

 e-ISSN: 2289-8131 Vol. 10 No. 1-2 19

Low-Cost and Portable Interactive Sinusoidal

Digital Signal Generator by Using FPGA

Aiman Zakwan Jidin1,2, Irna Nadira Mahzan1, Nurulhalim Hassim1, Ahmad Fauzan Kadmin1
1Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia.

2Center for Telecommunication Research and Innovation, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia.

aimanzakwan@utem.edu.my

Abstract—This paper presents the development of a low-cost

and portable interactive Sinusoidal signal generator which has

been implemented on FPGA device. The sine wave is generated

by using a Lookup Table method, where the sine values are pre-

calculated and stored in the onboard memory. The frequency of

the generated signal is modified by changing the value of the

memory address incremental step. In addition, the implemented

signal generator is serially connected to a graphical user

interface (GUI) on a PC, which can be used to select the type of

the desired signal to be generated and to set the signal frequency.

The proposed design was successfully implemented in ALTERA

Cyclone II DE0 FPGA Development Board, where the sine wave

can be generated within the range of 1 kHz to 1 MHz, with 1 kHz

frequency resolution.

Index Terms—FPGA; Function Generator; Sinusoidal; User

Interface.

I. INTRODUCTION

Waveform generator or usually referred as function generator

is an important tool which is very popularly utilized as the

input signal generator for tests and experiments in various

applications, such as telecommunication, control,

measurement and teaching field [1]. A function generator is

typically used to generate the signal with capabilities to

accurately control the frequency and the amplitude

characteristic to replicate the input signal of the circuit begin

tested. It produced repetitive signals in waveforms like

sinusoidal or sine wave, square or pulse wave, triangular

wave, and sawtooth wave [2].

A function generator can be implemented on

programmable devices such as a microcontroller or a Field

Programmable Gate Array (FPGA). The former is widely

used, owing to the simplicity of the system development. By

using a high-level programming language like C language,

users can use the predefined sin() function for example, in

order to generate the sine wave. However, the execution time

of microcontrollers are generally quite slow since all the

instruction sets are executed sequentially and in addition,

only one instruction can be executed at a time. Therefore,

FPGA is an adequate solution for high-performance

computations and it is widely used many high-speed

applications, owing to its low cost, its ability to implement

pipelined and parallel computations, and its capability to

operate at high-frequency clocks [3,4].

There are several research which had been proposed in

order to implement the functional or waveform generator on

FPGA. Some had proposed the use of Direct Digital

Synthesis (DDS), a popular technique which can produce

outputs with high-frequency resolution and accurate

frequency adjustment. DDS produces the analog signal by

generating the time-varying signal in a digital form, then

converted into the analog signal via digital-to-analog

conversion. The principle of DDS is to vary the frequency of

the clock which is used to read the waveform amplitude,

which is digitally stored in a memory. Then, read data is

converted to analog signal by using the digital-to-analog

converter (DAC) [1,5,6,7].

On the other hand, research in [8] had implemented the

waveform generator in Xilinx Virtex II FPGA, by using the

embedded microprocessor. In this research, a soft processor

called MicroBlaze, which control the system is interfaced to

peripherals such as memories and DAC. The hardware

configuration was done by using Xilinx Embedded

Development Kit, whereas the software, which was written in

C, was developed in Xilinx Software Development Kit.

However, to achieve high-bandwidth signal generator, it is

required to use high-end FPGA such as Virtex FPGA which

cost very expensive.

Typical function generators in the market can be very

expensive, depending on the performance and the features

they provide. They are normally equipped with several knobs

or the keypads or both, as the inputs to configure the desired

signals to be generated. Meanwhile, research in [9] proposed

the utilization of GUI as the control medium. In this research,

a GUI was developed by using Visual Basic and an auxiliary

USB controller is used to communicate the PC with FPGA.

This paper presents the implementation of an interactive

function generator in FPGA which is controllable by using a

GUI in a computer. In this paper, it will only focus on the sine

wave generation which frequency can be varied within the

range of 1 kHz to 1 MHz, with 1 kHz of frequency resolution.

For this research purpose, no DAC is involved and thus, the

proposed research produced the digital sine wave with

accurate frequency. Sine wave signal is generated by

adopting a technique which is quite similar to the DDS, but

the memory address incremental step is tuned instead of the

memory clock frequency. The GUI was developed by using

an open source software called Processing.

II. LOOKUP TABLE FOR SINE WAVE GENERATION

In order to construct a lookup table by using the onboard

ROM, a specific memory initialization file is created. This

file contains the information like the total number of data, the

address and its corresponding data, and also the data format,

either in binary or hexadecimal. This file is then used to

initialize the contents of the ROM for the sine lookup table.

In this research, it will be filled with 20000 samples from one

full cycle of the proposed system base signal, which is 1 kHz.

Journal of Telecommunication, Electronic and Computer Engineering

20 e-ISSN: 2289-8131 Vol. 10 No. 1-2

Figure 1: 1 kHz sine wave composed of 20000 samples.

 This table has the address bus and the clock signal as the

inputs, plus the sine data as the output. Since it contains

20000 samples of data, the address bus width is set to 15 bits.

For this research purpose, the output sine data is set to 16 bits.

The input clock will serve as the sampling clock. At every

clock cycle, the address of the table will be increment by an

incremental step value, which is equal to the desired sine

wave frequency to be generated in kHz unit. For example, for

a 20 kHz sine wave, the address will be increased by 20. This

process will be repeated until it reaches the end of the table,

before restarting back from the beginning.

Figure 2: Lookup table for sine wave generation.

In this case, the choice of the table clock frequency is

substantial. As previously mentioned, the base signal

frequency Fbase = 1 kHz. Hence, the base period Tbase = 1 ms.

Therefore, in order to determine the sampling clock period:

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =
𝑇𝑏𝑎𝑠𝑒

𝑛
 (1)

where n the number of samples. From Equation (1), the period

of the sampling clock is equal to 50 ns. In other words, the

address of the table will be increased at every 50 ns.

III. RS-232 COMMUNICATION PROTOCOL

RS-232 is a standard for serial communication which is

used for data transmission and reception. It normally connects

a data terminal equipment (DTE) such as a computer terminal

or a graphical user interface (GUI) to a data circuit-

terminating equipment (DCE) like modems or any

controllable devices which equipped with the RS-232

interface.

The data transmission through RS-232 can be set to various

baud rate: 9600 bps, 19200 bps, 38400 bps, 57600 bps or

115200 bps. The baud rate is the rate at which data is being

transferred through a communication channel and it is usually

measured in bits per seconds (bps).

In order to connect a DTE to a DCE by using RS-232

communication, a cable equipped with DB9 connector is

required. This connector contains 9 pins and the functionality

of each DB9 connector pin is described in Table 1 [10].

Table 1

Function Description of DB9 Connector Pins

Pin Function

1 Carrier Detect

2 Receive Data (rxD)
3 Transmit Data (txD)

4 Data Terminal Ready

5 Ground
6 Data Set Ready

7 Request to Send
8 Clear to Send

9 Ring Indicator

In the proposed system, the RS-232 is used by FPGA only

for reception purposed. Thus, only the Transmit Data pin (pin

3) at the computer is used and connected to the Receive Data

pin (pin 2) of the FPGA.

In RS-232 serial communication, each data will be

transmitted in a packet of 10 bits, which is consisted by 1 start

bit (set at low voltage), 8 bits of data (starting from LSB to

MSB) and 1 stop bit (set at high voltage). Figure 3 shows the

example of a data 01010011b is being transmitted from a

DTE to a DCE.

Figure 3: RS-232 communication waveform.

The FPGA, which acts as the DCE, will receive the data

and store it in an 8-bit register. It will start receiving when the

received data becomes low (start bit) and then a counter inside

the FPGA will count up from 0 to 7. After that, the

transmission of 8-bit data is completed and FPGA shall

receive high signal (stop bit). Each time a new bit is received,

the content of the register will be shifted to the right first and

the new bit is stored at the MSB of the register since the least

significant bit (LSB) is transmitted first.

Low-Cost and Portable Interactive Sinusoidal Digital Signal Generator by Using FPGA

 e-ISSN: 2289-8131 Vol. 10 No. 1-2 21

IV. GUI DEVELOPMENT

For this research purpose, a simple and basic GUI on the

computer is developed in order to configure the type and the

frequency of the signal to be generated by the FPGA board.

It contains a drop-down menu which is used to select the type

of signal among several options: sine wave, triangular wave,

sawtooth wave, and pulse wave. Besides, a textbox is also

available in the GUI, where users can use to set the desired

signal frequency. A clickable button is also added and

therefore, the new signal configuration will be sent to the

FPGA board via RS-232 communication by clicking it.

Figure 4: GUI for proposed function generator.

The GUI which has been developed for this research is

shown in Figure 4. The process to set the new configuration

of the signal to be generated is depicted in Figure 5. For the

moment, only the sine wave can be generated by the proposed

system, whereas the other options are kept for future works.

Figure 5: GUI process flowchart.

The GUI has been developed by using the Processing

Software, which is a widely used tool within the context of

the visual art [11]. By using it, the GUI can be designed and

configured by using the Processing language, which is based

on Java language. By consequences, it shall contain all the

Java libraries, in addition to the user-defined libraries.

One of the most important libraries used during this GUI

development is called controlP5. This user-defined library is

utilized to add and configure the buttons, the text box and the

drop-down menu to the GUI [12].

V. PROPOSED SYSTEM ARCHITECTURE

Figure 6 presents the block diagram of the proposed system

architecture. There are 5 subcomponents inside the FPGA:

PLL, Controller Finite State Machine (FSM), RS232

Controller, Clock Divider and Sine Lookup Table. The PLL

and the clock divider are needed in order to obtain a sampling

clock (sampling_clk) with period 50 ns. Since the onboard

oscillator generates 20 ns clock signal, the PLL is needed in

order to produce a faster clock (pll_clk) with the period equal

to 10 ns. Then, the pll_clk will be divided to 5 in order to

produce a 50 ns clock signal.

Figure 6: Block diagram of the proposed system architecture in FPGA.

The RS232 controller is the block which manages the

reception of the data transmitted from the GUI, via RS-232

serial communication. It will receive a total of 48 bits data

(excluding start and stop bits) which are stored in a 48-bit

register called data_buffer. It is composed of six 8-bit data

which represent the update request flag, the requested signal

type flag and also requested signal frequency. The

composition of this register is shown in Figure 7.

Figure 7: Composition of data_buffer register in RS232 Controller.

Once received the request for an update, the Controller

FSM will identify the requested signal type and its frequency,

before initiating the reset of the system. Since the PLL is also

being reset, the system needs to wait for the pll_locked flag

before proceeding to the sine wave generation. Next, the new

address incremental step will be provided to the Sine Lookup

Table, where the incremental step is equal to the frequency

value in kHz unit (i.e. step = 500 for f = 500 kHz). The lookup

table will then increase the address of the memory by the step

value at every sampling_clk cycle, in order to produce the

sine wave output.

The process starting from receiving the update request from

the GUI to the generation of new output sine wave is depicted

in Figure 8. For the moment, only the sine wave can be

generated by the proposed system. For future works, the

different type of signal can be selected simply by using the

requested signal type flag in the data_buffer.

Journal of Telecommunication, Electronic and Computer Engineering

22 e-ISSN: 2289-8131 Vol. 10 No. 1-2

Figure 8: Proposed functional generator process flowchart.

VI. RESULTS AND DISCUSSIONS

For this research purpose, a simple and basic GUI on the

computer is developed in order to configure the type and the

frequency of the signal to be generated by the FPGA board.

It contains a drop-down menu which is used to select the type

of signal among several options: sine wave, triangular wave,

sawtooth wave and pulse wave. Besides, a textbox is also

available in the GUI, where users can use to set the desired

signal frequency. A clickable button is also added and

therefore, the new signal configuration will be sent to the

FPGA board via RS-232 communication by clicking it.

The proposed system was designed by using the Verilog

HDL code in the Altera Quartus II Design Software. It has

been successfully implemented in Altera Cyclone III DE0

FPGA Development Board. To validate the proposed system

functionality, functional simulations were conducted by using

Mentor Graphic ModelSim-Altera Edition. Then, the

experimental tests were performed in FPGA hardware and the

results were visualized and observed in Altera SignalTap

Logic Analyzer.

A. Functional Simulations

In this research, the functional simulations were performed

in order to verify the correct functionality of the proposed

signal generator. For this research paper purpose, five

different frequency values are set during the simulations: 25

kHz, 75 kHz, 150 kHz, 667 kHz and 1 MHz.

Figure 9 presents the simulated sine wave output which has

been generated by the proposed design. As can be seen, the

signal frequencies observed are the approximately the same

as the desired frequency, with very little errors. The

frequencies were obtained by measuring the period or the

time interval between two cursors in the simulation

waveform, as shown in Table 2.

(a)

(b)

(c)

(d)

(e)

Figure 9: The simulation results for the generated signals with various

frequencies: (a) 25 kHz, (b) 75 kHz, (c) 150 kHz, (d) 667 kHz, (e) 1 MHz.

Table 2

Comparison Between Desired Frequency vs. Measured Frequency

Desired Frequency Measured Period Measured Frequency

25 kHz 40 000 ns 25.0 kHz

75 kHz 13 350 ns 74.9 kHz

150 kHz 6 650 ns 150.3 kHz
667 kHz 1 500 ns 666.7 kHz

1 MHz 1 000 ns 1.0 MHz

B. Hardware Experimental Tests

The proposed system hardware test setup is presented in

Figure 10. The DE0 FPGA Board contains the pushbutton

which is used as the system reset button. Then, the rxD, txD

and gnd pin of the RS-232 interface on FPGA are connected

to their respective pins on the RS-232 connector, which is

directly connected to the GUI on the PC. The results of the

experimental tests were observed in the SignalTap Logic

Analyzer windows [13].

Low-Cost and Portable Interactive Sinusoidal Digital Signal Generator by Using FPGA

 e-ISSN: 2289-8131 Vol. 10 No. 1-2 23

Figure 10: Hardware experimental setup.

Figure 11 shows the updated value of the data_buffer,

which was observed in the SignalTap, when the signal

frequency value is set to 25 kHz, 150 kHz, and 667 kHz,

respectively, from the GUI. In Figure 11(a) for example, the

value of the data_buffer is updated to 010000060607 h,

which can be detailed as follows:

▪ 01 – to indicate a signal update request from GUI

▪ 00 – the selected signal type is sine wave

▪ 00 – the value of thousands is 0

▪ 06 – the value of hundreds is 6

▪ 06 – the value of tens is 6

▪ 07 – the value of ones is 7

(a)

(b)

(c)

Figure 11: Observation of the data_buffer value update in hardware tests

with different frequencies: (a) 25 kHz, (b) 150 kHz, (c) 667 kHz.

Next, Figure 12 shows the generated sine wave signals

which are observed in the SignalTap. From these images, the

generated signals' periods observed are 40 µs, 6.65 µs, and

1.5 µs, respectively. Therefore, the frequency obtained from

these generated signals are equal to 25 kHz, 150.3 kHz, and

666.7 kHz, respectively.

(a)

(b)

(c)

Figure 12: Observation of the generated sine wave in hardware tests with

different frequencies: (a) 25 kHz, (b) 150 kHz, (c) 667 kHz.

C. Design Performance Analysis

Once the design is compiled in Altera Quartus II Design

Software, the synthesis and fitter reports are generated,

containing the information on the number of logic elements

(LE), registers, memory bits and PLL blocks used in the

design. Table 3 shows that the proposed design used 240 LEs,

111 registers, 320000 onboard memory bits and 1 PLL block.

However, when integrating the SignalTap logic analyzer to

the design, those numbers have been increased, especially for

the number of onboard memory bits used (from 320000 bits

to 426469 bits). This is due to the fact that SignalTap requires

some memory allocations in order to store the resulting data

which are to be observed.

Table 3

 Statistic of FPGA Hardware Resources Utilization for Proposed System
Implementation

Design
Hardware Resource Usage

Logic

Elements
Register

Onboard

Memory
PLL Block

Proposed

design
without

SignalTap

240
(1.5%)

111
 (0.7 %)

320000
(62.0%)

1
(25.0%)

Proposed
design

with

SignalTap

1387

(9.0%)

1110

(7.0%)

426469

(83.0%)

1

(25.0%)

For further improvements, the system could produce

signals with more accurate frequency by increasing the

frequency of the sampling clock and also by adding more pre-

calculated data inside the lookup table. The latter is only

possible to be done by removing the integrated SignalTap

logic analyzer since the number of available memory bits is

limited. Instead, a digital-to-analog converter (DAC) could be

added and thus, the output signal can be visualized by using

the oscilloscope. Otherwise, a larger FPGA with more

memory spaces can be used, but it will come with greater

costs.

Journal of Telecommunication, Electronic and Computer Engineering

24 e-ISSN: 2289-8131 Vol. 10 No. 1-2

Moreover, more features need to be added to this proposed

design to make it more useful to users. For example, common

signal types like triangle, sawtooth and pulse should be added

as an option. Besides, functionalities such as amplitude and

phase adjustment will be very useful in many applications.

Furthermore, it is also possible to have a multi-channel

function generator, where two or more signals can be

generated simultaneously. But, this one may depend on the

FPGA device capabilities in term of hardware resources.

VII. CONCLUSION

This paper has discussed on the development of an

interactive digital sine wave function generator based on

FPGA device. The frequency of the generated sine wave can

be adjustable simply by increasing or decreasing the

incremental step of the address of a memory, which contains

20000 sine wave sample data. Furthermore, the generation of

the signal can be configured from a GUI on a PC which is

connected to the FPGA via RS-232 serial communication.

The proposed system has been successfully implemented in

FPGA and the GUI was developed by using Processing

language. The observation of the simulation results and the

hardware experimental results shows the proposed system has

produced the correct signals as the output, with accurate

frequencies.

ACKNOWLEDGMENT

The authors wish to acknowledge Universiti Teknikal

Malaysia Melaka (UTeM) for the financial funding under

Grant No. PJP/2015/FTK(28D)/S01452 and providing

instrumentation devices support for this project.

REFERENCES

[1] S. Ding, A. An, and X. Gou, “Digital waveform generator based on

FPGA,” Res. J. Appl. Sci. Eng. Technol., vol. 4, no. 14, pp. 2160–2166,

2012.
[2] A. H. Tirmare, M. S. R. Mohite, V. A. Suryavanshi, T. C. Department,

B. Vidyapeeth, and E. Kolhapur, “FPGA Based Function Generator,”

pp. 2394–2399, 2015.
[3] W. Zheng, R. Liu, M. Zhang, G. Zhuang, and T. Yuan, “Design of

FPGA based high-speed data acquisition and real-time data processing

system on J-TEXT tokamak,” Fusion Eng. Des., vol. 89, no. 5, pp. 698–
701, 2014.

[4] G. Brebner and W. Jiang, “High-speed packet processing using

reconfigurable computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, 2014.
[5] X. Ye, M. Gao, and J. Huang, “12 -Way High Accuracy Sine Signal

Generator System Based on FPGA,” 2015, pp. 833–836.

[6] S. Yanbin, G. Jian, and C. Ning, “High Precision Digital Frequency
Signal Source Based on FPGA,” in Physics Procedia, 2012, vol. 25,

pp. 1342–1347.

[7] M. Herrero, J. J. Rodríguez-Andina, and J. Fariña, “FPGA-based
design, implementation, and evaluation of digital sinusoidal

generators,” in IECON Proceedings (Industrial Electronics

Conference), 2008, pp. 2459–2464.
[8] “Waveform Generator Implemented in FPGA with an Embedded

Processor by Anna Goman,” 2003.

[9] J. W. Hsieh, G. R. Tsai, and M. C. Lin, “Using FPGA to implement a

N-channel arbitrary waveform generator with various add-on

functions,” in Proceedings - 2003 IEEE International Conference on
Field-Programmable Technology, FPT 2003, 2003, pp. 296–298.

[10] Christopher E. Strangio, “The RS232 Standard,” CAMI Research Inc.,

Acton, Massachusetts, 2015. [Online]. Available:
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.ht

ml.

[11] C. Reas and B. Fry, Getting Started with Processing. Sebastopol, CA:
O’reilly Media, 2010.

[12] A. Schlegel, “controlP5,” 2015. [Online]. Available:

http://www.sojamo.de/libraries/controlP5/.
[13] “DE0 Development and Education Board User Manual,” Terasic,

2009. [Online]. Available: https://www.altera.com/content/dam/altera-

www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-5804152209-de0-
user-manual.pdf. [Accessed: 23-May-2017].

