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Abstract—In this study, the median time-to-signal (MTS) is 

used as an alternative measure to the average time-to-signal 

(ATS) in evaluating the performance of the variable sampling 

interval (VSI) multivariate exponentially weighted moving 

average (MEWMA) chart. Although the ATS is one of the most 

commonly used performance measures when the sampling 

interval is varied, it is not an accurate representation of the 

entire time-to-signal distribution of the VSI charts. Therefore, 

the percentage points (percentiles) of the time-to-signal 

distribution are provided for a more comprehensive study of the 

VSI MEWMA chart. A Monte Carlo simulation is used to 

calculate the MTS values for various magnitudes of shifts in the 

process mean vector. The optimal design strategy is to find the 

charting parameters having the minimum out-of-control MTS 

(MTS1). A comparison study shows that the VSI MEWMA chart 

is more effective than the standard MEWMA chart with fixed 

sampling interval, in detecting shifts in the process mean vector 

in terms of the MTS. 

 

Index Terms—Median Time-To-Signal; Multivariate 

Exponentially Weighted Moving Average Chart; Simulation; 

Variable Sampling Interval. 

 

I. INTRODUCTION 

 

One of the most popular statistical tools for continuous 

process monitoring is the control charts. In most practical 

situations, the quality of a product may depend on two or 

more characteristics which need to be monitored 

simultaneously to control the quality of the whole process and 

consequently, gives rise to the development of the 

multivariate control charts. For example, the multivariate 

exponentially weighted moving average (MEWMA) chart 

introduced by Lowry et al. [1] was found to be more effective 

than the Hotelling’s T2 chart in detecting small changes in the 

process mean vector. For recent literature on the MEWMA 

chart, see Chen et al. [2], Nishimura et al. [3], Park and Jun 

[4], Cheng et al. [5], Kim et al. [6] and Saleh and Mahmoud 

[7]. 

The usual practice of using a control chart for process 

monitoring is to take samples of fixed size from the process 

at a fixed sampling interval. The variable sampling interval 

(VSI) is one of the adaptive features of interest in control 

chart applications. The VSI charts work by varying the 

sampling interval according to the plotted statistics of the 

process data. Numerous findings showed that the VSI charts 

are able to detect shifts in the process faster than their 

corresponding standard charts. For the detailed discussion on 

recent development of the VSI charts, interested reader may 

refer to Chew et al. [8], Ershadi et al. [9], Guo and Wang [10], 

Patil and Shirke [11], Zhang et al. [12] and Amdouni et al. 

[13]. 

The statistical performance of the control charts is usually 

evaluated in terms of their run-length, which is the number of 

plotted chart statistic until an out-of-control signal is detected. 

For example, the average run-length (ARL) is commonly 

used as a performance measure for control charts. However, 

the time-to-signal is not a constant multiple of the ARL when 

the sampling interval is varied. Hence, the average time-to-

signal (ATS), which is defined as the average time from the 

beginning of a process until the chart triggers an out-of-

control signal is often used in the VSI charts [14]. In practice, 

the steady-state case is usually considered, where the process 

is initially in-control and then shifted out-of-control at some 

random time in the future suggesting the use of the steady-

state average time-to-signal (SSATS) [15].  

It is sensible to note that the ATS and SSATS do not 

represent the entire time-to-signal distribution of the VSI 

charts. The performance measure with respect to the 

percentage points (percentiles) provides a meaningful 

overview of the time-to-signal distribution [16]. This study 

complements the work of Lee and Khoo [17] such that the 

median time-to-signal (MTS) is employed as a new 

performance measure for the VSI MEWMA chart for the 

zero-state and steady-state cases. To the best of the authors’ 

knowledge, papers dealing with the use of MTS in studying 

the performance of the multivariate control charts are not yet 

available in the literature. Hence, the objective of this study 

is to present a VSI MEWMA chart based on the MTS. 

The rest of this article is structured as follows: Section II 

provides a review of the VSI MEWMA chart. Section III 

discusses the optimal statistical design of the VSI MEWMA 

chart based on the MTS. Section IV illustrates the time-to-

signal distribution for a better understanding of the VSI 

MEWMA chart. Section V provides a comparison between 

the performances of the VSI MEWMA chart and the standard 

MEWMA chart with fixed sampling interval. Finally, Section 

VI concludes the paper. 

  

II. A REVIEW OF THE VSI MEWMA CHART 

 

The standard MEWMA chart takes samples from a 

process, each of size n at a fixed sampling interval h for 
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process monitoring. The VSI MEWMA chart is implemented 

by deciding on the time for the next sampling according to 

the current plotted statistic on the standard MEWMA chart. 

In addition to the control limit H, a warning limit w is 

introduced for the VSI MEWMA chart such that 0 < w < H. 

The value of w is used to determine the change between the 

long sampling interval h1 and the short sampling interval h2, 

where h2 < h < h1. Following the implementation of the VSI 

feature in Castagliola et al. [18], the values of h1 and h2 are 

chosen to obtain an in-control average sampling interval E(h), 

such that E(h) = h. The in-control average sampling interval 

of the control charts is defined as follows: 

  
E(h) = ATS0 / ARL0 (1) 

 

where ATS0 and ARL0 are the in-control average time-to-

signal and the in-control average run-length, respectively. 

In this study, it is assumed that we have an independent and 

identical observation Xk
T = (X1, X2, …, Xp) with p random 

variables following a multivariate normal distribution of Xk  

~ Np (µ, Σ0) where µ and Σ0 are the known process mean 

vector and the known in-control covariance matrix, 

respectively. The objective of this process monitoring is to 

detect a shift in the process mean vector µ. At sampling point 

t, the sample mean vector ktX  is given as ktX  = 

 

n

v
vktX

n 1

1
for observation v = 1, 2, …, n. Then, the 

corresponding standardized sample mean for quality 

characteristic k at sampling point t is given as: 

 

 
k

kkt
kt

μXn
Z

0

0




 , k = 1, 2, …, p (2) 

 

where µ0K and σ0k are the kth component of the in-control 

process mean vector μ0 and the kth component of the in-

control standard deviation vector σ0, respectively.  

Lowry et al. [1] proposed the MEWMA vector as follows: 

  

1)1(  ttt rr WZW , for t = 1, 2, 3, …, (3) 

 

where W0 is a zero vector and r is the smoothing constant, 

such that 0 < r  1. The plotted statistic on the MEWMA chart 

is defined as follows: 

 
2

tT  = t
T
t WW W

1 , for t = 1, 2, 3, …, (4) 

 

where ΣW is the covariance matrix of Wt.  Here, the 

asymptotic covariance matrix ΣW = Z








 r

r

2
 

is used, where 

ΣZ is the correlation matrix of Zt. The MEWMA chart signals 

when the plotted chart statistic HTt 2  indicating that the 

process is out-of-control. 

Furthermore, Lowry et al. [1] have shown that the 

performance of a MEWMA chart depends only on the shift in 

the process mean vector through the non-centrality 

parameter. This shift is defined as the square root of the non-

centrality parameter, i.e. δ = vΣv
1

Z
T , where v is the 

standardized mean vector, such that the kth component of v is 

vk = kkk 00 /)(   , where μk is the kth component of the out-

of-control process mean vector μ1. The value of the 

performance measure is the same for any out-of-control 

process mean vectors that have the same distance from the in-

control process mean vector because of the directional 

invariance property of the MEWMA chart, where ΣZ remains 

the same. 

The VSI MEWMA chart consists of three regions which 

are the safety, warning and out-of-control regions. The two 

sampling intervals of the VSI MEWMA chart function is 

given as: 

  


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If a sample falls inside the safety region (𝑇𝑡
2 ≤ 𝑤), then the 

next sample should be taken at a long sampling interval h1. In 

contrast, if a sample falls inside the warning region 
(𝑤 < 𝑇𝑡

2 ≤ 𝐻), then the next sample should be taken at a short 

sampling interval h2. If a sample falls in the action region 
(𝑇𝑡

2 > 𝐻), then the process is out-of-control and a corrective 

action is needed to identify and eliminate the assignable 

cause(s) to bring the process back into the in-control state. 

The first sampling interval when the process monitoring has 

just started can be chosen at random. Alternatively, we can 

use tightening control as recommended by most researchers, 

i.e. Costa [19], Chen et al. [20] and Guo and Wang [10], 

where the short sampling interval h2 is used as it provides an 

additional protection against problems that may arise during 

start-up or restart-up.  

 

III. OPTIMAL DESIGN OF THE VSI MEWMA CHART 

 

The optimal statistical design of the VSI MEWMA chart, 

based on the MTS involves the computation of five charting 

parameters, i.e. the smoothing constant r, the control limit H, 

the warning limit w, the long sampling interval h1 and the 

short sampling interval h2 which minimizes the out-of-control 

MTS (MTS1) for both the zero-state and steady-state cases for 

the given values of the in-control median time-to-signal 

MTS0, the sample size n, the in-control average sampling 

interval E(h) and the number of quality characteristics p.  

A Monte Carlo simulation is conducted using the 

Statistical Analysis System (SAS) to compute the MTS of the 

VSI MEWMA chart. Monte Carlo simulation has been used 

extensively to obtain the different performance measures of 

the control charts. For example, see Yew et al. [21] and  

Cheng et al. [5]. Following Graham et al. [22] and Huang et 

al. [23], 100 000 simulation runs are performed to obtain the 

MTS1 of the VSI MEWMA chart.  

Referring to Graham et al. [24], the in-control average run-

length of ARL0 ≈ 500 is used as the industry standard value 

and it corresponds to an in-control median run-length of 

MRL0 ≈ 350 for the standard charts. Hence, the in-control 

median time-to-signal of MTS0 = 350 is chosen because the 

time-to-signal is simply the multiplication of the run-length 

and the fixed sampling interval for the standard charts, where 

we use h = 1. The control limits H are computed to obtain the 

specified MTS0. On the other hand, the warning limits w are 

computed for each combination of (h1, h2) to obtain the in-

control average sampling interval (see Equation 1), where the 

ATS0 and ARL0 are obtained from the SAS program.  

Some constraints are considered for the optimal design of 

the VSI MEWMA chart based on the MTS. The smoothing 

constant is set with a step size of 0.005 for 0 < r  0.10 and a 



A Variable Sampling Interval Multivariate Exponentially Weighted Moving Average Control Chart Based on Median Time-to-Signal 

 

 e-ISSN: 2289-8131   Vol. 9 No. 3-10 117 

step size of 0.01 for 0.10 < r  1.00. For the VSI MEWMA 

chart, only two sampling intervals are used, i.e. h1 and h2 such 

that E(h) = h. Here, the short sampling interval is set to be h2 

= 0.1 and the long sampling interval is set to be h1 = h + 0.1, 

h + 0.2, h + 0.3, …, 3.0,
 
where h2 < h < h1 so that the

 
E(h) = 

h = 1.0.  

 

IV. TIME-TO-SIGNAL DISTRIBUTION OF THE VSI MEWMA 

CHART 

 

The percentage points of the time-to-signal for the steady-

state VSI MEWMA chart with
 
E(h)

 
= 1, n = 3, p = 4, δopt   

{0.50, 1.00} and ATS0 ≈ 500 are presented in Table 1 to give 

information regarding the performance of the VSI MEWMA 

chart. The 1st, 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 

80th and 90th percentage points (or percentiles) of the time-

to-signal distribution are computed using the SAS program. 

Note that the 50th percentile is the MTS. Table 1 shows that 

the MTS0 value of the VSI MEWMA chart is less than the 

corresponding ATS0 value. For example, for the VSI 

MEWMA chart with (r, H, w, h1, h2) = (0.130, 15.587, 2.849, 

2.2, 0.1), the MTS0 is 335.8 while the ATS0 is 487.41. Based 

on the entire time-to-signal distribution, the ATS0 lies 

between the 60th and 70th percentiles of the time-to-signal 

distribution.  

From Table 1, it is observed that the ATS1 values are larger 

than the corresponding MTS1 values for all the given δopt 

except for δopt = 1.50. For example, when δopt = 0.50, E(h)
 
= 

1, n = 3 and p = 4 are considered, ATS1 = 47.01 but MTS1 = 

33.2 (< ATS1) at δ = 0.25 for the VSI MEWMA chart with 

the optimal charting parameters (r, H, w, h1, h2) = (0.130, 

15.587, 2.849, 2.2, 0.1). This example shows that practitioner 

who tends to equate the ATS and the MTS is incorrect and 

misleading. 

In addition, the smaller percentage points (1st to 10th 

percentiles) of the time-to-signal distribution in Table 1 when 

the process is in-control (δ = 0) shows the early false alarm 

rates of the VSI MEWMA chart. Next, the higher percentage 

points (> 60th percentiles) when the process shifts by a certain 

magnitude show the probabilities that the VSI MEWMA 

chart would trigger an out-of-control signal. From these 

results, it can be concluded that the percentiles of the time-to-

signal distribution provide a more meaningful interpretation 

for the in-control and out-of-control performances of the VSI 

MEWMA chart, which is not possible with the ATS alone. 

 
Table 1 

Percentage points of the time-to-signal distribution for the steady-state VSI MEWMA chart when ATS0 ≈ 500. 

 

Optimal charting 

parameters 
δ ATS 

Percentage points 

1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 

δopt = 0.50                      

(r, H, w, h1, h2) = 
(0.130, 15.587, 

2.849, 2.2, 0.1) 

0.00 487.41 0.6 18.6 45.5 104.0 169.8 246.0 335.8 444.8 586.1 789.2 1131.8 

0.25 47.01 0.4 1.9 5.2 11.4 17.7 24.9 33.2 43.5 56.5 75.1 107.0 

0.50 7.70 0.3 0.6 0.9 1.8 3.2 4.8 6.0 7.8 9.8 12.3 16.6 
1.00 2.92 0.2 0.3 0.4 0.5 0.6 1.0 2.6 2.8 4.7 4.9 7.0 

1.50 1.98 0.1 0.2 0.2 0.3 0.4 0.5 2.3 2.4 2.5 4.5 4.7 

2.00 1.56 0.1 0.2 0.2 0.2 0.3 0.3 0.5 2.3 2.4 2.4 4.5 

δopt = 1.00                       

(r, H, w, h1, h2) = 

(0.340, 16.630, 
3.331, 1.9, 0.1) 

0.00 495.99 2.5 23.9 51.1 109.3 174.7 251.1 342.8 453.3 598.6 799.0 1153.1 

0.25 133.39 0.6 6.8 14.1 30.1 47.9 68.7 92.9 122.1 159.9 214.2 306.4 

0.50 17.67 0.2 0.9 2.5 4.7 6.9 9.7 12.7 16.5 21.2 27.9 39.3 

1.00 2.55 0.1 0.2 0.3 0.5 1.0 2.1 2.3 2.5 3.2 4.2 4.9 
1.50 1.51 0.1 0.1 0.2 0.3 0.3 0.5 2.0 2.1 2.1 2.2 2.6 

2.00 1.11 0.1 0.1 0.1 0.2 0.2 0.2 0.3 2.0 2.0 2.0 2.1 

Note: Optimal charting parameters are obtained from Table 4 in [17]. 
 

V. PERFORMANCE COMPARISON BETWEEN THE VSI 

MEWMA CHART AND THE STANDARD MEWMA CHART 

BASED ON THE MEDIAN TIME-TO-SIGNAL 

 

Table 2 shows the optimal charting parameters (r, H, w, h1, 

h2) of the VSI MEWMA chart for p   {2, 5}, n = 5, E(h) = 1 

and MTS0 = 350 at the specific shifts δ   {0.25, 0.50, 1.00, 

1.50, 2.00, 2.50}. The MTS1 values for the VSI MEWMA 

chart are compared with the MTS1 values for the standard 

MEWMA chart. The results in Table 2 shows that the MTS1 

values for the VSI MEWMA chart are smaller than the 

standard MEWMA chart for all the shifts in the process mean 

vector. This result shows that the performance of the VSI 

MEWMA chart is better than the standard MEWMA chart for 

both the zero-state and steady-state cases.  

 
Table 2 

Zero-state and steady-state optimal charting parameters and the corresponding MTS1 values for the VSI MEWMA chart and the standard MEWMA chart 

when MTS0 = 350 
    

δopt p 

Zero-state Steady-state 

VSI MEWMA Standard MEWMA VSI MEWMA Standard MEWMA 

(r, H, w, h1, h2)
 

MTS1
 

(r, H)
 

MTS1
 

(r, H, w, h1, h2) MTS1
 

(r, H)
 

MTS1 

0.25 
2 

(0.095, 10.700,  

0.720, 3.0, 0.1) 
12.5 (0.11, 10.929) 26 

(0.010, 5.999, 

0.5378, 3.0, 0.1) 
7.9 (0.10, 10.790) 25 

5 
(0.090, 16.918, 
2.994, 3.0, 0.1) 

20.3 (0.05, 15.827) 34 
(0.010, 11.070, 
2.391, 3.0, 0.1) 

6.3 (0.05, 15.827) 32 

0.50 

2 
(0.280,11.985, 

0.739, 3.0, 0.1) 
3.3 (0.16, 11.419) 9 

(0.010, 5.999,  

0.538, 3.0, 0.1) 
2.8 (0.19, 11.614) 9 

5 
(0.250, 18.390, 

3.121, 2.9, 0.1) 
4.7 (0.17, 17.928) 12 

(0.010, 11.070, 

2.391, 3.0, 0.1) 
2.4 (0.15, 17.766) 11 
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δopt p 

Zero-state Steady-state 

VSI MEWMA Standard MEWMA VSI MEWMA Standard MEWMA 

(r, H, w, h1, h2) MTS1 (r, H)
 

MTS1 (r, H, w, h1, h2) MTS1 (r, H)
 

MTS1 

1.00 

2 
(0.480, 12.320, 
2.057, 1.5, 0.1) 

0.3 (0.50, 12.305) 3 
(0.455, 12.300, 
0.847, 2.7, 0.1) 

0.4 (0.43, 12.245) 3 

5 
(0.440, 18.793, 

3.709, 2.3, 0.1) 
0.4 (0.40, 18.680) 4 

(0.305, 18.558, 

3.056, 3.0, 0.1) 
0.5 (0.30, 18.499) 4 

1.50 
2 

(0.620,12.410, 

4.587, 1.1, 0.1) 
0.2 (0.30, 12.030) 2 

(0.905, 12.450, 

4.260, 1.1, 0.1) 
0.2 (0.60, 12.355) 2 

5 
(0.715, 18.905, 
9.234, 1.1, 0.1) 

0.2 (0.63, 18.829) 2 
(0.705, 18.907, 
3.849, 2.2, 0.1) 

0.2 (0.62, 18.826) 2 

2.00 

2 
(0.680, 12.426, 

4.608, 1.1,0.1) 
0.1 (0.70, 12.385) 1 

(0.670, 12.425, 

4.610, 1.1, 0.1) 
0.1 (0.70, 12.385) 1 

5 
(0.770, 18.914, 

9.230, 1.1, 0.1) 
0.1 (0.80, 18.857) 1 

(0.745, 18.909, 

9.251, 1.1, 0.1) 
0.1 (0.70, 18.845) 1 

2.50 

2 
(0.605, 12.397, 
4.598, 1.1, 0.1) 

0.1 (0.65, 12.370) 1 
(0.595, 12.393, 
4.620, 1.1, 0.1) 

0.1 (0.60, 12.355) 1 

5 
(0.660, 18.902, 

9.232, 1.1, 0.1) 
0.1 (0.65, 18.834) 1 

(0.635, 18.892, 

9.268, 1.1, 0.1) 
0.1 (0.70, 18.845) 1 

VI. CONCLUSIONS 

 

The standard MEWMA chart employs fixed sampling 

interval. In this study, we demonstrated the improved 

performance of the VSI MEWMA chart based on the MTS 

for monitoring shift in the process mean vector. The Monte 

Carlo simulation is conducted to compute the MTS for the 

VSI MEWMA chart. A procedure for the optimal statistical 

design of the VSI MEWMA chart is presented to find the 

combination of the charting parameters by minimizing the 

MTS1. The comparison study between the VSI MEWMA 

chart and the standard MEWMA chart shows that the VSI 

MEWMA chart is more effective in detecting shifts in the 

process mean vector, in terms of the MTS.  
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