

 e-ISSN: 2289-8131 Vol. 9 No. 3-11 1

Capturing Service Versioning in Provenance Trace

to Support Reproducibility

Dayang Hanani Abang Ibrahim, Chiew Kang Leng and Nadianatra Musa
Faculty of Computer Science and Information Technology,

Universiti Malaysia Sarawak, Kota Samarahan, 94300 Sarawak, Malaysia.

hananii@unimas.my

Abstract—Reproducibility has long been a cornerstone of

science. Underpinning reproducibility is provenance, which has

the potential to provide scientists with a complete understanding

of data generated in e-experiments, including the services that

were produced and consumed. A key to reproducibility is the

provenance model: a data model that structures information

about an e-experiment. When all the entities in the experiment

have been identified, they must be captured and recorded as a

provenance trace. The provenance trace gives information

about the actual execution of an experiment. Therefore, in

running an experiment, the creation of the final results that are

derived from the input data are documented in a provenance

trace. This paper describes in greater detail the

conceptualization of an experiment using the Open Provenance

Model (OPM). As Open Provenance Model (OPM) is the

provenance model standard, this paper explores whether the

OPM is able to describe an experiment sufficiently precisely so

as to support reproducibility. The paper also addresses the issue

of how to ensure that the versions of services involved in the

experiment can remain available, as service versioning is part of

essential requirements in reproducibility.

Index Terms—Provenance; Provenance Trace; Service

Versioning;

I. INTRODUCTION

Over the years, the research community has realised that a

major problem in sharing its research experiments with

others, is the inability to reproduce past experiments. This

problem is caused by 1) insufficient information describing

the experiment and 2) research (experimental) artifacts and

processes (services) that are not available. This

reproducibility process therefore needs provenance

information to describe the execution of the experiment in a

way that can allow reproduction. In addition, the

experimental artifacts and services should be made accessible

for later use. Therefore, the essential concepts underlying the

reproducibility of experimental results are capturing the

computation, along with the data on which it operates. In

service-based e-science, the fundamentals of a computation

are processes that take inputs and transform them into

outputs. Therefore, the processes and all the datasets that are

involved must be captured in order to allow reproduction.

As Open Provenance Model (OPM) is the provenance

model standard [1], this work explores whether the OPM is

able to describe an experiment sufficiently precisely so as to

support reproducibility. The paper also addresses the issue of

how to ensure that the versions of services involved in the

experiment can remain available, as service versioning is part

of essential requirements in reproducibility.

The objectives of this paper are therefore:

 To describe how the Open Provenance Model (OPM)

can describe a class of experiments, so forming the

basis for reproducibility.

 To introduce service versioning into provenance.

II. MOTIVATION

In this work, the motivation is as follows:

A. Capturing Experiments Using Open Provenance

Model (OPM)

Capturing experiments involves recording information on

experimental components, procedures and versions. There

are two main aspects of OPM: content and structure. Content

refers to the components embedded in the data model, while

structure reflects the organisation of the components in the

model. The content of the OPM model captures the meaning

of specific entities in the data model. It contains nodes

encompassing artifacts (data inputs and outputs of fixed

value), processes (services) and agents (a catalyst or

controller of a service), that reflect an experiment's execution.

Along with these entities are the edges, also known as causal

dependencies that make the connections between the entities.

There are five types of causal dependencies in OPM;

opm:used, opm:wasGeneratedBy, opm:wasTriggeredBy,

opm:wasDerivedBy and opm:wasControlledBy. Causal

dependencies are essential in reproducibility, which requires

identifying the cause and effect in the experiment (X was

caused by Y) and the linkage between them. For example, this

OPM model structure allows an OPM model to describe how

an output was derived from an input. To illustrate the use and

limitations of OPM for capturing e-experiments, the next

section introduces what will be a running example and the

OPM graph it generates.

B. An Exercise Advisor Example

To illustrate the use of OPM, an example of consuming

multiple services was created. This uses an experiment to

recommend exercise activities based on a person's body mass

index. There are three services (processes) involved in this

application, namely Calculate BMI to calculate a person's

Body Mass Index (BMI) based on their height and weight,

Check BMI Category to categorise a person body

classification, and Recommend Exercise Activity to advise

the appropriate exercise activities. Examining the description

of an Exercise Advisor yields a list of the execution activities

in the experiment:

1. The value of Height and Weight are filled in at the

input interface by users (Input1 and Input2).

2. A process that takes both Height and Weight produces

Journal of Telecommunication, Electronic and Computer Engineering

2 e-ISSN: 2289-8131 Vol. 9 No. 3-11

an output, a BMI Score. A service called Calculate

BMI is used to compute this.

3. The value of BMI Score is taken as an input for Check

BMI Category service. The output of this process is the

BMI Category.

4. The value of BMI Category is taken as an input for

Recommend Exercise Activity service. The output of

this process is the Exercise Activity.

5. The sequence of tasks in this application: Firstly,

Height and Weight are used for the service Calculate

BMI and a BMI Score is generated by this service.

Secondly, the BMI Score is used for the service Check

BMI Category and a BMI Category value is generated.

Thirdly, the BMI Category is used for the service

Recommend Exercise Activity and generates the

recommended Exercise Activity which is the final

result of the computation.

A systematic analysis of the list of execution activities

above suggests the following list of possible artifacts,

services (processes) and dependencies, as shown in Table 1:

Table 1

The artifacts, service and dependencies involved in the Exercise Advisor
experiment

Artifacts
Processes
(Services)

Dependencies

Height
Service 1 (S1)
Calculate BMI

Used
Weight

BMI Score wasGeneratedBy
BMI Score Service 2 (S2)

Check BMI

Category

Used

BMI Category wasGeneratedBy

BMI Category Service 3 (S3)

Recommend
Exercise Activity

Used

Exercise
Activity

wasGeneratedBy

There are five artifacts, three services and two types of

dependencies involved in the experiment. The activities 1-5

are illustrated in the OPM diagram as in Figure 1.

Figure 1 illustrates the OPM graph of the Exercise Advisor

example which depicts the inputs, services and outputs. The

round shapes are the artifacts, the square shapes are the

services (processes), while types of edges are used and

wasGeneratedBy. This graph will generate a document which

is called a provenance trace. This will be described in next

section.

After the Exercise Advisor is used by the public, consider

a scenario where the users have noticed that the

recommended Exercise Activity is not providing a suitable

activity. Some users suffer knee pain, and some users are

suffering from asthma after following the recommended

exercises. This leads to an improvement to the current

Recommend Exercise Activity service to include new

parameter of Body Condition before recommending an

activity. This service update is due to some activities are not

suitable if a person is suffering from some complications such

as asthma, knee pain, heart problems, pregnant and many

more. Therefore, Body Condition will take into account these

complications prior to recommend a suitable exercise

activity.

An additional scenario is to include a person's daily free

time as requested by the users due to their daily tight schedule

that prevents them from doing the recommended activities.

Therefore, by adding another new input parameter Daily Free

Time to the existing service forces the service to have another

service update.

From the above scenarios, the Recommend Exercise

Activity has changed from initial version to a second version

and third version of service update.

Figure 1: OPM representing the experiment to compute Exercise Advisor

C. Capturing the provenance trace

When all the entities in the experiment have been

identified, they must be captured and recorded as a

provenance trace. The provenance trace gives information

about the actual execution of an experiment. Therefore, in

running an experiment, the creation of the final results that

are derived from the input data are documented in a

provenance trace. A provenance trace captures execution

activities. Taking an idea from [2], this work uses OPM to

represent the components in the experiment. The OPM

provenance content and structure is therefore now described.

In the document, OPM is represented as an XML document

conforming to an OPM schema. The document shows how

input data (artifacts) are transformed into output results (an

artifact) through a sequence of services (processes), with

causal dependencies that clearly show the causes and effects

to the outputs.

D. A gap in provenance trace

OPM is sufficient to describe the components of

experiments and also the execution orders of experiments.

The previous sections show that achieving reproducibility

requires a provenance trace which is described based on the

provenance model, as illustrated in Figure 2.

Figure 2: The dependency of provenance for reproducibility

Capturing Service Versioning in Provenance Trace to Support Reproducibility

 e-ISSN: 2289-8131 Vol. 9 No. 3-11 3

However, service versioning information is needed. It is

added here through OPM annotations and OPM causal

dependencies, based on the rules specified in the OPM

Annotation Framework as presented in [3]. Annotations in

OPM can be held independently as an annotation entity, or

can be added to other OPM nodes and artifacts.

Even if information about versioning is available, this is not

sufficient for reproducibility, as there is no automatic

mechanism in provenance to ensure that all the multiple

versions of the same service remain available. Further, if

multiple versions of services are preserved, the annotation

information must link to the appropriate version so that it can

be used in re-execution.

Therefore, the design of a system to allow the re-execution

of experiments that include services that may have been

updated must be able to support:

 Preserving old versions of services.

 Being able to call old versions of services.

III. METHOD

In this section, the focus is extending the current OPM to

support versioning of web services. According to [4],

versioning is important because web services evolve over

time due to many reasons. An OPM model has three main

nodes and five types of edges representing the causal

dependencies. The nodes as illustrated in Figure 3 denotes the

occurrences; artifact, process and agent. The edges are used

to describe the causal relationship between the occurrences,

for example how X is caused by Y. In this paper, the focus is

on web services, thus an extension of edges to incorporate the

services versioning issues is proposed to be included in an

OPM model. To recall, the OPM process node can also

represent a service. Process and service have the same

meaning, where both take input (artifact) and produce output

(artifact). This extension is expressed by the attribution

service metadata, for example when a particular service is

created, what the version is and how the multiple versions of

the same service are linked together as one collection.

Figure 3: Open Provenance Model

In order to extend the current OPM edges is by taking the

similar concept of an opm:wasDerivedBy edge that expresses

the relationship from an artifact to another artifact. It

describes an update of an artifact resulting to a new artifact.

The derivation between the artifacts exists after performing

or going through a process. This work is dealing with the

derivation of services, an update of one service resulting to a

new service.

Another edge type in OPM that involves process is

opm:wasTriggeredBy edge that expresses the relationship

between processes (services), where Service 1 is required to

have started and completed in order to start Service 2. This

condition differs from versioning, as the two different

services may not have been related to each other and may not

have been referred to the same original service. Therefore,

opm:wasTriggeredBy edge is not applicable for the case of

versioning.

In web services, the services can develop from one service

to another service. The two services refer to two different

services which distinguished from each other but came from

the original same service. Unfortunately, the representation

of how the service was changed from one service version to

the other version of service is not available. No current

relation in OPM is defined to link the service versions, thus

an extension of the edges type in OPM is required. This paper

introduces an extension of the edges type in causal

dependencies with opm:wasVersionOf. [5] believed that if

there is a relationship that shows the dependency of the

versions of a service, this will allow for future tracing.

The extension structure that incorporates versioning has

three characteristics that describe the derivation for multiple

versions of services of the original service. The

characteristics are described as follows:

 Each version is an enhancement that requires changes

to a previous version of the same service.

 The next version of service is different from the

previous service version, the expanding to the original

service. This leads to the chain of services: Sv1 -> Sv2

-> Sv3 -> Sv4, the last is the latest version of the

service as shown in Figure 4 as below.

 A set of services, thus a collection. Extension of

attribution of a causal relationship to provide further

information on how one occurrence relates to the

previous occurrence.

Figure 4: The model wasVersionOf edge

Each service can change from time to time, thus we present

it as different versions of that particular service. In this work,

an OPM generator integrates with Service repository and

Experiment repository as shown in Figure 5. Service

repository contains information on wsdl and tModel that

include service version information. The service version

information includes date of service creation and service

versioning naming that supports minor and major releases.

Upon an execution run in a Web Service Architecture system,

the input and output data parameters are stored in Experiment

repository.

Journal of Telecommunication, Electronic and Computer Engineering

4 e-ISSN: 2289-8131 Vol. 9 No. 3-11

Figure 5: OPM Generator

Why are web services important in this work? Rather than

adopting a specific programming, publishing algorithms as

web services is an option for user. User can use the available

web services through execution environments. The WSDL

can be registered by the service provider (owner) to service

registry to publish the location of available services.

However, what happens if the services have been removed by

their owners? The service may become inaccessible.

Therefore, if service version is recorded, another alternative

of same services can be recommended. The tracing of these

services is possible. It is recommended that service

versioning is recorded at the early stage of service creation by

the service provider (owner).

By using the data from these two repositories, OPM

Generator generates an OPM provenance trace. To generate

wasVersionOf causal dependency in OPM trace, OPM

Generator takes the service versioning naming and service

creation date information from service repository to

recommend the appropriate version of a service to be used.

OPM Generator will take alternate service that created prior

to the services used during the execution run. If the service

used is the first version, thus no prior version, therefore OPM

Generator will take a service with the date of service creation

greater than the service is used. The example of the OPM

extension opm:wasVersionOf is described as follows:

 Constraints: No existing OPM edge of expressing the

versioning relationship of one service to another

service.

 Proposed Approach: An extension to have a new

opm:wasVersionOf edge to express the link of service

versions.

 Description: A service occurred and the service has

changed from one service version to the other version

of service.

 Example: The Service3V1 is opm:wasVersionOf

Service3V2, thus the next version of service

(Service3V2) is different from the previous service

version (Service3V1). In other words, Service3V1

preceded or exist first before Service3V2.

For example, an execution run that shows the versioning

relationship from one service S3v1 to another service. The

example consists of using three services to calculate a

person's Body Mass Index (BMI) (S1), check the category

(S2) and recommend exercise activity (S3). The existing

service, S3 is updated to a new version with added

parameters. The S3 now has an updated version of S3v2. The

OPM trace to illustrate the model of wasVersionOf for the S3

version 1 and the new S3 version 2 is presented in Figure 6.

The wasVersionOf edge describes the derivation of two

versions of the same service, namely myActivity1a is a newer

version of myActivity1. The cause and effect explicitly

describe the link between the two services based on the date

of service creation. This information is essential to provide

alternative service which is the nearest version in case the

current service is not available or missing. Thus,

myActivity1a is an alternate service with the date of service

creation greater than myActivity1.

Figure 6: wasVersionOf in OPM trace

The provenance trace must describe the version of the

service used in the execution. Using the tModel approach, one

WSDL corresponds to one tModel. This means that the

WSDL location in OPM trace uniquely indicates the specific

version of the service used in the execution. A unique WSDL

location is recorded that indicates a particular version of a

service. Additionally, execution information providing a

timestamp of each call to a service is recorded in OPM trace.

As in jUDDI Registry, the timestamp of each service created

is recorded. These time properties are essential as additional

information to work out which version of the service was in

used at the time of the service execution.

The features of the tModel have not previously been fully

exploited in supporting provenance. Therefore, it is

recommended that to achieve reproducibility, the service

developer should register every new web service interface

with jUDDI using the service versioning convention. By

using tModel, the developer can now preserve the multiple

versions of the same service.

The main benefits of the tModel approach to supporting

service versioning are:

 The tModel approach exploits the existing jUDDI

registry standards and implementations.

 The tModel and its categorization feature facilitate the

discovery of versions of a service.

Therefore tModel name and time properties are introduced

in OPM trace to make comparison of time at execution with

time service created can facilitate a service version discovery.

The tModel approach is described in detail to facilitate

service publishing and discovery. Including the

categorization information in tModel helps to preserve all

versions of the same service and making it easier to discover

and call the version of services accordingly. However, that is

only possible if we are in control of creating and updating the

services. For somebody on the consumer side, this is not

possible. Therefore tModel name and time properties are

introduced in OPM trace to make comparison of time at

execution with time service created can facilitate a service

version discovery.

IV. DISCUSSION

This paper discussed how the Open Provenance Model is

able to describe experiments. It has described the provenance

content and structure of OPM using a provenance trace. This

provenance trace is able to explain and reason about an

Capturing Service Versioning in Provenance Trace to Support Reproducibility

 e-ISSN: 2289-8131 Vol. 9 No. 3-11 5

experiment. Each experimental result has a provenance trace

showing how the results were derived. A gap was noted in

existing provenance systems in addressing the issue of

service versioning. Additional information on versioning is

needed to be recorded in OPM that is "wasVersionOf" for a

comprehensive description of which version of services that

the experiment used. The tModel approach is described in

detail to facilitate service publishing and discovery. Including

the categorization information in tModel helps to preserve all

versions of the same service and making it easier to discover

and call the version of services accordingly. However, that is

only possible if we are in control of creating and updating the

services. For somebody on the consumer side, this is not

possible. It is recommended that service versioning is handled

at the early stage of service creation by service provider or

service owner. Therefore, tModel name and time properties

are introduced in OPM trace to make comparison of time at

execution with time service created can facilitate a service

version discovery.

ACKNOWLEDGEMENTS

The funding for this project is made possible through the

research grant obtained from UNIMAS and the Ministry of

Education, Malaysia under the Fundamental Research Grant

Scheme 2/2013. [Grant No:FRGS/ICT01(01)/1073/

2013(19)]. The authors would also like to thank Universiti

Malaysia Sarawak for providing the resources used in the

conduct of this study.

REFERENCES

[1] The OPM Provenance Model (OPM) – Open Provenance Model

Website. Available online at http://openprovenance.org/.
[2] P. Groth, S. Munroe, S. Miles, and L. Moreau, “Applying the

Provenance Data Model to a Bioinformatics Case,” In Grandinetti,

Lucio (eds.) High Performance Computing and Grids in Action, IOS
Press, Advances in Parallel Computing, 16, pp. 250-264, 2008.

[3] L. Moreau, B. Clifford, J. Freire, J. Futrelle, J. Gil, P. Groth, N.

Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simhan, E.
G. Stephan, and J. V. D. Bussche, “The Open Provenance Model core

specification (v1.1),” Future Generation Computer System, vol. 27, no.

6, pp. 743–756, Jun. 2011.
[4] S. Vinoski, “The more things changed,” Internet Computing, vol. 8, no.

1, pp. 87-89, 2004
[5] D. H.Abang Ibrahim, “The Exploitation of Provenance and Versioning

in the Reproduction of e-Experiments,” PhD Thesis, Newcastle

University, United Kingdom, 2016.

