
 e-ISSN: 2289-8131 Vol. 9 No. 3-11 7

Transforming Semi-Structured Indigenous

Dictionary into Machine-Readable Dictionary

Bali Ranaivo-Malançon1, Suhaila Saee1,2, Rosita Mohamed Othman1 and Jennifer Fiona Wilfred Busu1
1Faculty of Computer Sciences and Information Technology,

2Institute of Social Informatics and Technological Innovations,

Universiti Malaysia Sarawak.

ssuhaila@unimas.my

Abstract—Creating a machine-readable dictionary for an

indigenous language is not an easy process and thus,

transforming an existing indigenous dictionary into a machine-

readable dictionary is one approach to speed up the process.

This paper presents the sequential transformation of two

bilingual Sarawak indigenous dictionaries, Melanau-Mukah-

Malay and Iban-Malay dictionaries, from their initial semi-

structured form into their structured representation. The

transformation makes use of an OCR to convert the original

PDF format of the dictionaries into HTML files, which is then

analysed by the Python HTMLParser to extract only the content

of the dictionaries. The extracted content is saved in plain text

file. To understand the original structure of each dictionary, the

textual units in the plain text file are converted into generic

symbols. The observation of the collocations of the generic

symbols yields to the writing of regular expressions that can

delimit each dictionary element. The result is a machine-

readable dictionary stored in comma-separated values format.

The inspection of each column in the comma-separated values

file indicates that the written regular expressions offer a good

coverage of the different dictionary elements present in the

studied dictionaries. Therefore, the proposed sequential

transformation is efficient in accomplishing the conversion of a

semi-structured indigenous dictionary into a structured

machine-readable dictionary.

Index Terms—Machine-Readable Dictionary; Semi-

Structured Data; Indigenous Dictionary; Regular Expressions;

Python.

I. INTRODUCTION

Creating a machine-readable dictionary (MRD) for an

indigenous language is a long-term process requiring a large

amount of lexical knowledge, human resource, and a

sufficient financial support. Thus, transforming an existing

indigenous dictionary into an MRD is one approach to speed

up the process. This paper presents the different steps needed

for the transformation.

Numerous bilingual dictionaries of indigenous languages

of Sarawak exist as either in printed or electronic form, which

is usually the electronic version of the printed one. Bilingual

MRDs are useful for many applications such as word-

processing assistance, machine translation, generating

parallel corpora [1], etc. However, transforming the

electronic version of a printed dictionary into an MRD is not

straightforward and can be challenging. The transformation

process requires a good strategy to be re-usable for any

similar type of dictionaries, with a minimum cost of

processing and human intervention. To illustrate the

application of the proposed transformation method, two

bilingual Sarawak indigenous dictionaries, Melanau-Mukah-

Malay and Iban-Malay dictionaries, are used as the case-

study. “A bilingual dictionary consists of an alphabetical list

of words or expressions in one language (the ‘source

language’) for which, ideally, exact equivalents are given in

another language (the ‘target language’).” [2]. Hence, the

source languages are Melanau-Mukah and Iban and the target

language is Malay Standard. The input dictionaries are in

PDF (Portable Document Format) and their content is semi-

structured that makes their transformation difficult. The

target dictionaries (MRDs) are structured and stored in CSV

(Comma-Separated Values) format. The proposed

transformation process consists of converting the PDF file

into a plain text file for programming language purpose, and

then at identifying automatically the different textual units

corresponding to dictionary elements for final storage. Since

each indigenous dictionary has its own structure and

information, the identification of the dictionary elements is

the only step that is dictionary-dependent. The other steps

(transformation of PDF into plain text and transformation of

annotated plain text into CSV) are totally generic. In general,

a dictionary has four types of structures. The megastructure

concerns the entire structure of the dictionary. The

macrostructure relates to the organisation of the dictionary (or

lexical) entries. The microstructure concerns the consistent

organisation of lexical information within lexical entries. The

mesostructure refers to the set of relations that exist between

lexical entries. To be able to identify each of these structures

as well as the sub-structures, a rigorous and systematic

method needs to be determined. The dictionary elements that

need to be identified are the elements of the microstructure.

Usually, they correspond to the headword, the pronunciation,

the part of speech (POS) tag, and the various senses.

However, other information can be available such as the

etymology, examples, hyphenation, translations in a target

language, etc.

II. RELATED WORK

The creation of a dictionary for indigenous, under-

resourced, and endangered languages is part of their

documentation. Today, with the spread of computer and

smart devices, a printed dictionary is no more attractive for

end-users, who are more interested in accessing information

in a fast way. Thus, a dictionary needs to be in a digital form

and the content needs to be accessible through “intelligent”

search such as searching for all lexical entries sharing the

same root (e.g. read, reader, reading, etc.) or belonging to a

specific POS like verb. An MRD can offer the answers to

these queries. However, creating an MRD from scratch is a

Journal of Telecommunication, Electronic and Computer Engineering

8 e-ISSN: 2289-8131 Vol. 9 No. 3-11

long process, and thus some researchers started to convert the

electronic versions of printed dictionaries into MRDs.

A bilingual dictionary (English-Slovene) published by

DZS and stored in SGML (Standard Generalised Markup

Language) was converted into a TEI SGML dictionary format

[3]. SGML is a standard set of codes for marking boldface,

italics, etc., in ASCII text files. TEI (Text Encoding Initiative)

provides standard SGML-based formats for various types of

texts including dictionary data. The authors used Omnimark

LE, the light version of Omnimark, a conversion

programming language for SGML. To perform the

conversion from DZS SGML DTD into TEI.dictionary DTD,

44 actions were written [3].

A script language called ABET (APL Bidict Extraction

Tool) based on APL programming language has been

developed to convert online bilingual dictionaries to MRDs

[4]. The extraction comprises four steps: text pre-processing,

header and body identification, post-processing, and

recursive header and body parsing. As stated by the authors,

“the longest ABET extraction script to date was a mere

twenty-four lines”, which “matches the data so well”.

Balabanova and Ivanova [5] presented a method for

transforming the Bulgarian valence dictionary into an XML

(Extensible Markup Language) electronic version. “The

electronic version has been built by restructuring the lexical

entries into an HPSG style of information representation and

by defining the document’s metalanguage.” [5]. HPSG

(Head-Driven Phrase Structure Grammar) is a grammar

formalism used in natural language processing for parsing the

syntax of a sentence.

Apertium is a free and open-source platform for the

development of rule-based machine translation systems. As

such, the platform requires bilingual and multilingual

dictionaries. To make the translations available on the Web,

22 Apertium bilingual dictionaries and lexicons have been

converted into RDF (Resource Description Framework) [6].

RDF is the standard model for data interchange on the Web.

The conversion goes through a few steps: analysis of the data,

selection of relevant vocabularies, modelling, URIs design,

generation, linking, and publication. URI stands for Uniform

Resource Identifier, and it is a string of characters used to

identify a resource on the Web. The authors indicated that “all

the converted dictionaries (many of them covering under-

resourced languages) are connected among them and can be

easily traversed from one to another to obtain, for instance,

translations between language pairs not originally connected

in any of the original dictionaries.” [6].

The keen interest in endangered languages has brought

Maxwell and Bills [7] to also consider the conversion of

OCRed dictionaries into structured dictionaries. This recent

work is very similar to the work reported in this paper: the

same objective and the same programming language

(Python). However, their proposed approach implies the

intervention of human to correct the recognition of the OCR.

While their separation of the different dictionary elements

goes from the identification of lexical entry boundaries first

before applying a finite state grammar to parse the internal

structure of each lexical entry. The work is still in progress

and no real result has been reported.

III. TRANSFORMATION INTO MRD

The transformation of the original PDF dictionary into

structured CSV dictionary (i.e. the final MRD) goes through

a series of processing. It starts from the textual extraction of

the content of the dictionary, followed by the text analysis and

annotation of the dictionary fields, and to finally store the

annotated data into a structured format as illustrated in Figure

1.

Figure 1: The sequential transformation

A. Motivation: irregular structure and formatting in

dictionaries

A detailed examination of the two studied indigenous

dictionaries reveals that they present irregularities in their

structure and formatting. Therefore, a direct transformation

of the dictionaries will certainly not generate the expected

MRDs. The Melanau-Mukah dictionary presents its content

in two columns (Figure 2) whereas the Iban dictionary

presents it in eight columns per page (Figure 3).

Figure 2: An excerpt of Melanau-Mukah dictionary

In Figure 2, from a very small excerpt of the Melanau-

Mukah dictionary, nine irregularities (indicated by

rectangles) can be found. The entry “ba II” does not have the

same alignment as the entry “b, B”. This inconsistency of

alignment can be seen again with the line “lain drpd yg”,

which is aligned like a headword. The derived words, which

are the sub-entries of a headword, are not formatted in the

same way. The derived word “peba [peba]” is at the same line

as the headword “ba II” and it is introduced after a semi-

column “;”. However, the other derived word “meba [meba]”

is in a newline. Not all headwords have the same position.

The headwords “baa II”, “baa III”, and “baah” are positioned

inside the description of the previous headword.

Storage in structured format

Python script:
HTMLParser & Regular expressions

for data extraction

Python script:
Regular expressions
for fields annotation

OCR softwarePDF HTML file

flat TXT file with
real symbols

annotated
TXT file

Python script:
TXT to CSVCSV

Dictionary fields annotation

Text extraction

dictionary dependent

Observation of
collocations

flat TXT file with
generic symbols

Python script:
Symbols
mapping

Transforming Semi-Structured Indigenous Dictionary into Machine-Readable Dictionary

 e-ISSN: 2289-8131 Vol. 9 No. 3-11 9

Figure 3: An excerpt of Iban dictionary

In Figure 3, the very small excerpt of the Iban dictionary

shows fewer irregularities as compared to the Melanau-

Mukah dictionary. The only problem is to get rid of the

heading texts (marked by a rectangle) during the conversion

into HTML format. Another problem, which is the main

challenge, is to obtain one column text from the eight

columns. Overall, the structure and irregularities found in the

two dictionaries are listed in Table 1.

Table 1

Summary of the structure and irregularities

Melanau-Mukah

dictionary
Iban dictionary

Layout Two columns per page
Eight columns per

page
Alignment Inconsistent Consistent

Derived words

position

Inconsistent, indicated
by different

punctuations: ‘;’ or ‘,’

Consistent and

indicated by a bullet

() symbol

Whitespaces Irregular spacing Irregular spacing

Set of

characters

48 characters: Latin
alphabet (lower and

upper-case), digit, 12

punctuations

40 characters: Latin
alphabet (lower and

upper-case), digit, 9

punctuations

Paired-

punctuations

Presence of imbalanced

punctuations; two

types: () and []

No imbalanced

punctuations; only one

type: ()

Information
provided

Headword, headword

number, pronunciation,

POS tag, sense number,
sense definition,

examples, derived

words

Headword, headword

number, POS tag,
sense number, sense

definition, examples

B. Text extraction

The objective of the text extraction is to convert the

original readable PDF dictionary file into a long sequence of

text symbols (i.e. a flat text) as shown in Figure 4. Firstly, the

original readable PDF file is converted into an HTML file

using ABBYY Finereader. Then, the HTML file is parsed

using HTMLParser and Python regular expressions to extract

the contents of specific HTML tags.

Figure 4: A flat text of dictionary content

ABBYY Finereader is a commercial optical character

recognition (OCR) with the capability of recognising texts

written in different languages such as Malay. Iban and

Melanau languages are very close to the Malay Standard [8]

and thus the use of Malay language for the recognition is the

most appropriate one compared to other languages proposed

by the OCR. HTMLParser is a Python programming language

module that allows the parsing of text files formatted in

HTML. The content of the dictionary lies between the two

HTML tags <body> and </body>. Therefore, a Python script

file was created to read an HTML file, parse it with

HTMLParser, and then save the result in a text file (Figure 5).

The saved data is then processed to combine all lines

corresponding to the tag “Data:” in order to obtain the flat text

as shown in Figure 4. The use of HTML format as an

intermediary representation is to avoid all errors that the OCR

may generate when transforming directly the PDF file into a

plain text.

As each dictionary has its own microstructure, the

conversion becomes dictionary-dependent. Therefore, for

each studied dictionary, a set of regular expressions –

corresponding to regular patterns in the dictionary – was

written in Python to parse the text lines and divide them into

dictionary fields. The process goes through three main steps:

(1) converting the flat text into generic symbols, (2) observing

the contextual environment of selected generic symbols using

a collocation tools, and (3) writing the regular expressions for

dictionary field separation.

A Python script was created to map each textual unit into a

corresponding generic symbol as indicated in Table 2. All

punctuation symbols and any other symbols like bullet (•)

remains as they are with whitespaces inserted around them. A

sample of that conversion is shown in Figure 7.

 b, B [bi] kn 1 huruf ke-2 abjad Rumi; 2 penanda ke-2 dim urutan, mutu, gred, dll. ba I [ba] kn

1 huruf kedua abjad Arab yg bernilai dua; 2 huruf kedua abjad Jawi. ba II [ba] kk buka; peba [peba]

berbuka ~ puasak ber- buka puasa; meba [meba] membuka; 1 menjadi tidak tertutup teraweng

membuka

Journal of Telecommunication, Electronic and Computer Engineering

10 e-ISSN: 2289-8131 Vol. 9 No. 3-11

Table 2

Generic symbols for text conversion

Symbol Description Examples

W for any sequence of letters nyapakka  W

D
for any sequence of digits indicating

sense number

1.  D .

1  D

% for any POS tags
vb.  % .

kn  %

$
for any Roman numerals as

structural markers of headwords
II  $

IV.  $.

C. Dictionary fields annotation

The next step is to analyse and convert the flat text into

separated fields that constitute the microstructure of the

dictionary. The most challenging part is to find the regular

patterns that can be used to separate the flat text into

dictionary fields. Figure 6 illustrates the purpose of the

separation. The indentations in that Figure have been added

for the reader’s convenience only.

Figure 5: A sample of extracted HTML content

Figure 6: From sequence of lines into dictionary fields

Figure 7: A sample of converted text

The next step corresponds to the observation of the

collocations of the symbols D, %, $, and punctuations to

determine their contextual environment, that is, to find the

most frequent symbols on their left and right sides. This

information is used to write the most appropriate regular

expression. For example, in the Iban dictionary, Roman

numerals (% symbol) occurs 16 times and the symbols

occurring on its left and right sides are displayed in Table 3.

A simplified form of the Python regular expression that

delimits the Roman numerals is then written as newtext=

re.sub(" I ", " <entrynum>I<\entrynum> ", text). The reading

of the regular expression is as follows: substitute (sub) in the

variable text, all expressions of the form “ I ” (a capital I

surrounded by whitespaces) by “ <entrynum>I<\entrynum>

”, and save the result in the variable newtext.

StartTag: body

Data:

StartTag: table

attr: ('cellpadding', '5pt')

Data:

StartTag: tr

Data:

StartTag: td

attr: ('valign', 'top')

attr: ('width', '50%')

Data:

StartTag: p

attr: ('style', 'text-align:justify;padding:0pt 0pt 0pt 12pt;')

StartTag: span

attr: ('class', 'font0')

Data: b, B [bi]

EndTag: span

StartTag: span

attr: ('class', 'font0')

attr: ('style', 'font-style:italic;')

Data: kn

EndTag: span

StartTag: span

attr: ('class', 'font0')

Data: 1 huruf ke-2 abjad Rumi; 2 penanda ke-2 dim urutan, mutu, gred,

HEADWORD b, B
 PRONUNCIATION [bi]
 POS TAG kn
 SENSES
 SENSE 1 huruf ke-2 abjad Rumi;
 SENSE 2 penanda ke-2 dim urutan, mutu, gred, dll.
HEADWORD ba
 HEADWORD NUMBER I
 PRONUNCIATION [ba]
 POS TAG kn
 SENSES
 SENSE 1 huruf kedua abjad Arab yg bernilai dua;
 SENSE 2 huruf kedua abjad Jawi.
HEADWORD ba
 HEADWORD NUMBER II
 PRONUNCIATION [ba]
 POS TAG kk
 SENSES
 SENSE buka;
 DERIVED WORDS
 HEADWORD peba
 PRONUNCIATION [peba]
 SENSES
 SENSE berbuka ~ puasak ber- buka puasa;
 HEADWORD meba
 PRONUNCIATION [meba]
 SENSES
 SENSE membuka;
 SENSE 1 menjadi tidak tertutup teraweng membuka Jendela;

 SENSE 2 mengembangkan layah membuka layar; …

 b, B [bi] kn 1 huruf ke-2 abjad Rumi; 2 penanda ke-2 dim

urutan, mutu, gred, dll. ba I [ba] kn 1 huruf kedua abjad

Arab yg bernilai dua; 2 huruf kedua abjad Jawi. ba II [ba] kk

buka; peba [peba] berbuka ~ puasak ber- buka puasa; meba

[meba] membuka; 1 menjadi tidak tertutup teraweng

membuka Jendela; 2 mengembangkan layah membuka layar;

W $ % . D . W - W % W W ' . D . W W ' (W % W ' W , W , W .) . • % W % . D . % W D . W W
% W W ' % W ’ W ' . D . % W . W % . D . W ' % W W W W ' W W ' W ; W ; W ; W W W W ' W
. D W W , W W ' W W W W ' W W ’ W W W ’ W W . D . % W W W ' W , W W % W W % W %
W W W W ; W . • % W % . % W W ; W ; W ; % W ; % W W W % W W W W W W % W

Transforming Semi-Structured Indigenous Dictionary into Machine-Readable Dictionary

 e-ISSN: 2289-8131 Vol. 9 No. 3-11 11

Table 3

Left and right side of Roman numerals in Iban dictionary

Left Freq. Left Freq. Right

Word (W) 13 2

POS tag (%) 0 14

Apostrophe (‘) 3 0

The observation of the collocations yields to the writing of

eight and nine regular expressions for dividing the elements

in the Iban and Melanau-Mukah dictionaries respectively.

D. MRD storage

Once each dictionary element is annotated, it can be

extracted and stored in a more structured form. In this study,

the final MRD is stored in CSV file. When the information is

not provided in the original dictionary, the field is filled with

the string “NONE”.

Table 4

Melanau-Mukah-Malay MRD stored in CSV format

IV. CONCLUSION AND FUTURE WORK

This paper describes the three-sequential stages for

transforming indigenous dictionaries saved in PDF file into

structured dictionaries stored in CSV format. The most

challenging part of the transformation is the automatic

identification of dictionary fields in a sequence of strings. The

proposed solution is the writing of a set of regular expressions

obtained by the observation of the regular patterns in the

sequence of strings. The research is still in progress but this

paper has presented the outline of the proposed method. In

near future, the transformation method will be applied to the

complete indigenous dictionaries, and the result will be

incorporated in Kirrkirr, a dictionary writing system, to

visualise the errors, inconsistencies, and incompleteness.

ACKNOWLEDGEMENTS

This work is supported by Special Funding for Research

Institutes through I03/SpFRI/1430/16/7. The authors thank

Universiti Malaysia Sarawak for providing the resources used

in the conduct of this study.

REFERENCES

[1] Bakliwal, V. V. Devadath, and C. V. Jawahar, "Align Me: A framework

to generate parallel porpus psing OCRs & bilingual dictionaries,"

Proceedings of the 6th Workshop on South and Southeast Asian
Natural Language Processing, Osaka, Japan, pp. 183-187, 2016.

[2] E. H. Klapicová, "Composition of the entry in a bilingual dictionary,"

SKASE Journal of Theoretical Linguistics, vol. 2, no. 3, pp. 57-74,
2005.

[3] T. Ejarvec, and N. Ide, "Markup enhancement: Converting CEE
dictionaries into TEI, and beyond," In F. Kiefer, G. Kiss, & J. Pajzs

(Ed.), Papers in Computational Lexicography COMPLEX'99

Linguistics Institute, Budapest: Hungarian Academy of Sciences, pp.
211-217, 1999.

[4] J. Mayfield and P. McNamee, "Converting On-Line Bilingual

Dictionaries from Human-Readable to Machine-Readable Form,"
SIGIR’02, Tampere, Finland: ACM, 2002.

[5] E. Balabanova, and K. Ivanova, "Creating a machine-readable version

of Bulgarian valence dictionary: (A case study of CLaRK system
application)," First Workshop on Treebanks and Linguistic Theories

(TLT2002), Sozopol, Bulgaria, pp. 1-12, 2002.

[6] J. Gracia, M. Villegas, A. Gómez-Pérez, and N. Bel, "The apertium
bilingual dictionaries on the web of data," Semantic Web -

Interoperability, Usability, Applicability, pp. 1-10, 2017.

[7] M. Maxwell and A. Bills, "Endangered data for endangered languages:
Digitizing print dictionaries," Proceedings of the 2nd Workshop on the

Use of Computational Methods in the Study of Endangered Languages,

Honolulu, Hawai‘i, USA: Association for Computational Linguistics,
pp. 85-91, 2017.

[8] E.-L. Ng, A. W. Yeo, and B. Ranaivo-Malançon, "Identification of

closely related indigenous languages: An orthographic approach,"
Proceedings of the International Conference on Asian Language

Processing (IALP), Singapore: IEEE, pp. 230-235, 2009.

[9] B. Karagol-Ayan, D. Doermann, and A. Weinbe, "Adaptive
transformation-based learning for improving dictionary tagging," 11th

Conference of the European Chapter of the Association for Computer

Linguistics, Trento, Italy: EACL, The Association for Computer
Linguistics, pp. 257-264, 2006.

[10] A. A. Krizhanovsky, "Transformation of Wiktionary entry structure

into tables and relations in a relational database schema," Computing

Research Repository (CoRR), 2010. Retrieved June 2017, from

https://arxiv.org/abs/1011.1368

[11] M. Padró, N. Bel, and S. Necsulescu, "Towards the fully automatic
merging of lexical resources: A step forward," LREC 2012 Workshop

on Language Resource, Istanbul, Turkey: European Language

Resources Association, pp. 8-14, 2012.

Id Entry EntryNum Pron POS Definition

1 <entry>b, B<\entry> <entrynum>NONE<\entrynum> <pron>[bi]<\pron> <pos>kn<\pos> <def><sensenum>1<\sensenum> huruf ke-2 abjad Rumi;<sensenum>2<\sensenum> penanda ke-2 dim urutan, mutu, gred, dll.<\def>

2 <entry>ba<\entry> <entrynum>I<\entrynum> <pron>[ba]<\pron> <pos>kn<\pos> <def><sensenum>1<\sensenum> huruf kedua abjad Arab yg bernilai dua;<sensenum>2<\sensenum> huruf kedua abjad Jawi.<\def>

3 <entry>ba<\entry> <entrynum>II<\entrynum> <pron>[ba]<\pron> <pos>kk<\pos> <def>buka;<\def>

4 <entry>peba<\entry> <entrynum>NONE<\entrynum> <pron>[peba]<\pron> <pos>NONE<\pos> <def>berbuka ~ puasak ber- buka puasa;<\def>

5 <entry>meba<\entry> <entrynum>NONE<\entrynum> <pron>[meba]<\pron> <pos>NONE<\pos> <def>membuka;<sensenum>1<\sensenum> menjadi tidak tertutup teraweng membuka Jendela;<sensenum>2<\sensenum> mengembangkan layah membuka layar;<sensenum>3<\sensenum> menghidupkan lampu, kipas, TV, dll radio mem-buka radio;<sensenum>4<\sensenum> menebang, menebas, meneroka kebun balau membuka kebun rumbia;<sensenum>5<\sensenum> memberi peluang, mengadakan peluang, dll pelu- wang kereja membuka peluang ker- ja;<sensenum>6<\sensenum> memulakan sst, mengurus sst spt perbicaraan, mesyuarat, dll sekul membuka sekolah;<sensenum>7<\sensenum> mendedahkan, memperlihatkan ~ resia membuka rahsia;<sensenum>8<\sensenum> menimbulkan rasa ingin akan sst atau mahu melakukan sst kukaih lieng membuka nafsu, membuka selera;<sensenum>9<\sensenum> mengumumkan sst sudah sedia utk digunakan upih baou membuka pejabat baru;<\def>

6 <entry>neba<\entry> <entrynum>NONE<\entrynum> <pron>[neba]<\pron> <pos>NONE<\pos> <def>dibuka;<\def>

7 <entry>terahba<\entry><entrynum>NONE<\entrynum> <pron>[terahba]<\pron> <pos>NONE<\pos> <def>NONE<\def>

8 <entry>tahba<\entry> <entrynum>NONE<\entrynum> <pron>[tahba]<\pron> <pos>NONE<\pos> <def>terbuka.<\def>

9 <entry>ba<\entry> <entrynum>III<\entrynum> <pron>[ba]<\pron> <pos>NONE<\pos> <def>NONE<\def>

