

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 10 No. 4 October – December 2018 1

Diffie-Hellman Key Exchange Modification using

Blowfish Algorithm to Prevent Logjam Attack

Aldo Adrian, Maya Cendana, Silvester Dian Handy Permana
Informatics Engineering Study Program, Faculty of Creative Industry and Telematics, Trilogi University

Aldoadrian999@gmail.com

Abstract—Diffie-Hellman Key Exchange promises secure

connections using modulus computation. However, there is a

flaw in its implementation which makes it vulnerable,

especially to an attack called Logjam Attack. Therefore, a new

key exchange algorithm was developed to prevent this attack.

The proposed algorithm is the result of modified Diffie-

Hellman Key Exchange using another algorithm, namely the

Blowfish algorithm. Modifications that occur in the Diffie-

Hellman Key Exchange are at the modulus computation, which

were replaced by customized Blowfish encryption

algorithm. The encryption process of the Blowfish algorithm

used in the proposed algorithm used 136 XOR operations every

64-bits messages, which were about to be encrypted. The

Diffie-Hellman modified algorithm was implemented into

programs using Java programing language. The modified

algorithm program has less memory usage and execution time

than Diffie-Hellman Key Exchange program, which was

tested. With the replacement of modulus computations with

Blowfish encryption at the main process could make the

modification algorithm immune to Logjam Attack. Therefore,

the use of the modification algorithm is more secured than the

one without modification.

Index Terms—Blowfish, Diffie-Hellman Key Exchange, Java,

Logjam Attack, SSL, TLS

I. INTRODUCTION

The Diffie-Hellman Key Exchange has the ability to provide

secure connection by using modulus (mod) operation [1]. In

this case, it can provide confidential value known only to

two authorized parties but unnoticed by other

parties. However, it has a weakness in its implementation as

it has a misuse value of Prime, configured with a relatively

similar value [2]. The assault that is able to hack the key

exchange using its flaw was put forward by Adrian et

al. (2015) is called Logjam Attack [2]. According to [2],

there were 78,000 HTTPS servers vulnerable to Logjam

Attack. The existence of this attack has affected the security

of using the Diffie-Hellman Key Exchange. However, there

have been 123,754 out of 137,992 most popular sites still

using Diffie-Hellman Key Exchange as its connection

security algorithm [3].

In relation to the mentioned issues, this study aims to

modify the Diffie-Hellman Key Exchange for better

connection security. The modification of this key exchange

is done by utilizing the Diffie-Hellman Key Exchange with

an algorithm called the Blowfish algorithm. It is believed

that this modification is able to prevent the success of

Logjam Attack.

The Blowfish algorithm itself is a symmetric

cryptography algorithm that uses only one key for both

encryption and decryption process. The advantage of this

algorithm is that the encryption process can provide reliable

security; requires relatively small process memory and

utilises short execution time [4]. Additionally, the Blowfish

algorithm is safe to be used [5][6], considering that there has

been no effective attack known to hack this algorithm,

The modification algorithm uses the Diffie-Hellman Key

Exchange as the cornerstone of its development. The

modification in Diffie-Hellman Key Exchange occurs at the

modulus computation process, which is replaced by the

encryption process of Blowfish algorithm. Therefore, the

modified Diffie-Hellman Key Exchange using Blowfish

algorithm is invulnerable to Logjam Attack, so it is more

secure to use.

II. DIFFIE-HELLMAN KEY EXCHANGE AND ITS FLAW

Diffie-Hellman Key Exchange is a key exchange/lock

management protocol that can provide two different parties

to establish a connection in an unsafe network [7]. The

algorithm was originally introduced in 1976 by Whitfield

Diffie and Martin Hellman, and was separately constructed

by Malcolm Williamson [1].

This key exchange algorithm requires six parameters,

which are the Prime (p), Generator (g), private key of party

one (a), private key of party two (b), public key of party one

(A), and public key of party two (B). The mechanism of the

Diffie-Hellman algorithm is shown in Figure 1.

Figure 1: Diffie-Hellman Key Exchange

(Source: [8])

In Figure 1, there are two parties that establish a

connection, called Alice and Bob based on the following

steps:

1. Alice and Bob agreed on the two values: p and g. In

the case of Client-Server, the Server determines both

values. According to Figure 1, the Server is Alice.

2. Each party creates a private key. Alice has the private

key a, whereas Bob has the private key b.

3. Both parties calculate the public key. Alice computes

A, while Bob computes B.

g,

p

a, g, p

A = ga mod p

K = Ba mod p

b

B = gb mod p

K = Ab mod p

Alice Bob

Journal of Telecommunication, Electronic and Computer Engineering

2 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 10 No. 4 October – December 2018

4. Next, is the public key exchange phase. Alice sends

her public key (A) to Bob, while Bob sends his B to

Alice.

5. After each party gets the public key from another

party, each party then calculate the value of K as

shown in Figure 1. The value of K is the key that only

Alice and Bob can know, while the other party cannot

get the K value even if he/she is capable to receive all

values that pass through the connection (p, g, A, and

B). Therefore, using the Diffie-Hellman Key

Exchange, Alice and Bob (Client-Server) can

communicate securely afterwards.

The main computation of the Diffie-Hellman Key

Exchange can be represented by this single formula:

y = gx mod p (1)

where: y = Public key

 g = Generator

 x = Parties’ private key (a or b, or ab)

 p = Prime number

However, the study of Adrian et al. (2015) [2] and

Revuelto et al. (2016) [9] concluded that there is a gap in

Prime value (p) usage. In the implementation of Diffie-

Hellman Key Exchange, the p value is made relatively

similar. This condition has been applied to facilitate the

calculation operation process so that it can run faster

[2]. Yet, the similarity of p value creates a crucial security

gap that makes Diffie-Hellman Key Exchange vulnerable to

threats, especially with discrete logarithmic method.

Formula (1) could be reversed using discrete logarithmic

to earn the value of x. The formula is as follows:

x = dloga,p y (2)

However, formula (2) is difficult to compute and requires

a long period of time to complete. The difficulty and process

time are also increased as the value of variables increases.

Researches done by Adrian et al. [2] and Revuelto et al. [9]

also indicated the importance of the length of bits used

during the establishment of the connection. According to

Adrian et al [2], the Diffie-Hellman Key Exchange with the

length of 512-bits, 768-bits and 1024-bits are no longer safe.

Adrian et al. [2] then proposed an attack with Active Man

in the Middle (AMitM) method called Logjam Attack. This

particular attack uses discrete logarithmic method (formula

(2)) to cripple the Diffie-Hellman Key Exchange’s main

formula (1). Not only it is capable to attack Diffie-Hellman

Key Exchange in general, Logjam Attack is also capable of

decreasing the length of bits used to build the connection to

fasten formula (2)’s hacking process (downgrade method).

In the case of Logjam Attack, this attack can decrease the

number of bits from 768-bits and 1024-bits into 512-bits

length. The number of bits is the length of p value used

during the public key hacking process. The shorter the p

value, the faster the Precomputation process in Logjam

Attack is completed. Furthermore, the existence of a

database in the Precomputation stage that stores the

previous successful computations results also helps the

operation in Individual Log to run faster, thus the security of

the Diffie-Hellman Key Exchange can be hacked more

easily and rapidly.

III. BLOWFISH ALGORITHM

Blowfish algorithm is a symmetric cryptography

algorithm proposed by Bruce Schneier in 1994. Blowfish

was defeated by the Rijndael algorithm to become a

standard algorithm, but with its reliability and speed [4], this

algorithm is the fastest algorithm used within the global

scale [10].

Blowfish algorithm uses blocks of 32-bits length as the

requirement of key generation process, during the process of

encryption and decryption and requires the block that is

equal to 64-bits. The key or data, which is about to be

processed should have a minimal 32-bits of length or

multiples. If the number of bit is lesser than the multiple of

32, there is a step called padding that fills the empty bits in

the block until the block is full (32-bits per block) and

qualified to be processed [11].

In the key generation process, it requires several

variables, namely 18 blocks of variable P and four S

variables, each variable S holds 256 blocks of different

values. There are four variables in this process: P as

temporary key series, S as series of bits for the substitution

of the data series, K as the ideal key to generates variable,

and P’ as the ideal key to be used in the encryption process

later [11].

The key generation process requires a raw key sequence

of 32-bits to 448-bits. The key sequence is divided into

several blocks of 32-bits and given the name of variable K.

Then, the variable K is operated by XOR operation

(Exclusive OR logic operator) with P variables. Each

process starts from the first K (K1) and the first P (P1) to

produce the first P' value (P'1). Next, it is continued with

the second XOR K (K2) with the second P (P2) operation,

which results in the P'2, and so on until P18. If P has not

touched the number of 18, but the K variable is running out,

then the variable K is reset from the K1 and the XOR

operation is performed with the next P variable. The result

of this process is the P' variable: This is the key variable that

is used in the encryption process later [11].

The encryption process in Figure 2 is as follows:

1. The data are divided into blocks. Each block holds 62-

bits length of data.

2. Each block has its own process path. The first block is

divided into two variables, xL and xR, each with the

length of 32-bits.

3. Iteration starts from 1 to 16, in which each iteration has

the following steps:

a. xL is operated by XOR with P' (current -th

iteration) is obtained from the key generation

process.

b. The product of XOR is then processed by the F

Function, as shown in Figure 3. The steps in the F

Function are as follows:

1) The XOR is the result of xL with P' (current–

th iteration) is divided into four 8-bits chunks:

Ck1, Ck2, Ck3, and Ck4.

2) The value held by Ck1 is used to refer to the

number index on S1 variable, as well as Ck2

to S2 variable, Ck3 to S3, and Ck4 to S4.

Diffie-Hellman Key Exchange Modification using Blowfish Algorithm to Prevent Logjam Attack

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 10 No. 4 October – December 2018 3

3) After referring to the corresponding S index,

the S1 to S4 variables each returns a block of

32-bits data.

4) The S1 and S2 are then computed by modulus

232 (equivalent to XOR operation).

5) The result is then operated with S3 using

XOR, then the XOR result is computed with

S4 using modulus 232. As a result, a block of

data with 32-bits length is the final product

from the F Function.

c. The result of the F Function is then operated with

xR using the XOR operation.

d. Next, the values of xL and xR are exchanged.

Now, xL = xR ,while xR = xL.

4. The Feistel Network iteration stops at the 16th

iteration. The value of xL and xR are no longer be

operated by the F Function nor exchange their value to

one another. Instead, the xL is plainly operated with

variable P'17, while xR is operated with P'18, both

using the XOR operation.

5. The final step of this process is to reunite xL with xR

back as one block of 64-bits. Thus, the first block of

message has been encrypted. Step 1 to 5 is done until

all 64-bits block of message are successfully

encrypted.

6. All 64-bit blocks are then reunited into a full length of

message right after they are all passed the encryption

process. The encryption process is completed.

Figure 2: Encryption Process of Blowfish Algorithm

(Source: [11])

Figure 3: F Function

(Source: [5])

A prominent difference between the encryption and

the decryption process lies in the use of P' variable

sequence. In the decryption process, P' is processed in a

reverse order (starting from P'18 to P'1). In addition to these

differences, the process of encryption and decryption also is

distinguished by whether there is a key generation process

or not. In the encryption process, a new key generation

process is required, while the decryption process is only

needed to call the key used previously in the encryption

process.

IV. PROPOSED ALGORITHM

The modified Diffie-Hellman Key Exchange using the

Blowfish algorithm can be seen in Figure 4.

Figure 4: Modified Algorithm

The process described in Figure 4 can be explained as

follows:

1. The Server and the Client agree with the

Message value.

2. Each party generates a private key. The

Server generates the Private-key Server (PS), while the

Client generates the Private-key Client (PC).

3. Both sides then encrypt the Message with the Blowfish

encryption algorithm using their private key. The

encryption results are the Encrypted Message-Server

(EMessageS) for Server and the Encrypted Message-

Client (EMessageC) for Client.

4. The Server and the Client exchange their encrypted

values (EMessageS and EMessageC).

5. The Client encrypts EMessageS with PC, while

the Server encrypts EMessageC with PS. Both

encryption processes produce the same result known

as KEY, which is the main product.

In the modification algorithm, Blowfish algorithm’s

encryption process shown in Figure 4 undergoes several

changes. The changes in Blowfish algorithm encryption

process used in the modification algorithm is shown in

Figure 5.

The steps in Figure 5 can be summarized as follows:

1. This iteration repeats as much as i = total chunk/2:

a. Chunk (block/smallest part of Message divided

by bit block) i * 2 called L, while (i * 2) + 1

called R.

b. The following iteration repeats as much as n = 15

starting from n = 0:

Message Message, PS

EMessageS =

E(Message, PS)

KEY =

E(EMessageC, PS)

PC

EMessageC =

E(Message, PC)

KEY =

E(EMessageS, PC)

Server Client

Journal of Telecommunication, Electronic and Computer Engineering

4 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 10 No. 4 October – December 2018

1) P(n) is processed using the F Function

(Figure 3).

2) L is the result of the F Function from P(n-

th), which is operated by the XOR with the

previous L.

3) P(n) is processed using the R Function

(Figure 6).

4) R is the result of the R Function from P(n-

th), which is operated by the XOR with the

previous R.

5) L and R exchange values.

c. L is operated by the XOR with P16 after P16 is

operated by the F Function.

d. R operated by the XOR with P17 after P17 is

operated by the R Function.

e. L is now EL (Encrypted L), the encrypted result

for the i-th chunk * 2 of the message.

f. R is now ER (Encrypted R), the encrypted result

for chunk to-(i * 2) + 1 of message.

Figure 5: Encryption Algorithm

2. All encrypted chunks are then reassembled together

as Result, the main output of the Encryption process.

R Function (Reverse-F Function) is the inverted form

of the F Function (Figure 3). The R function shown in

Figure 6 has a slight difference with the F Function, which

lies in the order usage of S variable. In the F Function, the

S variable is divided into four variables: S0, S1, S2, and S3

that are used sequentially. However, in R Function, S

variables are used in reverse order, beginning from S3, S2,

S1, until S0. R Function Algorithm can be seen in Figure 6.

Figure 6: R Function

V. IMPLEMENTATION AND VALIDATION

The modified Diffie-Hellman Key Exchange using

Blowfish algorithm was then implemented into the form of

the program. The program was divided into two main

programs, the program for the Client and the Server side.

The programming language used in the Implementation

stage is Java. Implementation of this modification algorithm

was made using Xcode application with TCP/IP protocol

approach (Transmission Control Protocol/Internet

Protocol–communication protocol used by HTTPS). This

protocol used socket/port number as the Client and the

Server’s intermediary to exchange messages and establish a

secure connection. Both interface of the programs at their

running stage can be seen in Figure 7 and 8.

Figure 7: Server Program

Figure 8: Client Program

After the modified Diffie-Hellman Key Exchange was

successfully implemented, the next step is Validation. This

Validation stage aims to find the reliability of modification

Diffie-Hellman Key Exchange Modification using Blowfish Algorithm to Prevent Logjam Attack

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 10 No. 4 October – December 2018 5

algorithm to the basic security aspects of a special key

exchange algorithm, namely the aspect of Confidentiality

(secrecy). According to Pfleeger et al. (2015) [12], the

aspect of secrecy aims to ensure that secret messages remain

secret. This means that no other party knows the messages

other than the authorities. In this case, the modified

algorithm program must be able to keep confidential

variables unsniffed. Those variables are PS, PC, and KEY.

Scenario in the Validation stage are as follows:

1. The Client and the Server computers communicate

wirelessly with the connections provided by the

Connection Provider. Both parties are connected in

socket/port number 9000.

2. The Sniffer computer is also connected to the

Connection Provider. The Sniffer party then captures

any data packet that passes within the connection,

especially socket number 9000.

3. The data packets captured by the Sniffer are then

reviewed to determine whether the confidential

variables are successfully sniffed or not.

 On the Sniffer side, the application used in the Validation

stage is Wireshark version 2.2.1. Wireshark was set to run in

Monitor Mode that is capable to capture every data packets

from a specific interface. The Interface used to be sniffed is

Wi-Fi interface with TCP protocol filter.

The Validation scenario have been done once as a trial.

The results of the trial are shown in Figure 7 (Server side)

and Figure 8 (Client side). From the results of the trial,

Wireshark on Sniffer managed to capture as many as 26

packages of data packet. The captured data packets consist

of:

1. The [SYN] package contains sync between Client

and Server based on port/socket. One package has been

successfully sniffed.

2. The [SYN, ACK] package contains the connection

approval based on the port/socket. One package has

been successfully sniffed.

3. The [ACK] package contains confirmation that the

submitted data packet has been received by the

intended party. Four packages have been successfully

sniffed.

4. The [PSH, ACK] package contains messages to be

processed by Client and Server. Seven packages have

been successfully sniffed.

5. Other packages consist of confirmations and/or

transactions packages that do not contain important

messages. Eleven packages have been successfully

sniffed.

Figure 9: Message sniffed

In Figure 9, a row of hexadecimal values (left highlight) is

exactly at the same line as the Message variable found in

Figure 7 and 8. This specific series refer to the Message

variables, which was exchanged during the connection

building process.

The hexadecimal rows in Figure 10 are identical to those

shown in Figure 7 and 8. The hexadecimal rows are the

contents of the EMessageC variable, which is the result

of Message encryption performed by the Client using the PC

variable.

Figure 11 shows a hexadecimal row that is similar to

Figure 7 and 8, which is the value of EMessageS

variable. This variable is the result of Message encryption

performed by the Server using its private key known as PS.

Figure 10: EMessageC sniffed

After analyzing all the data packets that had been stacked,

there are messages/variables used in the modification

algorithm process that have been successfully sniffed.

Messages that have been successfully sniffed by Sniffer are:

Message (Figure9), EMessageC (Figure 10), and

EMessageS (Figure 11). Those three messages were found

in each of the three different packets, while the remaining

four [PSH, ACK] data packets did not contain any important

messages used during the connection building process.

Figure 11: EMessageS sniffed

In addition to the trial in Figure 7 and 8, the Validation

scenario performed 39 more times. From a total 40

iterations, 40 data were obtained using four different

message bit lengths: 1,024, 2,048, 3,072, and 4,096 bits. The

reason of bit length variety is in accordance to the

suggestion of Adrian et al (2015) [2] to use messages with

the length of 1024-bits or higher, while the other bit lengths

were taken from multiple value of 1,024.

The analysis result of the 40 collected data states that

Journal of Telecommunication, Electronic and Computer Engineering

6 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 10 No. 4 October – December 2018

there are no confidential variables successfully

sniffed. Results from the existing data analysis shown that

Sniffer can only sniffed Message, EMessageC, and

EMessageS variables, but not PC, PS, and KEY. From the

collected data, it can be concluded that the modified Diffie-

Hellman Key Exchange using Blowfish algorithm has

reliability in the aspect of Confidentiality, which is the

major aspect for connection security algorithm. Therefore,

the modified algorithm has been proved as reliable and valid

to build a secure connection.

VI. PROPOSED ALGORITHM’S PERFORMANCE

The security issue which Diffie-Hellman Key Exchange

has lies in its real-world implementation that uses relatively

similar value of Prime (p) [2][9]. The problem of using

relatively similar p value can affect the process of

Precomputation in Logjam Attack to run faster. As the

process of Precomputation becomes faster, the Individual

Log stage in Logjam Attack can also be completed a lot

quicker [2]. This issue makes the data that are transported

within the developed connection in an unsecured state.

Hence, Diffie-Hellman Key Exchange is no longer safe to

be used.

On the other hand, the modified Diffie-Hellman Key

Exchange using Blowfish algorithm—theoretically is

against Logjam Attack. The value of p in the Diffie-Hellman

Key Exchange have been replaced with a new variable

called Message, which does not have to be a prime number

and must be built randomly. The Message variable makes

Precomputation stage in Logjam Attack becomes useless.

This is because the Precomputation stage has sub-stages

devoted to handle a prime value to generate a factorial

matrix. On the other hand, the modified algorithm has no

rules to generate and use a prime value for the Message

variable so that the Precomputation stage does not have any

effect even if it was working properly (gives result, but the

result is useless due to its irrelevance).

In addition to the Precomputation stage, the Individual

Log stage of Logjam Attack was also useless to attack the

modified algorithm. Essentially, the Individual Log stage

was specially designed to find the value of x (private key)

from formula (1) using discrete logarithmic shown by the

formula (2). However, since the modified algorithm was no

longer using formula (1) but instead the Feistel Network

algorithm (Figure 5) that uses XOR operations only, the

computation process in Individual Log stage is irrelevant.

While Logjam Attack’s Individual Log stage uses formula

(2), the modified algorithm repeatedly uses this formula

instead:

EL = (((L XOR F(P0)) XOR R(P1)) ... XOR F(P16))
ER = (((R XOR R(P0)) XOR F(P1)) ... XOR R(P16))

EM = EL, ER
(3)

where: L = Left block with length of 32-bits produced by

dividing 64-bits block of Message

R = Right block with length of 32-bits produced by

dividing 64-bits block of Message

EL = Encrypted L

 ER = Encrypted R

 P-th = Private key block with 32-bits length

 F() = F Function (Figure 3)

 R() = Reverse F Function (Figure 6)

 EM = Encrypted Message with 32-bits length

An XOR operation can indeed be represented in modulus

equation with the same output as XOR’s. Thus, XOR

operation was also vulnerable to logarithmic computation

that Individual Log can handle. However, the Individual Log

compute logarithmic computation in one single time only, to

determine the value of x in formula (1) using formula (2)

without any additional iterations. Meanwhile, the XOR

operations in the modification algorithm were not only

performed one time but 136 times in every 64-bits message

which is about to be processed (Figure 5, Figure 3, and

Figure 6 combined). Formula (2) can only handle one single

computation of modulus (modulo 232 = this particular XOR

case) but incapable to handle as many as 136 computations

multiplied by every 64-bits of Message. This modification

does provide a fact that the logarithmic computation in

Individual Log stage is incapable to hack Feistel

Network algorithm used by the modified algorithm.

Therefore, Logjam Attack is irrelevant as an attack

method to hack the modified algorithm. Furthermore,

the absence of patterns in the variables used while building a

connection also results in higher difficultly to be hacked. It

can also be concluded that the modified Diffie-Hellman Key

Exchange using Blowfish algorithm can minimize the flaw

of Diffie-Hellman Key Exchange prior to the modification.

Apart from its immunity to Logjam Attack, the modified

algorithm has been found to be more advanced than the

basic Diffie-Hellman Key Exchange’s performance. As

shown in Figure 12, the performance of the modified

algorithm and the original one (Diffie-Hellman Key

Exchange) in the memory usage has quite a large range of

difference. At its maximum point (4096-bit message length),

the memory usage performed by the modified algorithm

reached 344,522.4 B or 344.5 KB only, while the original

Diffie-Hellman Key Exchange could reach 363.828.4 B or

363.8 KB. The range of memory usage in both algorithms is

19.3 KB. This fact suggests that the modified algorithm

requires less memory usage than the algorithm before it was

modified.

Figure 12: Memory Usage Comparison

The 40 data received from a series of trials are also used

to analyze the execution time speed comparison as shown in

Figure 13. The execution times for both modified and

original algorithms increase as the length of bit message

increases, but the execution time of the original algorithm

increases greatly than the modified algorithm’s. The original

Diffie-Hellman Key Exchange Modification using Blowfish Algorithm to Prevent Logjam Attack

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 10 No. 4 October – December 2018 7

algorithm took an average time of 126.957 seconds or 2

minutes 6.956 seconds for messages with 4096-bit length,

while the modified algorithm was consistent with the

processing time under 1 second, specifically, 0.7 second for

the same message length. This comparison can provide a

fact that the modified Diffie-Hellman Key Exchange using

Blowfish algorithm has faster processing time than the

original algorithm.

Figure 13: Execution Time Comparison

VII. CONCLUSION AND SUGGESTION

The conclusions of this study are as follows:

1. The Modified Diffie-Hellman Key Exchange using

Blowfish algorithm was done by replacing the modulus

computation process with the Feistel

Network algorithm from the Blowfish

algorithm. Substitution of this process has successfully

provided an immunity from the Logjam Attack. This

was because the Precomputation and Individual Log

stages in Logjam Attack were incapable to hack the

XOR operations performed as much as 136 times per

64-bits of processed messages.

2. The modified Diffie-Hellman Key Diffie using the

Blowfish algorithm was successfully fulfilled the

secrecy aspect of Confidentiality. This fact was proven

by secret variables used during the connection building

that cannot be sniffed by Sniffer (attacker), implying

that it is secure for general use.

 From the research that has been discussed, the

researchers suggest several things, which are:

1. The part of Blowfish algorithm used in the modified

Diffie-Hellman Key Exchange was only in its

encryption process. The decryption process in the

Blowfish algorithm was not used in any process within

the modified algorithm. Therefore, the decryption

process can be incorporated into the modified

algorithm so that the security level of the built

connection is—perhaps—even higher. It is a

recommendation to change a few steps in the

decryption process to match the purpose of building

the secure connection.

2. In the modified Diffie-Hellman Key Exchange using

the Blowfish algorithm implementation program, there

were S variables (S0, S1, S2, and S3), which are bunch

of libraries. These variables are recommended not to

be used anymore. These S variables can be replaced

with other variables that are randomly generated and

always different in each process, during the process of

building new connections. This way of modification

could increase the difficulty of hacking because the

modification algorithm will no longer use static

libraries but fully dynamic variables.

REFERENCES

[1] Boni, S., Bhatt, J., & Bhat, S. 2015. “International Journal of

Computer Applications”, Improving The Diffie-Hellman Key

Exchange Algorithm by Proposing the Multiplicative Key Exchange
Algorithm. Vol 130 (15). 7-10.

[2] Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M.,

Halderman, J. A., Heninger, N., Springall, D., Thome, E., Valenta, L.,
VanderSloot, B., Wustrow, E., Zanella-Béguelin, S., & Zimmermann,

P. 2015. “CCS '15 Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security”, Imperfect
Forward Secrecy: How Diffie-Hellman Fails In Practice. pp 5-17.

[3] Trustworthy Internet Movement. SSL Pulse. Accessed date: 22

February 2017. https://trustworthyinternet.org/ssl-pulse/

[4] Shrivastava, V. & Singh, G. 2013. “IJCST”, Computer Trend with

Security by RSA, DES and BLOWFISH Algorithm. Vol. 4, pp. 618-

620.
[5] Patil, S. D. 2013. “IJRRE ST: International Journal of Research

Review in Engineering Science and Technology”, Passwords

Management using Blowfish Algorithm. Vol. 2, pp. 48-52.
[6] Bhanot, R. & Hans, R. 2015. “International Journal of Security and Its

Applications”, A Review and Comperative Analysis of Various

Encryption Algorithm. Vol 9 (4). 289-306.
[7] Ristic, I. 2014. Bulletproof SSL and TLS. London: Fiesty Duck.

[8] Ahmed, M., Sanjabi, B., Aldiaz, D., Rezaei, A., & Omotunde, H.

2012. “IJESTI”, Diffie-Hellman and Its Application in Security
Protocols. Vol 1(2). 69-73.

[9] Revuelto, V. & Socha, K. 2016. “CERT-EU Security Whitepaper”,

Weakness in Diffie-Hellman Key Exchange Protocol. Vol 16 (2). 1-7.
[10] Sharma, S. & Bisht, J. S. 2015. “International Journal of Scientific

Research in Network Security and Communication”, Performance

Analysis of Data Encryption Algorithms. Vol. 3, pp. 1-5.
[11] Valmik, N. K. & Kshirsagar, V. K. 2014. “IOSR – Journal of

Computer Engineering”, Blowfish Algorithm. Vol. 16, 2014, pp. 80-

83.
[12] Pfleeger, P. C., Pfleeger, S. L, & Margulies, J. 2015. Security in

Computing Fifth Edition. Prentice Hall.

[13] Ammarah, P. S., Kaul, V., & Narayankhedkar, S. K. 2014.
“Proceeding ICWAC 2014”, Security Enhancement Algorithm for

Data Transmission using Elliptic Curve Diffie-Hellman Key

Exchange. No. 2. 10-16.
[14] Deshmukh, S. & Patil, R. 2014. “International Journal of Computer

Science and Information Technologies”, Hybrid Cryptography
Technique Using Modified Diffie-Hellman and RSA. Vol 5 (6). 7302-

7304.

[15] Ibrahem, M. K. & Ali, T. A. M. 2013. “IJCSET”, Secure Messaging
System Using ZKP. Vol 3 (11). 388-393.

[16] Kaushik, A. & Satvika. 2013. “Proceeding 2nd ICETEM”, Extended

Diffie-Hellman Algorithm for Key Exchange and Management.
[17] Kurose, J. F. & Ross, K. W. 2014. Computer Networking Sixth

Edition. Boston: Pearson.

[18] Madhuri, D. M. S., Annapurna, G, Venkataramana, C. H., & Swetha,
G. 2015. “BEST: IJMITE”, Text Hiding Using RSA and Blowfish with

Hash-Based LSB Tecnique. Vol 3 (4). 5-12.

[19] Meyer, C. 2014. 20 Years of SSL/TLS Research an Analysis Of The
Internet’s Security Foundation. Ruhr-University Bochum.

[20] Rachmawanto, E. H. 2010. Teknik Keamanan Data Menggunakan

Kriptografi Dengan Algoritma Vernam Cipher Dan Steganografi
Dengan Metode End of File (EoF). Semarang.

[21] Singh, S. 2013. “IJRET”, A Combined Approach Using Triple DES

and Blowfish. Vol 2 (7). 63-67.
[22] Thangavelu, S. & Vijaykumar, V. 2016. “The International Arab

Journal of Information Technology”, Efficient Modified Elliptic Curve

Diffie-Hellman Algorithm for VoIP Networks. Vol 13 (5). 492-500.

