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Abstract—Load forecasting is essential in order to fulfil a 

demand of the consumer. Nevertheless, for a small-scale Battery 

Energy Storage System (BESS) based on sole photovoltaic (PV), 

it needs a very strong effort to always meet a consumer's 

demand due to unstable meteorological conditions. An ideal PV 

system requires a constructive control strategy in order to 

alleviate its fluctuating output. In this study, an energy control 

scheme that executes next-day forecast of generation for the 

purpose of fully utilizing the stored energy in the batteries has 

been proposed. Experimental equipment was structured and the 

operation was completely administered by RX621 

microcontroller. The implemented system worked very well 

without any distractions and it succeeded in controlling and 

preventing the batteries from being over-charged or over-

discharged. Impressively, average consumption for September 

2015 is considerably high, which suggests that the proposed 

control succeeded in utilizing energy corresponded to 98.6 % of 

the monthly-average generation. 

 

Index Terms—Batteries; Energy Management; Photovoltaic; 

PV Forecasting. 

 

I. INTRODUCTION 

 

Until now, several studies have been conducted regarding the 

Home Energy Management System (HEMS) which is 

commonly focused on control of PV generators, energy 

consumption visualization or battery storage systems [1-3]. 

Although the effect of PV generation used does not contribute 

risky emissions to the environment, it is highly sensitive to 

the fluctuating atmospheric condition since it partially 

depends on various meteorological elements such as 

cloudiness, relative humidity, aerosol, precipitation, 

atmospheric pressure or air temperature [4-7]. Thus, one of 

the conventional solutions that can be considered in order to 

suppress this unsteady output power is to integrate PV panels 

with parallel-connected rechargeable batteries [8-11]. Instead 

of focusing on the load side, something needs to be 

considered on the side of panels/batteries. Since the weather 

conditions are the main reasons of the fluctuating generated 

current through the PV panels, it is necessary to predict the 

weather beforehand in order to prevent an unpredictable 

electric shortage in the future. In other words, the amount of 

energy that can be supplied from Energy Storage Units (ESU) 

to the load should be determined based on a forecasted 

generation so that the demand of the load will never exceed 

this limit. Although the use of the relatively small capacity 

size of ESU may seem to be insufficient in providing the 

necessary energy to the load, the most important aspect is to 

keep supplying energy at a certain amount during bad weather 

conditions by introducing a control algorithm that can cope 

with this matter. An ideal control algorithm should allow all 

the generated energy to be fully consumed by the load during 

sunny sky and also, the same ESU should be able to reserve 

certain amount energy as a preparation for the incoming 

unfavourable days that can happen anytime. Consequently, 

once the proposed control can successfully drive the system 

to fully utilize the stored energy in the batteries, the next step 

is to implement it in a scale-up structure. 

From our previous work [12], an energy storage system 

with 20 Ah of capacity was proposed to reduce the Number 

of Insufficient Days (NID) to a certain amount per year. 

Nonetheless, the maximum amount of energy that can be 

captured by this system was relatively small since the 

effective storage size to store the energy was inadequate as it 

was limited to 10 Ah. Besides, the daily amount of energy 

supplied to the load was inflexible since 10 Ah of energy was 

fixed regardless of any weather conditions. Chronologically, 

an appropriate storage that is sufficient to accumulate most 

energy generated during the day or at least the same amount 

as a yearly-average solar radiation needs to be further 

considered in order to improve the effectiveness of the entire 

system. On the other hand, in order to stabilize the daily 

supplied energy from the PV generator to the load, it is 

necessary to predict the amount of energy generation for the 

next day in advance [8]. For example, J. Han et al. has 

included an estimation of energy generation based on the 

weather forecast in their HEMS application; but since their 

systems are not equipped with batteries for energy storage, 

the focus is mainly on saving the electricity cost by 

monitoring the home energy use in real-time only [1]. By 

considering the forecasted generation as a part of the control 

procedure, any estimation steps that relate to the amount of 

stored energy in the batteries on the next day can be feasibly 

arranged beforehand and will be kept on standby mode. Thus, 

the main objective of this investigation is to implement a 

control method that executes next-day forecast of generation 

experimentally so that the flow of energy in the lithium-ion 

batteries during the charging/discharging process can be 

strictly monitored, hence, it can be fully utilized by the load 

for a small-scale BESS. 

 
II. CONTROL ALGORITHM 

 

Conventionally, the actual units of State-Of-Charge, SOC 

are indicated in percentage points (0 % = empty, 100 % = 

full). However, in order to make a clear understanding related 

to the charged/discharged amount of energy in the battery 

during the generation/consumption process, SOC is 
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expressed in ampere-hour (Ah) unit in this study and, it is 

redefined as storage level, E. Two types of SOC estimation 

method are used in this study; ampere-hour (Ah) counting and 

Open-Circuit Voltage (OCV). Ah counting method is the 

most common technique that uses the integral of load current 

to estimate SOC [13-14]. Nevertheless, since the use of Ah 

counting method may produce estimation errors which 

usually starts from the initial stage of the 

charging/discharging process, the empty, warning and full 

levels of batteries are determined based on the OCV method. 

Basically, the storage level, E is expressed as; 

 

𝐸 = 𝐸0 + 𝐺𝑀 − (𝐶𝑛𝑖𝑔ℎ𝑡 + 𝐶𝑑𝑎𝑦)                              

𝐸 = 𝐸0 + ∫ 𝐼𝑖𝑛
20

6
𝑑𝑡 − (∫ 𝐼𝑜𝑢𝑡𝑑𝑡 + ∫ 𝐼𝑜𝑢𝑡𝑑𝑡

𝑡2

12

𝑡1

23
)

 (1) 

 

where E0, GM, Cnight, Cday, Iin and Iout are initial storage level, 

measured generation, consumption during the night, 

consumption during the day, input (charging) current and 

output (discharging) current, respectively. In this study, the 

charging current is integrated between 6:00 to 20:00 using the 

basic Ah-counting method as interpreted in the equation 

above. Meanwhile, the batteries are discharged periodically 

twice in a day, during the midnight on the previous day (starts 

from 23:00) and midday (starts from 12:00). Here, since the 

main focus is emphasized more to the generator and storage 

components, a loading rheostat with a target current of 5 A is 

utilized, instead of a variable load for simplification. 

Therefore, a real-time monitoring of instantaneous energies 

consumed by multiple electrical appliances that require 

several complex algorithmic management, for instance, will 

not be discussed in this paper. The end time for the 

discharging process on the night, t1 and day, t2 are flexible 

and determined basically by the estimated consumption, C. 

By assuming that the stored energy in the batteries should be 

supplied to the load equally during the day and night, the Cnight 

and Cday in Equation (1) are segregated proportionally from 

the C where it can be shown as; 

 

𝐶𝑛𝑖𝑔ℎ𝑡 = 𝐶𝑑𝑎𝑦 =
𝐶

2
                             (2) 

 

At this point, the essential step is to decide the most optimized 

amount of C based on Grid Point Value (GPV)-based 

calculated generation, GC so that the remaining energy in the 

batteries can be fully utilized. The energies of the batteries 

must be discharged to the load so that all the incoming 

generated energy of GC can fill in the batteries. Firstly, the 

necessary energy to fully charge the batteries, EN, from initial 

E, E0, is defined as; 

 

𝐸𝑁 = 𝐸𝐹𝑈𝐿𝐿 − 𝐸0                                (3) 

 

Next, the target C is determined by the deduction of this EN 

from the GC as; 

 

𝐶 = 𝐺𝐶 − 𝐸𝑁                                    (4) 

 

Here, there are several justifications that need to be 

considered. In order to ensure the load to keep receiving an 

electric supply every day even during the stormy weather, the 

minimum consumption C as 10 Ah is underlined, which is 

one-third from full storage capacity of 30 Ah. Although the 

amount of this 10-Ah consumption is little, it is sufficient for 

the load to use it during an emergency situation. For instance, 

the energy can be well segregated for a use of a full-charged 

smartphone for a day (2.8 Ah), CFL bulb 15W for 8 hours 

(1.2 Ah) and table fan 30W for 20 hours (6 Ah) during 

summer. On the contrary, the maximum value of C is not 

restricted to any amount even though the effective storage 

capacity used here is 30 Ah. For instance, Figure 1 

demonstrates the mechanism of proposed control for a five-

day period.  

 

 
Figure 1: Simple process of determining C based on GC and E using 

proposed control. Consumption on the second and third day, C2 and C3, are 

corrected from 2 to 10 and from 0 to 10, respectively. Dotted black line, 
solid black line and grey line are the initial estimated C, final estimated C 

and E, respectively. 

 

The GC for 1st, 2nd, 3rd, 4th and 5th day are exemplified 

as 28, 2, 8, 22 and 30 Ah, respectively. Without any 

restriction, C2 and C3 are initially estimated as 2 and 0 Ah 

using Equations (3) and (4) but since the proposed control 

underlines the minimum C at 10 Ah, the final values of C2 

and C3 are both corrected to 10 Ah. On the other hand, the 

case of day 5 in Figure 1 is a simple example for the day with 

the estimated C with 30 Ah. In order to implement an 

experiment using this algorithm, the discharge current is 

manually adjusted using the loading rheostat to become 5 A. 

30 Ah of capacity will be expected to completely discharged 

within 6 hours. Thus, in this case, the end time for t1 and t2 in 

Equation (1) can be approximated as 23:00 + 3 hrs = 2:00 and 

12:00 + 3 hrs = 15:00, respectively. In other words, the 

batteries will be discharged two times, once from 23:00 to 

2:00 and another one from 12:00 to 15:00. Eventually, since 

the GC for day 5 is estimated as 30 Ah, the storage level of 

the batteries is expected to be fully recharged again at the end 

of that day. 

 

III. FORECAST OF PV OUTPUT 

  

A. Solar Radiation Model using Grid Point Value 

Numerical weather predictions of solar radiation are 

performed based on Grid Point Value (GPV) Meso-Scale 

Model (MSM) developed by Japan Meteorology Agency 

(JMA). The forecast region is covering entire Japan and the 

nearest islands from 22.4O N, 120O E to 47.6O N, 150O E with 

the minimum grid size of 5 km. The input location used here 

is Hitachi, Japan with the coordinates of 36.6O N, 140.625O 

E. The forecasted data includes several meteorological 

elements such as temperature, cloud cover, relative humidity, 

air pressure, etc. Nonetheless, since the solar radiation data is 

not provided from this GPV datasets, the prediction model for 

this solar radiation needs to be fabricated based on other 
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meteorological elements. Thus, our recently reported work on 

solar radiation model [7] will be further applied in this 

investigation as a part of the experimental procedure. From 

our previous work [7], the hourly horizontal solar radiation is 

defined as; 

 

𝑆𝑖 = 𝑆𝑐 cos 𝑧 ∙ 𝑓(𝐶) (5) 

 

where Sc and z are the clear-sky solar radiation on earth’s 

surface and solar zenith angle, respectively. By including five 

parameters, i.e. Relative Humidity (RH), Precipitation (P), 

low-level cloud cover (CL), middle-level cloud cover (CM) 

and high-level cloud cover (CH) in this formulation, the 

function f(C), in Equation (5) can be interpreted as; 

 

𝑓(𝐶) = 𝑒𝑥𝑝 [−
𝑎𝑅𝐻 + 𝑏𝑃 + 𝑐𝐶𝐿 + 𝑑𝐶𝑀 + 𝑒𝐶𝐻

𝐶0

] (6) 

 

where a, b, c, d and e are variables. One-day horizontal solar 

radiation is summed up from 6JST to 20JST which can be 

expressed by Equation (7). 

 

𝑆 = ∑ 𝑆𝑖

𝑛=20

𝑖=6

(𝑆𝑖 = ∑ 𝑆𝑖 ∙ 𝑔(𝑙)

𝑛=20

𝑖=6

) (7) 

 

for sunny (cloudy/rainy/snowy) days, where the liquid water 

path, L in gm−2 unit is introduced to the scheme for the case 

of cloudy, rainy and snowy days as the function 𝑔(𝑙) in 

Equation (8). 

 

𝑔(𝑙) = 𝑔0 ∙ 𝑒𝑥𝑝 [−
𝑓𝐶𝐻 ∙ 𝐿𝐻 + 𝑔𝐶𝑀 ∙ 𝐿𝑀 + ℎ𝐶𝐿 ∙ 𝐿𝐿

𝑔𝑖
] (8) 

 

whereby f, g, h are variables and the liquid water path is 

segregated into three levels; high (LH), middle (LM) and low 

(LL). Further explanation of this model is elaborated in [7]. 

Solar radiation, S is then converted to electrical form, which 

is energy, denoted by generation, G, through the PV panel 

[12]. Since G and S are directly correlated, a non-linear 

regression analysis is further considered using local data 

measured for 328 days at Ibaraki University, Japan from 

October 1, 2013 to September 30, 2014. As a result, a very 

good agreement was obtained between the estimated and 

measured values of G, as shown in Figure 2 with the statistical 

values of r, R2, RMSE and MBE are 0.98, 0.96, 2.30 Ah−1day−1 

and 0.11 Ah−1day−1, respectively. 

 

 
 

Figure 2: Good correlation was obtained between the estimated and 

measured values of generation from the data of Oct. 2013 to Sept. 2014. 

 

B. Determination of Weather 

Since the solar irradiance model used in this study is 

divided into two cases, i.e. sunny and rainy/cloudy/snowy 

days, it is essential to differentiate the weather precisely for a 

real-time application using the same meteorological elements 

produced by GPV datasets. Here, the weather is determined 

using a simple unique technique based on dew-point 

depression. The dew-point depression is the difference in 

degrees Celsius (or Kelvin) between the air temperature and 

dew-point temperature at a certain height in the atmosphere. 

The dew-point depression for each level can be expressed as; 

 

𝑇𝑑𝑑 = 𝑇 − 𝑇𝑑 (9) 

 

where T and Td are the air temperature and the dew-point 

temperature, respectively. A cloud base is almost always 

found in a layer where the dew-point depression, Tdd 

decreases. The Tdd usually decreases to between 0° and 6° 

when a cloud is formed. In other words, a cloud should not be 

associated with a layer where the Tdd decreases since a 

formation of the cloud occurs only when the decrease leads 

to a Tdd < 6° [15]. On the other hand, several meteorologists 

in Japan such as S. Daimon, have underlined an assumption 

that the cloud is completely formed when the Tdd drops to 3° 

or less and precipitation exists if the cloud thickness vertically 

expands until 2500 m. The hourly values of Tdd for the 

geopotential levels of 300 to 950 MB are mainly taken into 

account in his work [16]. Subsequently from this idea, in this 

paper, the rainy/cloudy/snowy day is determined using a 

number of Tdd ≤ 3°, denoted by NTdd, that occurs at least on 

two geopotential levels at each effective hour plus 1 extra 

geopotential level at any effective hour. The hourly-values of 

dew-point depressions for 300, 400, 500, 600, 700, 800, 900 

and 1000 MB geopotential levels are considered in this step. 

From Equation (9), since one-day solar radiation is summed 

up from the hourly solar radiation of 6:00, 7:00, 8:00, ....., 

20:00 (15 hours’ data); 

 

𝑁𝑇𝑑𝑑 ≥ (15 × 2) + 1 = 31 (10) 

 

Thus, the determination of sunny or bad weather days is 

distinguished by the NTdd value and hence, if the above-

mentioned condition in Equation (10) is fulfilled, the one-day 

solar radiation will be further estimated using Equations (7) 

and (8). 

 

IV. SIMULATION 

 

Before the experiment is implemented, the proposed 

control is first compared numerically with a method from our 

previous study [12]. This method is very simple since the C 

is set to be 10 Ah every day [8, 12]. The source data of solar 

radiation is extracted from Hitachi City Hall’s weather 

database [17] and the GC is estimated basically from Figure 

2. Figure 3 represents the number of insufficient days (NID) 

that occurred over a period of 4 years from 2011 to 2014. The 

NID is the day when the minimum target of C (10 Ah) cannot 

be attained [12]. Apparently, the proposed control with 

measured input data produced NID exactly the same as that 

of the method [12] with 0 days for all 4 years. The use of 

measured input data means the GC is ideal with zero errors. 

Surprisingly, although the GPV-based forecast data was 

applied into the control scheme, the NID remained the same 
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as method [12] and measure lines with 0 day for all years. On 

the contrary, the forecast differed to the measured curve in 

term of unused energy with an increment of 1.65 to 1.9 Ah of 

energy per day, as illustrated in Figure 4. Unused energy is 

defined as the extra amount of generated energy that cannot 

be stored by the batteries since the storage level has reached 

the full state [8]. As can be seen in Figure 4, method [12] 

wasted lots of energy with approximately 6460 to 6684 Ah 

(17.85 to 18.31 Ah) of unused energy per year (per day) due 

to the fixed C (10 Ah). Meanwhile, the measured curve 

reached the ideal value as no unused energy was ever 

recorded during these four years. On the other hand, another 

important element that needs to be considered is a yearly-

average consumption, Cavg. From Figure 5, it can be 

suggested that 30 Ah of battery capacity was sufficient to 

capture most energies through the year in the case of Hitachi 

as the amount of yearly-average G was in the range of 27.7 

Ah to 28.3 Ah. Furthermore, the measured curve succeeded 

to supply enough energy to the load where the amount of C 

equals to almost 100% of the average G in all four years. 

Impressively, when the GPV-forecast data was executed in 

the scheme, the decline trend was not really significant as it 

dropped to an acceptable level with a marginal decrease rate 

of 1.89 Ah at most in 2014 from the measured curve. In other 

words, it can be said that the proposed method applied with 

the GPV datasets succeeded to utilize energy that was 

equivalent to approximately 93.2-94.2% of the average G for 

2011-2014. Overall, it can be also suggested that if the 

precision of GC can be well improved in the future, the 

expected values of Cavg will nearly approach to the ideal line 

of 0. Though good results were obtained through numerical 

analysis, a complete experimented system must be 

constructed in order to evaluate the effectiveness of the 

control method and its sensitivity in term of safety when it is 

integrated with vital equipment like batteries. 
 

V. EXPERIMENTAL SETUP 

 

The experimental equipment of photovoltaic (PV) system 

structured in this study is represented as Figure 6. This 

structure basically consists of PV panels, lithium-ion 

batteries, RX621 microcontroller, MOSFET-based switches, 

Power Conditioning Unit (PCU) and load. Nevertheless, this 

is not a full stand-alone type of PV system since external 

power source from the grid is necessary to power up the small 

devices such as microcontroller, switches and Xbee 802.15.4 

modules. Chronologically, when the batteries are fully 

charged by the input current from the PV panels, the bypass 

switch will be turned on soon after the input switch is turned 

off. Therefore, the input current is bypassed into an electronic 

DC load, instead of continuously flowing into the batteries 

and the unused energy will start to be counted until the bypass 

switch is turned off. Additionally, since it is difficult to 

connect the microcontroller directly to the internet, the value 

of GC that is estimated through the monitoring PC needs to be 

transmitted to the microcontroller, periodically. Thus, two 

units of the external wireless data transmitter of Xbee are 

introduced. The monitoring PC with a Xbee in Figure 6 is 

placed separately from the main system by several meters in 

distance. This PC is essential for energy visualization and 

system’s data accumulation. 

 

 
 

Figure 6: Experimental structure for PV system used in this study. 
 

Five PV panels (SHARP ND-153AU) are series-integrated 

to the batteries where each panel is rated to supply the 

maximum values of output power, power voltage and power 

 

Figure 3: The simulation result of number of insufficient days (NID) for 
2011-2014. 

 

Figure 4: The simulation result of unused energy for the year of 2011-

2014. 

 

Figure 5: The simulation result of yearly-average energy consumption 
for the year of 2011 to 2014. 
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current of 153 W, 20.3 V and 7.54 A, respectively. These PV 

panels are tilted towards the south at approximately 36.6O in 

order to level the seasonal variation of solar irradiance 

throughout the year [12]. 30 pieces of lithium-ion batteries 

(WB-LPY40AHA) with a maximum capacity of 40 Ah are 

connected in series to form a 100 V DC power supply. The 

nominal voltage of each battery is standardized at 3.3 V and 

maximum charge/discharge current can be driven up to 3 CA. 

Figure 7 represents the discharge test curves for a single 

battery of WB-LPY40AHA at different current values from 8 

A up to 20 A in 4 A intervals. Conventionally, the battery is 

operated in the range of 4.0 V to 2.8 V but in Figure 7, the 

battery is discharged from 3.5 V to 3.0 V. From these 4 

curves, a non-load condition or known as open-circuit voltage 

(OCV) curve was derived by eliminating a voltage drop 

caused by battery’s internal resistance during discharging 

from the method proposed by Tomokazu et al in [18]. By the 

time the voltage drops to 3.05 V, the OCV line reaches the 

discharge capacity at approximately 38 Ah. Thus, in order to 

prevent the battery from over-discharge which may be caused 

by unpredictable control errors, the capacity of 38 Ah is 

decided as the new battery’s maximum capacity, instead of 

40 Ah. Hence, all 30 pieces of batteries will be operated in 

the range of 3.05 V to 3.4 V. Here, the full battery level (E= 

38.0 Ah) is decided when the total battery voltage for these 

30 pieces of series-connected batteries reaches 102 V by 

considering that it is more accurate using the OCV method 

rather than Ah-counting. 

 

 
 

Figure 7: Discharge curves at different current values. 
 

VI. EXPERIMENTAL SETUP 

 

To begin, the daily measured and one-day total calculated 

horizontal solar irradiances for a month (Sept. 2015) is 

represented in Figure 8. The measured solar irradiance is 

collected from Hitachi City Hall’s database [17] and the 

calculated solar irradiance is estimated using the calculation 

model proposed in [7] based on parameterization of relative 

humidity, precipitation, cloud covers and liquid water path. 

Since the JMA’s web server [20] was inaccessible on Sept. 1, 

the GPV-MSM datasets failed to be downloaded from this 

device. Thus, no positive value was estimated in this day and 

this data will be excluded from the statistical evaluation. The 

calculated curve exhibited a very good agreement with the 

measured solar irradiance as relatively high values of the 

correlation coefficient, r=0.88 and coefficient of 

determination, R2 = 0.74 was obtained. Furthermore, the 

calculated values seemed to be slightly overestimated with a 

Mean Bias Error, (MBE) of 358.3 Wm−2day−1 and a value of 

Root Mean Square Error (RMSE) was considered low with 

900 Wm−2day−1. Ordinarily, this calculated horizontal solar 

irradiance was then converted to the G and this G value was 

transmitted to RX621. Figure 9 exhibits the measured and 

calculated generations derived from the horizontal solar 

irradiance in Figure 2 for the whole month of September 

2015. From this figure, the calculated line is seemed to be 

overestimated than the measured line with the RMSE and 

MBE of 2016.7 and 1361.1 Wm−2day−1, respectively, but the 

r value remains the same at 0.88. Surprisingly, almost every 

day except on 1st, 15th, 21st, 22nd and 26th of Sept., most 

generated energies through the PV panels were fully utilized 

by the system whether it was supplied to the load or stored to 

the battery bank. The unused energy for these days is 4.5, 

1.36, 1.91, 0.3 and 1.38 Ah, respectively.  

 

 
 

Figure 8: The daily measured and one-day total calculated horizontal solar 

irradiances for Sept. 1 to 30, 2015 based on [7] forecasting model in 
Hitachi coordinates. 

 

 
 

Figure 9: The measured and calculated generations for Sept. 1 to 30, 2015 

based on Equation (5). 

 

On the other side, the storage level (SOC or E), calculated 

generation (FO), battery voltage (Vol), charging current (I+), 

measured generation (G), discharging current (I-) and 

consumption (C) can be viewed in real-time through an LCD 

display as shown in Figure 10 or by accessing the logged data 

in monitoring PC. Apparently, real-time energy visualization 

is very important for the user to monitor the instantaneous 

charging/discharging operation of the batteries so that any 

trouble that might happen during the effective hours can be 

easily noticed for better prevention. Additionally, Figure 11 

presents experimental results of energy control implemented 

on 1st to 30th in September 2015, respectively. By referring to 
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the line of storage level, E in this figure, the batteries reached 

the highest state of storage level on seven days (Sept. 1, 2, 15, 

21, 22, 28 and 30). It is obvious that the RX621 

microcontroller worked very well with the system as the full 

level of batteries was successfully controlled to exact values 

of 38 Ah. Also, no signs of overcharging of the batteries were 

observed on these days. As mentioned before, since the GC 

value for Sept. 1 was not correctly estimated by the 

monitoring PC before 23:00 on Aug. 31 due to the 

unavailability of GPV-MSM datasets, the RX621 

microcontroller automatically commanded the batteries to be 

discharged at C=10 Ah where Cnight=Cday=5 Ah. Moreover, 

Hitachi experienced very good weather conditions during this 

month as the E line did not drop lower than 10 Ah in all days 

except Sept. 11 and no NID was ever counted here. The 

highest C was recorded on Sept. 22 with 37.2 Ah. On the 

contrary, there were 9 days in this month that performed 10 

Ah of C which was commonly caused by the unfavourable 

weather conditions. This value is the minimum must-used 

amount of C that is explicitly underlined through this control 

scheme in order to ensure that the energy still can be supplied 

to the load although the weather is unstable. On the other 

hand, the Cavg for Sept. 2015 is considerably high with 

approximately 21.9 Ah, which suggests that the proposed 

control succeeded in utilizing energy corresponded to 98.6% 

of the average G of 22.2 Ah. 

 

 
 

Figure 10: LCD display that visualizes several system and energy 
information. 

 

 
 

Figure 11: Result of energy control on September 1-30, 2015. Solid, dashed 

and dash-dotted lines are the storage level, E, calculated generation, GC and 

consumption, C, respectively. No signs of overcharging of the batteries 

were observed on Sept. 1, 2, 15, 21, 22, 28 and 30 as the storage level did 
not exceed its highest state of 38 Ah. 

 

VII. CONCLUSION 

 

In this paper, an energy control that considers the next-day 

forecast of generation for the purpose of fully utilizing the 

stored energy in batteries has been proposed. The main target 

is to implement this forecast data experimentally so that the 

flow of energy in the lithium-ion batteries during the 

charging/discharging process can be strictly monitored, 

hence, the energy can be fully utilized by the load. The 

experimental results show a very good agreement with the 

simulated results (r=0.88). Furthermore, the implemented 

system worked very well without any problem and it 

succeeded in controlling and preventing the batteries from 

being over-charge or over-discharge. Thus, it is desirable if 

the entire proposed system might become a trigger for other 

researchers to structure more comprehensive Energy 

Management System (EMS) applications that are more 

reliable, efficient and sophisticated in the future. 
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