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Abstract—In this study, a new hybrid harmony search algo-

rithm with evolving spiking neural network (NHS-ESNN) for 

classification issues has been demonstrated. Harmony search 

has been used to enhance the standard ESNN model. This new 

algorithm plays an effective role in improving the flexibility of 

the ESNN algorithm in creating superior solutions to conquer 

the disadvantages of ESNN in determining the best number of 

pre-synaptic neurons which is necessary in constructing the 

ESNN structure. Various standard data sets from UCI machine 

learning are utilised for examining the new model performance. 

It has been detected that the NHS-ESNN give competitive results 

in classification accuracy and other performance measures com-

pared to the standard ESNN. More argumentation is provided 

to verify the effectiveness of the new model in classification is-

sues.  

 

Index Terms—Harmony Search; Classification; Spiking Neu-

ral Network; Evolving Spiking Neural Networks. 

 

I. INTRODUCTION  

 

Patterns classification becomes very important for various 

data mining processes. Especially, when it is used for a deci-

sion support system [1]. Various fields in existence require 

classification such as medicine, handwritten character recog-

nition, speech recognition, industry and science, medical di-

agnoses. Artificial neural networks (ANNs) can be consid-

ered as one of the robust classifiers because their ability to 

deal with noise [2]. ANNs are amongst the most well-known 

brain computational models and ANN solves problems that 

are based on standard algorithmic techniques. Spiking neural 

networks (SNNs), the third generation of ANNs, play a vital 

role in the processing of biological information [3]. Spiking 

models give an in-depth explanation of the behavior of bio-

logical neuron. More details are utilized with the computa-

tions average firing rate with actual neurons. In addition, the 

difference in firing times could be applied as an alternative of 

rate coding [4]. 

As one of the best SNN models, the evolving spiking neu-

ral network (ESNN) is utilized extensively in current studies 

as in [5], [6]. The ESNN has a number of profits [7] as being 

a competent neural model, simple and trained using a fast 

one-pass learning algorithm. The treatment of model evolv-

ing can be altered at whatever time new data becomes avail-

able with no constraint to train again the former existing in-

stances. However, the ESNN has some shortcomings, i.e. 

finding out the optimal number of pre-synaptic neurons for a 

specified data set is the mainly essential one [8], [9]. Identi-

fying the pre-synaptic neurons number is vital for the struc-

ture of ESNN like the hidden nodes or MLP. More number of 

pre-synaptic neurons enlarges the time computation whereas 

fewer of them affect the accuracy of learning. Watts [10] pre-

fers to select the parameters of evolving connectionist sys-

tems (ECOS) training automatically. Consequently, choosing 

an optimization method to carry out this parameter adaptation 

is significant. Among the various optimization techniques, 

harmony search (HS) algorithm is utilized in this paper for 

several reasons summed up as: HS method robustness, less 

HS results computation and the unnecessary derivative infor-

mation for HS [11]. Some researchers analyzed the perfor-

mance of HS compared to the other methods. According to 

Soltani et al. [12], HS is better than particle swarm optimiza-

tion (PSO) in convergence rate and time consuming. Moreo-

ver, it would be interesting to apply the hybridization of HS 

with other algorithms. Hence, this paper presents a new 

method to obtain an accurate and simple ESNN. The new al-

gorithm seeks for the optimal values to achieve better accu-

racy and better structure of ESNN to enhance performance 

for classification issues. The rest sections of this study are 

formed as follows: Section II elaborates the methods utilized 

in this paper, while Section III elucidates the found results 

and discussion; as a final point, Section IV presents the con-

clusion and future works. 

    

II. METHODS 

 

This section offers the fundamental basis of evolving spik-

ing neural network (ESNN) and explains the related algo-

rithms that have been used for improvement. 

Firstly, ESNN introduction has been presented. The second 

part concentrates on harmony search (HS) algorithm which is 

utilized for enhancing the classification performance. Finally, 

the third part focuses on the proposed method. 

 
A. Evolving Spiking Neural Network (ESNN) 

Wysoski enhanced a new model recognized as Evolving 

Spiking Neural Network (ESNN) [13]. In general, ESNN uti-

lized the evolving connectionist systems (ECOS) principles 

where neurons are created cumulatively [14, 15].  ESNN used 

the one-pass propagation of the data to learn data gradually 
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through producing and merging spiking neurons [9]. This 

method helps ESNN to achieve very fast learning [16]. The 

ESNN system can learn any new instance by producing new 

output neurons, mapping them to input neurons and merging 

with similar ones [9]. This model depends on two vital prin-

ciples: New classes forming and the Similarities merging. 

Furthermore, the population is the selected encoding method 

for ESNN as mentioned in [17]. The original ESNN algorithm 

has been motivated researchers because of the multiple ad-

vantages they offer compared to others models [9, 15, 16, 18-

21].  The ESNN algorithm flowchart is demonstrated in Fig-

ure 1.  

 
Figure 1:  A simplified architecture of ESNN (Hamed et al., 2009) 

 

B. Harmony Search Algorithm 

Geem [22] created the HS algorithm benefiting from find-

ing the harmony during the music playing. There are three 

methods to improve music: playing randomly, keeping the 

original and playing similar to the original one. For more ex-

planation, Geem indicates set three methods, for instance: 

pitch adjustment, randomization and harmony memory con-

sideration [23]. The HS algorithm consists of a number of pa-

rameters for optimization, i.e.: harmony memory size (HMS), 

harmony memory considering rate (HMCR), harmony 

memory (HM), and pitch adjusting rate (PAR). To realize the 

parameters work, HM mainly stores the available vectors in 

the space. HMS determines numbers of stored vectors. Ac-

cordingly, a new vector is created by selecting the diverse 

vectors components at random in the HM [24]. The new har-

mony memory will be affected by the effective harmonies. 

Moreover, the best value for the harmony memory consider-

ing or accepting rate (raccept) parameter must be in the range 

[0, 1]. Usually parameters values are pinpointed as raccep =0.7 

to about 0.95. Wrong solutions could be occurred if some har-

monies are not ascertained perfectly [23, 25]. In addition, the 

pitch adjustment technique can produce better solutions. The 

parameters like pitch bandwidth (brange) and pitch adjusting 

rate (rpa) are generally very important for creating new solu-

tions from existing ones. Hypothetically, the pitch can be at-

tuned linearly or non-linearly. However, linear amendment is 

utilized practically. Therefore the equation can be: 

 

*new old rangeX X b    (1) 

 

where Xold is the existing pitch or solution from the HM and 

Xnew is the new pitch after the pitch adjusting action. This typ-

ically creates a new solution via small random amount addi-

tion between [-1,1] [26].  Finally, randomization reflects the 

ability of the solutions diversity increment compared to 

global optimality achievement. HS algorithms pseudo-code 

has been elaborated in detail in [23]. The randomization prob-

ability is given by: 

 

1random acceptP r   (2) 

 

and the real probability of pitches adjusting can be indicated 

as  

 *pitch accept paP r r  (3) 

 

Our previous study investigated the hybridization of HS 

with ESNN algorithms as in [27]. However, in this paper HS 

has been applied differently in Section II.C. 

 

C. The proposed algorithm NHS-ESNN  

The new algorithm named NHS-ESNN has been explained 

in this section. Harmony search algorithm is a new HS algo-

rithm for ESNN training. The purpose of this algorithm is to 

find out the best ESNN structure (pre-synaptic neurons) via 

dealing with this problem as an optimization issue. In NHS-

ESNN, the backpropagation (BP) method is used to enhance 

the normal algorithm convergence. ESNN pre-synaptic neu-

ron is considered as a candidate. In addition, both HS, BP are 

integrated with ESNN to find out the fitness evaluation and 

the schemes of mating selection. Initially, NHS-ESNN col-

lect, normalize and read the dataset. Furthermore, both of can-

didate size and iteration maximum number are set. Moreover, 

ESNN pre-synaptic neurons are determined at random. A 

population of the new proposed algorithm is then created and 

initialized. After that, for each iteration, each candidate is 

evaluated based on the enhanced the HS algorithm. The pro-

posed algorithm ends after the maximum iterations are at-

tained. Algorithm 1 elaborates the pseudo-code of NHS-

ESNN. In the beginning, the data set has been separated into 

10 subgroups of same amount at random. One of these sub-

groups is utilized as the testing data set, whereas the remain-

ing 9 subgroups are utilized as the training data sets. The pro-

cesses of training and testing are altered so that all the sub-

groups are utilized as a testing data set. The algorithms per-

formance is examined by doing analysis on ten evaluations. 

The abilities of the new hybrid algorithm have been explored 

via a comparison with some others that have been used for 

classification problems. For the purpose of evaluating the 

new hybrid algorithm performance of classification, the com-

parisons are carried out with the standard ESNN and some 

other algorithms as differential evolution with evolving spik-

ing neural network (DE-ESNN), DE for parameter tuning 

with evolving spiking neural network (DEPT-ESNN) HS 

with evolving spiking neural network (HS-ESNN) and NHS-

ESNN methods. The results for all data sets used are exam-

ined depending on classification accuracy (ACC), geometric 

means (GM) and specificity (SPEC) for all data sets. The re-

sults of the comparison in terms of all measures are shown in 

Table 1 and Figure 2. In Table 1, the superlative results are 

highlighted in bold font. Thus, for each data set, the results of 

the new hybrid algorithm are examined and elaborated in the 

next part. The new hybrid algorithm is evaluated by using 

various standard data sets have been obtained from the repos-

itory of machine learning benchmark 

(http://www.ics.uci.edu/~mlearn/ MLRepository.html). 
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Algorithm 1: NHS-ESNN Pseudo-code  

 

 

 

III. RESULTS AND DISCUSSION 

 

This section demonstrates the findings of the new hybrid 

algorithm NHS-ESNN with other algorithms. The findings of 

NHS-ESNN are analyzed based on accuracy and other 

measures. Additionally, the experiments are carried out 10 

times in the training and testing for the whole data sets. The 

findings of the comparison based on accuracy measure, are pre-

sented in Table 1. It can be understood that NHS-ESNN achieved 

the top accuracy results for most data sets. These explorations 

indicate that NHS-ESNN gives the greatest accuracy in roughly 

the most data sets, compared to other algorithms.  Moreover, the 

results of new hybrid algorithm comprised to the remaining 

algorithms depending on GM measure are presented in Table 

1. The best GM findings are acquired from the appendicitis 

data set with 85.10%, 79.39% for the heart data set, 54.47% 

for the haberman data set and 70.92%for the liver data set.  

These investigations show the superior of the NH-ESNN al-

gorithm. 

From observation (Figure 2), NHS-ESNN is better than 

other algorithms in the entire data sets. It can be discussed 

that the new hybrid algorithm gets low specificity for imbal-

anced data set which appears through increased false positive 

case. These investigations indicate the poor performance at 

classifying the majority class by virtue of its lower specificity 

though they gain higher true positive rate in the process of 

minority class classification. 

An important conclusion can be investigated from these re-

sults: the new hybrid algorithm proves superior in most da-

tasets for all measures. Nevertheless, no specific algorithm 

can achieve the best performance for particular problems as 

supposed to the 'no free lunch theorem' [28](Wolpert and 

Macready, 1997).  

 
Table 1 

Accuracy and GM analysis for the comparison for ten-fold cross-validation 

 

Data set 
ESNN DE-ESNN DEPT-ESNN HS-ESNN NHS-ESNN 

ACC GM ACC GM ACC GM ACC GM ACC GM 

Appendicitis 48.00 57.50 44.00 47.36 68.00 65.44 70 81.87 77.20 85.10 
Haberman 67.32 52.57 73.66 47.67 72.66 18.88 76.40 53.73 78.30 54.47 

Heart    53.99 0.00 56.33 60.10 65.57 64.89 50 76.74 60.40 79.39 

Hepatitis 52.67 0.00 58.00 78.82 54.67 72.95 46.67 53.44 59.60 67.09 
Ionosphere 60.57 31.45 63.43 64.16 62.14 44.33 60 76.19 66.70 72.17 

Iris   95.99 100 86.67 100 89.33 87.50 93.33 97.04 94.50 97.15 

Liver 48.57 53.88 45.71 53.13 44.00 51.81 45.71 68.87 56.20 70.92 

 
Figure 2: SPE analysis for the comparison for ten-fold cross-validation 
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IV. CONCLUSION AND FUTURE WORKS 

 

In this study, a new algorithm NHS-ESNN was presented 

for the purpose of enhancing ESNN. An extensive research 

has been carried out linking NHS-ESNN with the standard 

ESNN and some algorithms to show the performance im-

provement of ESNN. The findings demonstrate that NHS-

ESNN has the ability to give better performance results in ac-

curacy than the other algorithms. Additionally, NHS-ESNN 

mostly gives superior findings in SPE and GM factors. The 

new findings of hybridization with ESNN inspire scientists to 

explore the effectiveness of combination with other new Meta 

heuristic algorithms for the purpose of improving ESNN. 

Moreover, it is better to investigate the effectiveness of hy-

bridization with deep learning as one of the future works. 
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