolvand and Fatehi [8] presented a 

model-based prediction for vibration suppression of a 

flexible manipulator. Dubay et al. [17] utilized finite 

element based prediction to evaluate the behaviour of a 

flexible beam. The MPC based methods may lead to 

unsatisfactory performance when an accurate model is 
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unavailable, due to parameters uncertainty or truncation of 

high order vibration modes. Bakhti [18] developed an 

Extended Kalman filter observer to synthesize using the 

linear model of the flexible beam to predict the response of 

a beam. However, it provides a first-order approximation to 

optimize non-linear parameter estimation, which may 

include large errors. It often results in a surge of errors due 

to change in states. Ghahramani and Towhidkhah [10] 

proposed a generalised incremental predictive algorithm for 

predicting the vibration of a flexible joint robot. Shuai [19] 

proposed predictive control technique for the flexible 

manipulator. Wei and Liu [3] made use of the previous 

feedback trajectory and the feedback lag to calculate the 

corrected reference trajectory for flexible link manipulators. 

Tran et al. [20] proposed a multi-step ahead prediction for 

forecasting the machine’s operating conditions using 

regression trees and neuro-fussy systems. The disadvantage 

is that they are based on linearization which it may not 

response fast enough to sudden change in state, inducing 

error. 

In this paper, the state-space model is used to predict the 

future state using the present and previous states. The future 

state is then updated to the model to generate input to the 

EKF for prediction output multiple steps ahead. This 

approach combines the advantages of the model-predictive 

method and previous state feedback using present and 

previous states to the EKF, thus improves the trajectory 

prediction of the tip of the flexible manipulator. 

Based on [10], both present and previous states are used 

for j number of steps ahead prediction. Based on the 

augmented state-space model, the future state variables are 

calculated sequentially using the set of future control 

parameters. For a one step ahead of state/output prediction, 

the linearized state-space model is [10]: 

 

{
𝑥(𝑘 + 1) = 𝛬𝑥(𝑘) +  Ƀ𝑢(𝑘)

𝑦(𝑘 + 1) = ₵𝑥(𝑘 + 1)          
 

(20) 

 

where x n, u , and y  denote the state vector, 

system input and system output, respectively. And, Λ nn, 

Ƀ n and ₵ n are system matrices. To predict the future 

response of the system, the change in the future control 

trajectory needs to be determined as:  

 

u(k), u(k + 1), … , u(k + N – 1) (21) 

 

where N is the control horizon. The future state variables 

are denoted by 

 

x(k + 1), x(k + 2), …., x(k + N) (22) 

 

The future state for one-state ahead prediction k + 1 is: 

 

x(k + 1) = Λx(k) + Ƀu(k) (23) 

 

For two-states ahead prediction k + 2, we can write the 

equation as: 

 

x(k +2) = Λ x(k + 1) + Ƀ u(k + 1) 

                    = Λ2 x(k) ΛБu(k) + Ƀu(k + 1) 

(24) 

 

It follows that, the general form of j step-states ahead 

predictions can be formulated as: 

 

𝑥(𝑘 + 𝑗) = 𝛬𝑗𝑥(𝑘) +  ∑ 𝛬𝑛−1Ƀ∆𝑢 (𝑘 + 𝑗 − 𝑛)

𝑗

𝑛=1

 (25) 

 

The outputs taken from vibration estimation approach 

developed in the previous section is then fed to x(k), and the 

change in modelled output u of equation (25). The block 

diagram developed as shown Figure 3 is then modified to 

contain vibration prediction as shown in Figure 8. 

 
Figure 8:   Block diagram of algorithm for vibration prediction for flexible 

beam 

 

VI.   RESULTS AND DISCUSSIONS 

 

Experimental verifications were carried out with 0.67V, 

1.34V, 2.01V, 2.68V and 3.35V input to the driving motor 

of the platform, and with 10g, 30g, 50g and 70g load at the 

manipulator’s tip for each input voltage, respectively. For 

the weight of 80g and above the platform begins to overturn, 

thus the experiments were carried out until 70g. Also, due to 

the space constraint of 2.4m of the experimental workspace, 

the experiment was run for 10 seconds straight path 

movement of the mobile platform.  

The model based prediction algorithm (MP), EKF based 

prediction without modelled input (EKFP) and EKF based 

prediction with modelled input (EKFPM) were compared. 

300 steps ahead prediction was set, leading to 150 

milliseconds ahead prediction. 
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Figure 9:  Comparison of prediction methods for 50g payload at the manipulator tip for 0.67V input 

 

 
Figure 10:  Comparison of prediction methods for 50g payload at the manipulator tip for 1.34V input 
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Figure 11:  Comparison of prediction methods for 50g payload at the manipulator tip for 2.01V input. 

 

 

Figure 9 to 11 above depicts the predicted transient 

responses of the flexible link manipulator with 50 g payload 

at the tip, at 0.67V, 1.34V and 2.10V inputs, respectively. It 

can be seen that there are spikes in the errors during when 

the platform starts and when the platform stops. The spikes 

in the errors are due to the sudden change in the vibration 

when the platform abruptly starts to move and abruptly stop. 

It draws from the experimental results that the errors of 

the predictions are within 10 mm error for EKFP, and within 

5 mm errors for MP and EKFPM. The results manifested 

that EKFP contributed to over prediction during a change 

input to the manipulator, thus resulted in overshoot in error 

at the input change. Comparing MP with EKFPM, the latter 

shows smooth and better match to the actual displacements. 

This showed that the EKFPM achieved the best prediction 

of vibration for the flexible manipulator for the MFLM. 

Table 2 tabulates the RMSE and max error for the three 

types of model prediction methods for various payloads at 

the tip of the flexible manipulator, at various inputs. It can 

be seen that by increasing the speed of the platform there is 

an increase in the RMSE error for the three types of 

algorithms. There is no increase in errors for the increase in 

weight of payload at the tip of the manipulator. 

Comparing the three types of methods, in terms of RMSE 

the EKFP has highest errors, while the EKFPM has lowest 

errors. As well, for the maximum error, the EKFP has very 

high errors as compared to MP and EKFPM. This proved 

that EKFPM is the best in terms of vibration prediction. 

This is due to the modelled input to the algorithm that 

helped to improve the accuracies. 

Therefore, from the experimental results, the EKFPM is 

the best for use in predicting the future vibration for the 

manipulator for the MFLM. It is based on the modelled data 

in place of camera data and with modelled input to the EKF. 

The prediction errors are within 5 mm. EKFP that based on 

camera extrapolation and no modelled input to the EKF 

does not provide good vibration prediction of the 

manipulator of MFLM. It has the highest error of around 14 

mm, as shown in Figure 11.  

The experimental results achieved thus opened the way to 

a real-time implementation of the proposed technique for 

model predictive controllers having feedback lags. 

 

VII.     CONCLUSION 

 

This paper presents a method to exploit the fusion of 

sensor measurements for predicting the vibration at the tip 

of a mobile flexible link manipulator. A model-based state 

predictive algorithm is incorporated to predict manipulator’s 

reaction using the fusion of visual and inertial data. It is 

based on state prediction algorithm utilizing the model of 

the flexible beam on mobile platform as input. The 

technique here uses a model-based Extended Kalman filter 

to fuse the measurements from accelerometer and camera. 

The mathematical model finds the fit to shape of the beam 

oscillation and incorporated into the measurement data to 
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improve the accuracy and smoothness of the predicted 

output. 

The effectiveness of the proposed vibration prediction 

system was examined. The experiments illustrated that 

algorithm can predict the vibration at the manipulator tip at 

varying payloads and varying input voltages to the driving 

wheel of the MFLM at a good accuracy. 

 
Table 2 

RMSE and maximum error for the three types of prediction methods 

 

Predictive type MP EKFP EKFPM  

Payload 

 Error 
 

 

Speed 

RMSE 
(mm) 

Max 
error 

(mm) 

RMSE 
(mm) 

Max 
error 

(mm) 

RMSE 
(mm) 

Max 
error 

(mm) 

No load 

Speed 

1 
0.0011 0.79 0.0011 1.41 0.0008 0.55 

Speed 

2 
0.0036 4.2 0.0033 5.08 0.0028 3.83 

Speed 

3 
0.0013 4.89 0.0015 14.94 0.0012 4.96 

Speed 

4 
0.0039 5.08 0.0042 15.09 0.0035 5.17 

Speed 

5 
0.0052 5.37 0.0058 13.78 0.0046 5.05 

10 g 

Speed 

1 
0.0011 0.76 0.0011 1.4 0.0008 0.51 

Speed 

2 
0.0036 4.15 0.0033 5.07 0.0027 3.82 

Speed 

3 
0.0013 4.84 0.0015 14.94 0.0012 4.95 

Speed 

4 
0.0039 5.07 0.0042 15.05 0.0034 5.15 

Speed 

5 
0.0052 5.32 0.0058 13.75 0.0046 5.01 

30g 

Speed 

1 
0.001 0.71 0.001 1.37 0.0007 0.51 

Speed 

2 
0.0035 4.18 0.0032 5.02 0.0027 3.83 

Speed 

3 
0.0012 4.8 0.0014 14.88 0.0011 4.94 

Speed 

4 
0.0038 5.07 0.0041 15.01 0.0034 5.13 

Speed 

5 
0.0052 5.3 0.0057 13.72 0.0045 5 

50 g 

Speed 

1 
0.001 0.7 0.001 1.37 0.0007 0.5 

Speed 

2 
0.0035 4.1 0.0032 5 0.0027 3.8 

Speed 

3 
0.0012 4.8 0.0014 14.87 0.0011 4.9 

Speed 

4 
0.0038 5 0.0041 15 0.0034 5.1 

Speed 

5 
0.0051 5.3 0.0057 13.58 0.0045 5 

70 g 

Speed 

1 
0.001 0.67 0.0009 1.34 0.0007 0.47 

Speed 

2 
0.0034 4.08 0.0032 4.96 0.0026 3.77 

Speed 

3 
0.0011 4.72 0.0013 14.8 0.001 4.85 

Speed 

4 
0.0037 5 0.0041 14.98 0.0034 5.07 

Speed 

5 
0.005 5.3 0.0057 14.55 0.0044 4.98 

Mean RMSE  0.00295  0.00311  0.0025  

 

The advantage of the proposed algorithm is its ability to 

provide a faster estimation speed. Therefore, it is useful for 

controller design with fast system dynamics. By yielding a 

better prediction of the manipulator responses, the proposed 

method enables better controller design schemes for 

vibration rejection or prevention. 

The limitation is that the prediction does not predict 

external disturbances. Nevertheless, the camera attached at 

the base of the flexible beam provides a mean of allowing 

feature addition for feedback sensing capabilities. For 

instance, object recognition method can be motivated for 

future research in predicting the potential of disturbances. 
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