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Abstract—Diffie-Hellman Key Exchange promises secure 

connections using modulus computation. However, there is a 

flaw in its implementation which makes it vulnerable, 

especially to an attack called Logjam Attack. Therefore, a new 

key exchange algorithm was developed to prevent this attack. 

The proposed algorithm is the result of modified Diffie-

Hellman Key Exchange using another algorithm, namely the 

Blowfish algorithm. Modifications that occur in the Diffie-

Hellman Key Exchange are at the modulus computation, which 

were replaced by customized Blowfish encryption 

algorithm. The encryption process of the Blowfish algorithm 

used in the proposed algorithm used 136 XOR operations every 

64-bits messages, which were about to be encrypted. The 

Diffie-Hellman modified algorithm was implemented into 

programs using Java programing language. The modified 

algorithm program has less memory usage and execution time 

than Diffie-Hellman Key Exchange program, which was 

tested. With the replacement of modulus computations with 

Blowfish encryption at the main process could make the 

modification algorithm immune to Logjam Attack. Therefore, 

the use of the modification algorithm is more secured than the 

one without modification.  

 

Index Terms—Blowfish, Diffie-Hellman Key Exchange, Java, 

Logjam Attack, SSL, TLS 

 

I. INTRODUCTION 

 

The Diffie-Hellman Key Exchange has the ability to provide 

secure connection by using modulus (mod) operation [1]. In 

this case, it can provide confidential value known only to 

two authorized parties but unnoticed by other 

parties. However, it has a weakness in its implementation as 

it has a misuse value of Prime, configured with a relatively 

similar value [2]. The assault that is able to hack the key 

exchange using its flaw was put forward by Adrian et 

al. (2015) is called Logjam Attack [2]. According to [2], 

there were 78,000 HTTPS servers vulnerable to Logjam 

Attack. The existence of this attack has affected the security 

of using the Diffie-Hellman Key Exchange. However, there 

have been 123,754 out of 137,992 most popular sites still 

using Diffie-Hellman Key Exchange as its connection 

security algorithm [3]. 

In relation to  the mentioned issues, this study aims to 

modify the Diffie-Hellman Key Exchange for better 

connection security. The modification of this key exchange 

is done by utilizing the Diffie-Hellman Key Exchange with 

an algorithm called the Blowfish algorithm. It is believed 

that this modification is able to prevent the success of 

Logjam Attack. 

The Blowfish algorithm itself is a symmetric 

cryptography algorithm that uses only one key for both 

encryption and decryption process. The advantage of this 

algorithm is that the encryption process can provide reliable 

security; requires relatively small process memory and 

utilises short execution time [4]. Additionally, the Blowfish 

algorithm is safe to be used [5][6], considering that there has 

been no effective attack known to hack this algorithm, 

The modification algorithm uses the Diffie-Hellman Key 

Exchange as the cornerstone of its development. The 

modification in Diffie-Hellman Key Exchange occurs at the 

modulus computation process, which is replaced by the 

encryption process of Blowfish algorithm. Therefore, the 

modified Diffie-Hellman Key Exchange using Blowfish 

algorithm is invulnerable to Logjam Attack, so it is more 

secure to use. 

 

II. DIFFIE-HELLMAN KEY EXCHANGE AND ITS FLAW 

 

Diffie-Hellman Key Exchange is a key exchange/lock 

management protocol that can provide two different parties 

to establish a connection in an unsafe network [7]. The 

algorithm was originally introduced in 1976 by Whitfield 

Diffie and Martin Hellman, and was separately constructed 

by Malcolm Williamson [1]. 

This key exchange algorithm requires six parameters, 

which are the Prime (p), Generator (g), private key of party 

one (a), private key of party two (b), public key of party one 

(A), and public key of party two (B). The mechanism of the 

Diffie-Hellman algorithm is shown in Figure 1. 

 
Figure 1: Diffie-Hellman Key Exchange 

(Source: [8]) 

 

In Figure 1, there are two parties that establish a 

connection, called Alice and Bob based on the following 

steps: 

1. Alice and Bob agreed on the two values: p and g. In 

the case of Client-Server, the Server determines both 

values. According to Figure 1, the Server is Alice. 

2. Each party creates a private key. Alice has the private 

key a, whereas Bob has the private key b. 

3. Both parties calculate the public key. Alice computes 

A, while Bob computes B. 

g, 

p 

a, g, p 

A = ga mod p 

K = Ba mod p 

b 

B = gb mod p 

K = Ab mod p 

Alice Bob 
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4. Next, is the public key exchange phase. Alice sends 

her public key (A) to Bob, while Bob sends his B to 

Alice. 

5. After each party gets the public key from another 

party, each party then calculate the value of K as 

shown in Figure 1. The value of K is the key that only 

Alice and Bob can know, while the other party cannot 

get the K value even if he/she is capable to receive all 

values that pass through the connection (p, g, A, and 

B). Therefore, using the Diffie-Hellman Key 

Exchange, Alice and Bob (Client-Server) can 

communicate securely afterwards. 

  

The main computation of the Diffie-Hellman Key 

Exchange can be represented by this single formula: 

y = gx mod p (1) 

where:  y = Public key 

 g = Generator 

 x = Parties’ private key (a or b, or ab) 

 p = Prime number 

 

However, the study of Adrian et al. (2015) [2] and 

Revuelto et al. (2016) [9] concluded that there is a gap in 

Prime value (p) usage. In the implementation of Diffie-

Hellman Key Exchange, the p value is made relatively 

similar. This condition has been applied to facilitate the 

calculation operation process so that it can run faster 

[2]. Yet, the similarity of p value creates a crucial security 

gap that makes Diffie-Hellman Key Exchange vulnerable to 

threats, especially with discrete logarithmic method. 

Formula (1) could be reversed using discrete logarithmic 

to earn the value of x. The formula is as follows: 

x = dloga,p y (2) 

However, formula (2) is difficult to compute and requires 

a long period of time to complete. The difficulty and process 

time are also increased as the value of variables increases. 

Researches done by Adrian et al. [2] and Revuelto et al. [9] 

also indicated the importance of the length of bits used 

during the establishment of the connection. According to 

Adrian et al [2],  the Diffie-Hellman Key Exchange with the 

length of 512-bits, 768-bits and 1024-bits are no longer safe. 

Adrian et al. [2] then proposed an attack with Active Man 

in the Middle (AMitM) method called Logjam Attack. This 

particular attack uses discrete logarithmic method (formula 

(2)) to cripple the Diffie-Hellman Key Exchange’s main 

formula (1). Not only it is capable to attack Diffie-Hellman 

Key Exchange in general, Logjam Attack is also capable of 

decreasing the length of bits used to build the connection to 

fasten formula (2)’s hacking process (downgrade method). 

In the case of Logjam Attack, this attack can decrease the 

number of bits from 768-bits and 1024-bits into 512-bits 

length. The number of bits is the length of p value used 

during the public key hacking process. The shorter the p 

value, the faster the Precomputation process in Logjam 

Attack is completed. Furthermore, the existence of a 

database in the Precomputation stage that stores the 

previous successful computations results also helps the 

operation in Individual Log to run faster, thus the security of 

the Diffie-Hellman Key Exchange can be hacked more 

easily and rapidly. 

 

III. BLOWFISH ALGORITHM 

 

Blowfish algorithm is a symmetric cryptography 

algorithm proposed by Bruce Schneier in 1994. Blowfish 

was defeated by the Rijndael algorithm to become a 

standard algorithm, but with its reliability and speed [4], this 

algorithm is the fastest algorithm used within the global 

scale [10]. 

Blowfish algorithm uses blocks of 32-bits length as the 

requirement of key generation process, during the process of 

encryption and decryption and requires the block that is 

equal to 64-bits. The key or data, which is about to be 

processed should have a minimal 32-bits of length or 

multiples. If the number of bit is lesser than the multiple of 

32, there is a step called padding that fills the empty bits in 

the block until the block is full (32-bits per block) and 

qualified to be processed [11]. 

In the key generation process, it requires several 

variables, namely 18 blocks of variable P and four S 

variables, each variable S holds 256 blocks of different 

values. There are four variables in this process: P as 

temporary key series, S as series of bits for the substitution 

of the data series, K as the ideal key to generates variable, 

and P’ as the ideal key to be used in the encryption process 

later [11]. 

The key generation process requires a raw key sequence 

of 32-bits to 448-bits. The key sequence is divided into 

several blocks of 32-bits and given the name of variable K. 

Then, the variable K is operated by XOR operation 

(Exclusive OR logic operator) with P variables. Each 

process starts from the first K (K1) and the first P (P1) to 

produce the first P' value (P'1). Next, it is continued with 

the second XOR K (K2) with the second P (P2) operation, 

which results in the P'2, and so on until P18. If P has not 

touched the number of 18, but the K variable is running out, 

then the variable K is reset from the K1 and  the XOR 

operation is performed with the next P variable. The result 

of this process is the P' variable: This is the key variable that 

is used in the encryption process later [11]. 

The encryption process in Figure 2 is as follows: 

1. The data are divided into blocks. Each block holds 62-

bits length of data. 

2. Each block has its own process path. The first block is 

divided into two variables, xL and xR, each with the 

length of 32-bits. 

3. Iteration starts from 1 to 16, in which each iteration has 

the following steps: 

a. xL is operated by XOR with P' (current -th 

iteration) is obtained from the key generation 

process. 

b. The product of XOR is then processed by the F 

Function, as shown in Figure 3. The steps in the F 

Function are as follows: 

1) The XOR is the result of xL with P' (current–

th iteration) is divided into four 8-bits chunks: 

Ck1, Ck2, Ck3, and Ck4. 

2) The value held by Ck1 is used to refer to the 

number index on S1 variable, as well as Ck2 

to S2 variable, Ck3 to S3, and Ck4 to S4.  
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3) After referring to the corresponding S index, 

the S1 to S4 variables each returns a block of 

32-bits data. 

4) The S1 and S2 are then computed by modulus 

232 (equivalent to XOR operation). 

5) The result is then operated with S3 using 

XOR, then the XOR result is computed with 

S4 using modulus 232. As a result, a block of 

data with 32-bits length is the final product 

from the F Function. 

c. The result of the F Function is then operated with 

xR using the XOR operation. 

d. Next, the values of xL and xR are exchanged. 

Now, xL = xR ,while xR = xL. 

4. The Feistel Network iteration stops at the 16th 

iteration. The value of xL and xR are no longer be 

operated by the F Function nor exchange their value to 

one another. Instead, the xL is plainly operated with 

variable P'17, while xR is operated with P'18, both 

using the XOR operation. 

5. The final step of this process is to reunite xL with xR 

back as one block of 64-bits. Thus, the first block of 

message has been encrypted. Step 1 to 5 is done until 

all 64-bits block of message are successfully 

encrypted. 

6. All 64-bit blocks are then reunited into a full length of 

message right after they are all passed the encryption 

process. The encryption process is completed. 

 
Figure 2: Encryption Process of Blowfish Algorithm 

(Source: [11]) 

 

 
Figure 3: F Function 

(Source: [5]) 

A prominent difference between the encryption and 

the decryption process lies in the use of P' variable 

sequence. In the decryption process, P' is processed in a 

reverse order (starting from P'18 to P'1). In addition to these 

differences, the process of encryption and decryption also is 

distinguished by whether there is a key generation process 

or not. In the encryption process, a new key generation 

process is required, while the decryption process is only 

needed to call the key used previously in the encryption 

process. 

 

IV. PROPOSED ALGORITHM 

 

The modified Diffie-Hellman Key Exchange using the 

Blowfish algorithm can be seen in Figure 4. 

  

 
Figure 4: Modified Algorithm 

 

The process described in Figure 4 can be explained as 

follows: 

1. The Server and the Client agree with the 

Message value. 

2. Each party generates a private key. The 

Server generates the Private-key Server (PS), while the 

Client generates the Private-key Client (PC). 

3. Both sides then encrypt the Message with the Blowfish 

encryption algorithm using their private key. The 

encryption results are the Encrypted Message-Server 

(EMessageS) for Server and the Encrypted Message-

Client (EMessageC) for Client. 

4. The Server and the Client exchange their encrypted 

values (EMessageS and EMessageC). 

5. The Client encrypts EMessageS with PC, while 

the Server encrypts EMessageC with PS. Both 

encryption processes produce the same result known 

as KEY, which is the main product. 

  

In the modification algorithm, Blowfish algorithm’s 

encryption process shown in Figure 4 undergoes several 

changes. The changes in Blowfish algorithm encryption 

process used in the modification algorithm is shown in 

Figure 5. 

The steps in Figure 5 can be summarized as follows: 

1. This iteration repeats as much as i = total chunk/2: 

a. Chunk (block/smallest part of Message divided 

by bit block) i * 2 called L, while (i * 2) + 1 

called R. 

b. The following iteration repeats as much as n = 15 

starting from n = 0: 

Message Message, PS 

EMessageS = 

E(Message, PS) 

KEY = 

E(EMessageC, PS) 

PC 

EMessageC = 

E(Message, PC) 

KEY = 

E(EMessageS, PC) 

Server Client 
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1) P(n) is processed using the F Function 

(Figure 3). 

2) L is the result of the F Function from P(n-

th), which is operated by the XOR with the 

previous L. 

3) P(n) is processed using the R Function 

(Figure 6). 

4) R is the result of the R Function from P(n-

th), which is operated by the XOR with the 

previous R.  

5) L and R exchange values. 

c. L is operated by the XOR with P16 after P16 is 

operated by the F Function. 

d. R operated by the XOR with P17 after P17 is 

operated by the R Function. 

e. L is now EL (Encrypted L), the encrypted result 

for the i-th chunk * 2 of the message. 

f. R is now ER (Encrypted R), the encrypted result 

for chunk to-(i * 2) + 1 of message. 

 
Figure 5: Encryption Algorithm 

 

2. All encrypted chunks are then reassembled together 

as Result, the main output of the Encryption process. 

R Function (Reverse-F Function) is the inverted form 

of the F Function (Figure 3). The R function shown in 

Figure 6 has a slight difference with the F Function, which 

lies in the order usage of S variable. In the F Function, the 

S variable is divided into four variables: S0, S1, S2, and S3 

that are used sequentially. However, in R Function, S 

variables are used in reverse order, beginning from S3, S2, 

S1, until S0. R Function Algorithm can be seen in Figure 6. 

 

 
Figure 6: R Function 

 

V. IMPLEMENTATION AND VALIDATION 

 

The modified Diffie-Hellman Key Exchange using 

Blowfish algorithm was then implemented into the form of 

the program. The program was divided into two main 

programs, the program for the Client and the Server side. 

The programming language used in the Implementation 

stage is Java. Implementation of this modification algorithm 

was made using Xcode application with TCP/IP protocol 

approach (Transmission Control Protocol/Internet 

Protocol–communication protocol used by HTTPS). This 

protocol used socket/port number as the Client and the 

Server’s intermediary to exchange messages and establish a 

secure connection. Both interface of the programs at their 

running stage can be seen in Figure 7 and 8. 

 

 
Figure 7: Server Program 

 

 
Figure 8: Client Program 

  

After the modified Diffie-Hellman Key Exchange was 

successfully implemented, the next step is Validation. This 

Validation stage aims to find the reliability of modification 
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algorithm to the basic security aspects of a special key 

exchange algorithm, namely the aspect of Confidentiality 

(secrecy). According to Pfleeger et al. (2015) [12], the 

aspect of secrecy aims to ensure that secret messages remain 

secret. This means that no other party knows the messages 

other than the authorities. In this case, the modified 

algorithm program must be able to keep confidential 

variables unsniffed. Those variables are PS, PC, and KEY. 

Scenario in the Validation stage are as follows: 

1. The Client and the Server computers communicate 

wirelessly with the connections provided by the 

Connection Provider. Both parties are connected in 

socket/port number 9000. 

2. The Sniffer computer is also connected to the 

Connection Provider. The Sniffer party then captures 

any data packet that passes within the connection, 

especially socket number 9000. 

3. The data packets captured by the Sniffer  are then 

reviewed to determine whether the confidential 

variables are successfully sniffed or not. 

 On the Sniffer side, the application used in the Validation 

stage is Wireshark version 2.2.1. Wireshark was set to run in 

Monitor Mode that is capable to capture every data packets 

from a specific interface. The Interface used to be sniffed is 

Wi-Fi interface with TCP protocol filter. 

The Validation scenario have been done once as a trial. 

The results of the trial are shown in Figure 7 (Server side) 

and Figure 8 (Client side). From the results of the trial, 

Wireshark on Sniffer managed to capture as many as 26 

packages of data packet. The captured data packets consist 

of: 

1. The [SYN] package contains sync between Client 

and Server based on port/socket. One package has been 

successfully sniffed. 

2. The [SYN, ACK] package contains the connection 

approval based on the port/socket. One package has 

been successfully sniffed. 

3. The [ACK] package contains confirmation that the 

submitted data packet has been received by the 

intended party. Four packages have been successfully 

sniffed. 

4. The [PSH, ACK] package contains messages to be 

processed by Client and Server. Seven packages have 

been successfully sniffed. 

5. Other packages consist of confirmations and/or 

transactions packages that do not contain important 

messages. Eleven packages have been successfully 

sniffed. 

 

 
Figure 9: Message sniffed 

In Figure 9, a row of hexadecimal values (left highlight) is 

exactly at the same line as the Message variable found in 

Figure 7 and 8. This specific series refer to the Message 

variables, which was exchanged during the connection 

building process. 

The hexadecimal rows in Figure 10 are identical to those 

shown in Figure 7 and 8. The hexadecimal rows are the 

contents of the EMessageC variable, which is the result 

of Message encryption performed by the Client using the PC 

variable. 

Figure 11 shows a hexadecimal row that is similar to 

Figure 7 and 8, which is the value of EMessageS 

variable. This variable is the result of Message encryption 

performed by the Server using its private key known as PS. 

 

 
Figure 10: EMessageC sniffed 

 

After analyzing all the data packets that had been stacked, 

there are messages/variables used in the modification 

algorithm process that have been successfully sniffed. 

Messages that have been successfully sniffed by Sniffer are: 

Message (Figure9), EMessageC (Figure 10), and 

EMessageS (Figure 11). Those three messages were found 

in each of the three different packets, while the remaining 

four [PSH, ACK] data packets did not contain any important 

messages used during the connection building process. 

 

 
Figure 11: EMessageS sniffed 

 

In addition to the trial in Figure 7 and 8, the Validation 

scenario performed 39 more times. From a total 40 

iterations, 40 data were obtained using four different 

message bit lengths: 1,024, 2,048, 3,072, and 4,096 bits. The 

reason of bit length variety is in accordance to the 

suggestion of Adrian et al (2015) [2] to use messages with 

the length of 1024-bits or higher, while the other bit lengths 

were taken from multiple value of 1,024.  

The analysis result of the 40 collected data states that 
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there are no confidential variables successfully 

sniffed. Results from the existing data analysis shown that 

Sniffer can only sniffed Message, EMessageC, and 

EMessageS variables, but not PC, PS, and KEY. From the 

collected data, it can be concluded that the modified Diffie-

Hellman Key Exchange using Blowfish algorithm has 

reliability in the aspect of Confidentiality, which is the 

major aspect for connection security algorithm. Therefore, 

the modified algorithm has been proved as reliable and valid 

to build a secure connection. 

 

VI. PROPOSED ALGORITHM’S PERFORMANCE 

 

The security issue which Diffie-Hellman Key Exchange 

has lies in its real-world implementation that uses relatively 

similar value of Prime (p) [2][9]. The problem of using 

relatively similar p value can affect the process of 

Precomputation in Logjam Attack to run faster. As the 

process of Precomputation becomes faster, the Individual 

Log stage in Logjam Attack can also be completed a lot 

quicker [2]. This issue makes the data that are transported 

within the developed connection in an unsecured state. 

Hence, Diffie-Hellman Key Exchange is no longer safe to 

be used. 

On the other hand, the modified Diffie-Hellman Key 

Exchange using Blowfish algorithm—theoretically is 

against Logjam Attack. The value of p in the Diffie-Hellman 

Key Exchange have been replaced with a new variable 

called Message, which does not have to be a prime number 

and must be built randomly. The Message variable makes 

Precomputation stage in Logjam Attack becomes useless. 

This is because the Precomputation stage has sub-stages 

devoted to handle a prime value to generate a factorial 

matrix. On the other hand, the modified algorithm has no 

rules to generate and use a prime value for the Message 

variable so that the Precomputation stage does not have any 

effect even if it was working properly (gives result, but the 

result is useless due to its irrelevance). 

In addition to the Precomputation stage, the Individual 

Log stage of Logjam Attack was also useless to attack the 

modified algorithm. Essentially, the Individual Log stage 

was specially designed to find the value of x (private key) 

from formula (1) using discrete logarithmic shown by the 

formula (2). However, since the modified algorithm was no 

longer using formula (1) but instead the Feistel Network 

algorithm (Figure 5) that uses XOR operations only, the 

computation process in Individual Log stage is irrelevant. 

While Logjam Attack’s Individual Log stage uses formula 

(2), the modified algorithm repeatedly uses this formula 

instead: 

 

EL = (((L XOR F(P0)) XOR R(P1)) ... XOR F(P16)) 
ER = (((R XOR R(P0)) XOR F(P1)) ... XOR R(P16)) 

EM = EL, ER 
(3) 

 

where:  L = Left block with length of 32-bits produced by 

dividing 64-bits block of Message 

R = Right block with length of 32-bits produced by 

dividing 64-bits block of Message 

EL = Encrypted L 

 ER = Encrypted R 

 P-th = Private key block with 32-bits length 

 F() = F Function (Figure 3) 

 R() = Reverse F Function (Figure 6) 

 EM = Encrypted Message with 32-bits length 

  

An XOR operation can indeed be represented in modulus 

equation with the same output as XOR’s. Thus, XOR 

operation was also vulnerable to logarithmic computation 

that Individual Log can handle. However, the Individual Log 

compute logarithmic computation in one single time only, to 

determine the value of x in formula (1) using formula (2) 

without any additional iterations. Meanwhile, the XOR 

operations in the modification algorithm were not only 

performed one time but 136 times in every 64-bits message 

which  is about to be processed (Figure 5, Figure 3, and 

Figure 6 combined). Formula (2) can only handle one single 

computation of modulus (modulo 232 = this particular XOR 

case) but incapable to handle as many as 136 computations 

multiplied by every 64-bits of Message. This modification 

does provide a fact that the logarithmic computation in 

Individual Log stage is incapable to hack Feistel 

Network algorithm used by the modified algorithm. 

Therefore, Logjam Attack is irrelevant as an attack 

method to hack the modified algorithm. Furthermore, 

the absence of patterns in the variables used while building a 

connection also results in higher difficultly to be hacked. It 

can also be concluded that the modified Diffie-Hellman Key 

Exchange using Blowfish algorithm can minimize the flaw 

of Diffie-Hellman Key Exchange prior to the modification. 

Apart from its immunity to Logjam Attack, the modified 

algorithm has been found to be more advanced than the 

basic Diffie-Hellman Key Exchange’s performance. As 

shown in Figure 12, the performance of the modified 

algorithm and the original one (Diffie-Hellman Key 

Exchange) in the memory usage has quite a large range of 

difference. At its maximum point (4096-bit message length), 

the memory usage performed by the modified algorithm 

reached 344,522.4 B or 344.5 KB only, while the original 

Diffie-Hellman Key Exchange could reach 363.828.4 B or 

363.8 KB. The range of memory usage in both algorithms is 

19.3 KB. This fact suggests that the modified algorithm 

requires less memory usage than the algorithm before it was 

modified. 

 
Figure 12: Memory Usage Comparison 

 

The 40 data received from a series of trials are also used 

to analyze the execution time speed comparison as shown in 

Figure 13. The execution times for both modified and 

original algorithms increase as the length of bit message 

increases, but the execution time of the original algorithm 

increases greatly than the modified algorithm’s. The original 
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algorithm took an average time of 126.957 seconds or 2 

minutes 6.956 seconds for messages with 4096-bit length, 

while the modified algorithm was consistent with the 

processing time under 1 second, specifically, 0.7 second for 

the same message length. This comparison can provide a 

fact that the modified Diffie-Hellman Key Exchange using 

Blowfish algorithm has faster processing time than the 

original algorithm. 

 

 
Figure 13: Execution Time Comparison 

 

VII. CONCLUSION AND SUGGESTION 

 

The conclusions of this study are as follows: 

1. The Modified Diffie-Hellman Key Exchange using 

Blowfish algorithm was done by replacing the modulus 

computation process with the Feistel 

Network algorithm from the Blowfish 

algorithm. Substitution of this process has successfully 

provided an immunity from the Logjam Attack. This 

was because the Precomputation and Individual Log 

stages in Logjam Attack were incapable to hack the 

XOR operations performed as much as 136 times per 

64-bits of processed messages. 

2. The modified Diffie-Hellman Key Diffie using the 

Blowfish algorithm was successfully fulfilled the  

secrecy aspect of Confidentiality. This fact was proven 

by secret variables used during the connection building 

that cannot be sniffed by Sniffer (attacker), implying 

that it is secure for general use. 

 From the research that has been discussed, the 

researchers suggest several things, which are: 

1. The part of Blowfish algorithm used in the modified 

Diffie-Hellman Key Exchange was only in its 

encryption process. The decryption process in the 

Blowfish algorithm was not used in any process within 

the modified algorithm. Therefore, the decryption 

process can be incorporated into the modified 

algorithm so that the security level of the built 

connection is—perhaps—even higher. It is a 

recommendation to change a few steps in the 

decryption process to match the purpose of building 

the secure connection. 

2. In the modified Diffie-Hellman Key Exchange using 

the Blowfish algorithm implementation program, there 

were S variables (S0, S1, S2, and S3), which are bunch 

of libraries. These variables are recommended not to 

be used anymore. These S variables can be replaced 

with other variables that are randomly generated and 

always different in each process, during the process of 

building new connections. This way of modification 

could increase the difficulty of hacking because the 

modification algorithm will no longer use static 

libraries but fully dynamic variables. 
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