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Abstract—In this paper, we review our recent, reported work 

on using artificial intelligence based software technique to 

control electronic sensor or wireless communication equipment 

in narrow and diverging paths such as in underground tunnels 

and at traffic junctions. In order to make the systems fast as 

well as needing minimal computational calculations and 

memory – thus to extend the battery life and minimize cost – we 

used the single layer Perceptron to successfully accomplish the 

formation of beams which may be changed according to the 

nature of the junctions and diverging paths the mobile or 

stationary system is to handle. Moreover, the beams that survey 

the scenario around (e.g. in case of guiding a driverless vehicle) 

or communicating along tunnels (e.g. underground mines) need 

to be kept narrow and focused to avoid reflections from 

buildings or rough surfaced walls which will tend to 

significantly degrade the reliability and accuracy of the sensor 

or communicator. These requirements were successfully 

achieved by the artificial intelligence system we developed and 

tested on software, awaiting prototype development in the near 

future.  

 

Index Terms— Beam Forming; Neural Network; Single 

Layer Perceptron; Smart Antenna. 

 
I. INTRODUCTION 

 

In telecommunication, the applications of Adaptive Array 

Antenna have become popular due to its consistency in faster 

beam steering techniques that cannot be obtained by using a 

mechanical system or the switched beam array. Adaptive 

Array Antenna has the ability to detect and track other 

communication units and to generate narrow beams in a 

direction to align itself towards desired users. It can 

simultaneously minimize unwanted interferences or 

shadowing to achieve an optimized weight thus make it more 

flexible, smart and reliable. Here, a smart antenna called a 

Smart Beam Forming Antenna is proposed by combining an 

Adaptive Array Antenna and Artificial Neural Network 

(ANN) System. A Single Neuron Model is used to achieve 

weight optimization. A fast Neural Network Adaption is used 

for beam steering in order to align the adaptive beam towards 

the desired users while reducing or nulling interference from 

unwanted signals. The crucial part of designing a smart 

antenna is the ability of the antenna in handling intricate 

situations such as moving traffic patterns by providing 

flexible electrical tilt, beam width and azimuth control. Smart 

Antennas have been used at base stations (BS) as it provides 

a solution that is more versatile, cheaper, with low memory 

usage and fast beam steering technique. In parallel, the 

growth of fast cell site expansion, expanding the quantity of 

cell sectors and data transfer capacity (bandwidth), and better 

air interface abilities will be basic to move into introducing 

artificial intelligence (Perceptron) smart antennas to the best 

possible 5G frameworks. 

 

A. Artificial Neural Network (ANN) 

An ANN is a numerical structure which comprises 

interconnected artificial neurons, in a highly reduced scale 

works like the brain. An ANN can gain “experience” from 

information either in a managed or unsupervised way. In 

Figure 1 is shown how the ANN tries to copy the human 

brain that gets signals from sensors like the eye, ear and 

touch. These signals are then processed by the brain. In ANN 

the sensors might be real-time image sensors (camera), sound 

sensors (microphone) or capacitive touch sensors which are 

the inputs to the ANN. On account of smart antennas, the 

inputs are normally transmitted signals from transmitting 

antennas. In ANN the input signals are processed 

mathematically, such as by multiplying each input signal by 

a number (namely a weight, wi) and phase shifting the signal 

(where complex weights are used, bi). Subsequently, the 

weighted input signals are summed up and placed at the input 

of a transfer function (or activation function) block that will 

yield the final output signals. For the human brain, the final 

output signals might be activating signs to the muscles, for 

instance, to move the human body for physical activity. In 

smart antennas, the final output signals might be to redirect 

the beam towards the desired users. An ANN is structured 

(Figure 2) with a substantial number of highly interconnected 

processing elements called Artificial Neurons, which are 

organized in layers. The Weights (𝑤𝑖) and biases (𝑏𝑖) are 

known as Adjustable Scalar Parameters of the neuron. The 

parameters can be adjusted to meet the desired behavior as 

part of the network training process. The transfer function is 

expressed in one of the following forms: hard-limit (or step), 

the linear and the sigmoid (or logistic) function where the 

final output signals are mathematically expressed as 

 

𝑌 = 𝐹(𝑆) = 𝐹 [∑ 𝑋𝐾𝑊𝐾 + 𝑏
𝑁

𝐾=1
] (1) 
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Figure 1: The basis of the ANN designed to emulating human brain [1] 

 

 
 

Figure 2: Structure of the Artificial Neuron [1] 
 

B. Processing Element (PE) 

In basic neural network, the descriptive data (input) is 

collected and trained automatically using algorithms to 

obtain a pattern of data. In ANN system, the unit that receives 

a number of inputs is called the Processing Element (PE). 

Each input will be multiplied by a connection that has 

weights (represents biological neuron). The system is 

innately parallel so that the PEs can run the computations 

simultaneously. In every PE the weighted total of inputs is 

framed, and the limit is subtracted, to make the activation of 

the PE and the final output from the activation function is the 

output expressed in transfer functions. The weight is adjusted 

by using Perceptron Learning Rule to train the system. The 

adjusted weights are expressed as follow: 

 

𝑤(𝑖 + 1)  = 𝑤(𝑖) +  𝜂 ∗ (𝑑(𝑖) −  𝑦(𝑖)) ∗ 𝑥(𝑖) (2) 

 

Equation (2) is known as Perceptron Learning Algorithm 

where η is the step size or learning rate, y(i) is the output of 

the nonlinear system from PE and d(i) is the desired response. 

The difference between the output of the PE and the desired 

outcome will be minimized directly by the algorithm. The 

normal practice is to have the network take in the proper 

weights from a set of training data. The PE adapts just when 

there is the difference between its output and the desired 

outcome. The most common neural network architectures are 

Single-Layer Feed-Forward ANNs; Single-layer Perceptron: 

One input layer and one output layer of Pes and Multi-Layer 

Feed-Forward ANNs; Multi-layer Perceptron: One input 

layer, then, one or more hidden layers and finally one output 

layer of PEs. 

 

C. Single-Layer Perceptron (SLP) 

The first pattern recognition machine for optical character 

recognition problem was designed in late 50’s known as 

Rosenblatt's Perceptron. It comprises of binary activations 

and was trained to perceive linearly separable patterns in a 

limited number of steps. Linearly Separable is the problems 

with input patterns which can be classified using straight 

lines (or a single hyperplane) whereas Non-Linearly 

Separable the problems which can be classified but not by 

straight lines. A simple example of input patterns such as 

AND, OR operations are linearly separable and XOR 

operations are non-linearly separable. The equation for 

activation of the PE is: 

 

𝑦1 = 𝑓[𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏1] (3) 

 
The weights (w1, w2) which indicate the gradient of the 

line and the bias (b1) indicate the offset. From the two-

dimensional plane, the surface is: 

      

𝑤1.𝑥1 + 𝑤2.𝑥2 − 𝑏1 = 0 (4) 

 
Therefore, 

 

𝑥1 =
𝑏1

𝑤1

−
𝑤2

𝑤1

𝑥2 (5) 

 
It is a straight line. The input samples have no longer 

linearly controlled final outcome on SLP but rely on the 

activation function which clearly minimizes the output error.  

The learning rule makes a limited number of steps in SLP to 

achieve an ideal solution for linearly separable problems. The 

setup of the algorithm used in SPL is as follow: 

1. Set weights with small random values for each 

connection. 

2. For each training pair (x, d(i)): Calculate actual output 

y(i), Calculate error, δ= (d(i) – y (i)) and use the error 

to adjust and update weights using the Equation (2).  

3. Repeat step 2 until the error, δ is minimized (closed to 

zero). 

During the execution of SLP, the training will not stop until 

the problem is linearly separable and the fast adjustment to 

the weight values near to the end of training may influence 

the classification execution. Here, the Perceptron Learning 

Algorithm looks just for an acceptable answer, consequently 

the network may not perform well on data that is excluded in 

the training data. The quantity of outputs in an SLP is 

regularly controlled by the number of classes in the dataset. 

An SLP is observed to be helpful in characterizing a 

continuous-valued set of inputs into one of two classes as it 

were. When the problem that is not linearly separable it 

cannot be comprehended by SLP. Consequently, the SLP can 

be used only as a linear pattern recognition machine. 

However, ANNs are very powerful as it can represent the 

linear and non-linear relationships. The ANN has the ability 

to roughly model the input-out relationship by optimizing the 

weights using known input-output training pairs. Once the 

training is done, it is able to obtain the needed antenna 

radiation beam for a given set of inputs by adaptive signal 

processing [2, 3]. Many neural network architectures operate 

on real values but some applications may require the complex 

value inputs.  Therefore, techniques such as Back-

Propagation, Hopfield Model and Perceptron Learning Rules 
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are being used for complex value inputs. Their performances 

were tested using the pattern classification and time series 

experiments and its generalization capability was found to be 

satisfactory [4].  

New types of complex-valued sigmoid activation function 

for multi-layered neural network was studied [5]. Their 

simulation results proved that their proposed network 

reduced 54% of testing time compared to a neural network 

that uses normal sigmoid activation function. In 1975, the 

complex Least Mean Squares (LMS) algorithm and 

Complex-valued neural network algorithm were published 

[6]. In the paper of Deville.Y [7], a complex activation 

function for digital Very Large Scale Integration (VLSI) 

neural networks was implemented. It was claimed that it 

required lesser hardware than the conventional real-valued 

neural network. In his theses, Prashant A [8], suggested that 

the input data should be scaled to some region in complex 

domain and to overcome the implementation problem, split 

sigmoid activation function could be used for training the 

network. In a complex-valued neural network, inputs, output, 

threshold, and weights are complex values and selecting 

appropriate activation function is a challenging part. Here, a 

Smart Beam Forming Antenna using Single Neuron Model 

is presented to achieve the weight optimization of an 

Adaptive Array Antenna. 

  

II. ADAPTIVE ARRAY MODEL 

 

Adaptive Array Model is usually designed using a simple 

array of dipoles placed in a straight line.  Array models have 

been tested with five and seven elements placed in the 

straight line. The array model equations are expressed in 

Equation (6) and (7) where f(ϕ) is the desired beam function. 

 

𝑤1𝑒2𝑗𝛽𝑑𝑐𝑜𝑠 ∅ + 𝑤2𝑒2𝑗𝛽𝑑𝑐𝑜𝑠 ∅ + 𝑤3 + 𝑤4𝑒−𝑗𝛽𝑑𝑐𝑜𝑠 ∅

+ 𝑤5𝑒−2𝑗𝛽𝑑𝑐𝑜𝑠 ∅ = 𝑓(∅) 
(6) 

𝑤1𝑒3𝑗𝛽𝑑𝑐𝑜𝑠 ∅ + 𝑤2𝑒2𝑗𝛽𝑑𝑐𝑜𝑠 ∅ + 𝑤3𝑒𝑗𝛽𝑑𝑐𝑜𝑠 ∅ + 𝑤4

+ 𝑤5𝑒−𝑗𝛽𝑑𝑐𝑜𝑠 ∅ 
 

+𝑤6𝑒−2𝑗𝛽𝑑𝑐𝑜𝑠 ∅ + 𝑤7𝑒−3𝑗𝛽𝑑𝑐𝑜𝑠 ∅ = 𝑓(∅) (7) 

 
The dipoles arrangement can be made in any way since the 

current amplitude and the phase are adjustable to get the 

desired radiation patterns. Any arbitrary set of dipoles 

arranged in a straight line will produce a radiation pattern that 

is symmetrical on both sides of the plane where the dipoles 

are placed. Subsequently, the dipole placement must be 

chosen based on the desired radiation patterns. If the desired 

radiation patterns are symmetrical over a common axis then 

the dipoles can be placed in that common axis so that all of 

the current components are in phase. But with a different set 

of current amplitudes may be used to get respective radiation 

patterns. Otherwise, the dipoles placement will not along a 

common axis and the current components will have different 

phases and amplitudes. Therefore, the in-phase and the 

different phase current components will result in real and 

complex optimized weight values, respectively. Hence, two 

types of activation functions are proposed to achieve the 

optimization of real and complex weights. To fulfill the 

objective of framing a resultant single beam, the optimization 

of the complex weights w1, w2, and wn should be done such 

that the resultant field must coordinate to a desired single 

beam function, f(φ). Thus equation can be written as, 

𝑤1𝑒𝑗𝛽(𝑥1𝑐𝑜𝑠𝜑+𝑦1𝑠𝑖𝑛𝜑) + 𝑤2𝑒𝑗𝛽(𝑥2𝑐𝑜𝑠𝜑+𝑦2𝑠𝑖𝑛𝜑) + ⋯

+ 𝑤𝑛𝑒𝑗𝛽(𝑥𝑛𝑐𝑜𝑠𝜑+𝑦𝑛𝑠𝑖𝑛𝜑) = 𝑓(𝜑) 
(8) 

  
Bodhe S.K et al. [9] have proposed a rectangular array 

structure to provide a solution for the condition when the 

desired radiation patterns are unsymmetrical on a common 

axis. However, arrays with a minimum of three elements that 

are not placed in common linear axis will produce the 

complex weight values. 

  

III. SINGLE NEURON WEIGHT OPTIMIZATION MODEL 

(SNWOM) 

 

The single neuron model is briefly discussed. It needs to 

optimize the weights which are used in adaptive 

beamforming [10-12]. The simple perceptron model has 

three parts and in the first part, the input signals (x1, x2 …., 

xn) are multiplied by the weights (w1, w2 …wn). The second 

part is the net function that sums all weighted inputs and bias 

as in (9). In the final part, the sum of weighted inputs and 

bias is passed through a transfer function to get the final 

output signal. A single neuron Perceptron is used and a 

nonlinear activation function σ is used to find out the output 

y as in (10) to simplify the calculation complexity and to 

reduce the processing delay. The deviation, Δ is the error 

between the desired output, y0 and the actual output, y as in 

(11). The weights are continuously adjusted in every iteration 

using the selected learning rate or coefficient, k0  as shown in 

(12) until the Trained Means Error, TMR as in (13) is 

minimized below the predefined value TMRm or until the 

defined maximum number N of iterations is reached. For 

training and during the testing process, different angles, ϕ is 

used in the range of 00 to 3600. 

 

𝑧 = 𝑏 + ∑ 𝑤𝑘𝑥𝑘

𝑛

𝑘=1

 (9) 

z
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yy 
0

 (11) 

)( 0 iii xkww   (12) 

100*

0
y

TMR



 

(13) 

 

A. Complex form Activation Functions (AFs)  

The crucial part of an ANN is the activation function used 

for limiting the amplitude of the output of a neuron called 

squashing functions [13]. It crushes the permissible 

amplitude range of the output signal to some finite value. 

This model is tested using different complex form activation 

functions including the Hyperbolic Tangent function, 

Bipolar sigmoid function and Squash and the Elliot Function. 

  

IV. RESULT AND DISCUSSION 

 

A. Real activation functions 

Experiments are set up by placing the dipoles in a straight 

line. The desired beam function, f(ϕ) is fixed as cos 2ϕ and 

the distance between two adjacent antenna elements is half 

wavelength. The weights are computed for five and seven 

element array antennas using Least Mean Square (LMS) 

optimization in order to compare the accuracy between the 
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weights optimized from SNWOM method [10] and the 

traditional LMS method. After the convergence is achieved, 

the radiation patterns for the optimized weights are obtained 

and compared with the desired beam for five element arrays 

as in Figure 3(a). From the result, it is clearly observed that 

the Perceptron output is almost matched with the desired 

beam. Figure 3(b) shows the radiated patterns after 

increasing the elements to seven. The perceptron output very 

closely matches the desired beam. Comparison of the beams 

shown in Figure 3 shows that SNWOM has a better output 

than the LMS method. The SNWOM beamforming methods 

are widely applied for communication system, for instance, 

at the junction of underground tunnels in mines or the streets 

with vehicles travelling along a four-corner junction with the 

smart antenna base station located at the junction. The error 

between the desired and the optimized beams corresponding 

to the angles are compared to study the accuracy differences 

between five and seven element smart antennas. The results 

are shown in Figures 4(a) and (b). Clearly, the increase in the 

number of elements has minimized the error range; but with 

high frequency of error oscillation. To test the precision of 

the SNWOM with a variety of activation functions, the 

function specified in (14) is selected: 

 

𝑓(∅) =
1

9
|3 + 4 𝑐𝑜𝑠(𝜋𝑐𝑜𝑠∅) + 2𝑐𝑜𝑠 (2𝜋𝑐𝑜𝑠∅)| (14) 

 

 
a: Five dipole elements                b: Seven dipole elements 

 
 

Figure 3: Comparison of radiation patterns obtained from SNWOM and 

LMS methods [10] 

 

The tests are run for both five and seven elements. The 

results generated by the perceptron and LMS are compared 

and shown in Figure 5(a) and (b). From the results, the 

SNWOM radiation beam is seen to be slightly inferior to the 

LMS beam and has larger side-lobes in the 0o and 180o 

directions as seen in Figure 5(b). It can be recognized that 

when the desired beam is narrow an increased number of 

dipole elements is required. Similar to results shown in 

Figure 6, comparison of error has shown that the range of 

error is reduced while the frequency of oscillation increases 

with the increase of the number of elements. 

 

      Angle 

 

(a) Error Compared to desired beam (Five elements) 

 

 
 Angle 
 

(b) Error Compared to desired beam (Seven elements) 
 

Figure 4: The error between desired and optimized beam with the 

corresponding angle [11] 

 

 
       a: Five dipole elements             b: Seven dipole elements 

 
Figure 5: Comparison of radiation patterns of SNWOM and LMS 

methods [10] 

 
The work is extended to optimize the weights for three, 

four and six elements to study the actual output beam patterns 

using the SNWOM model with different initial weights, bias 

and learning rate and the appropriate activation function. 

From the results, it can be observed that as the number of 

elements increases the optimized beam patterns are better 

matched to the desired beam and the beam width is also 

reduced. A narrow beam would have a greater coverage 

while utilizing less power as compared to an Omni-

directional antenna. 
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Angle  

 

(a) Error Compared to desired beam (Five elements) 
 

 
Angle 
 

(b) Error Compared to desired beam (Seven elements) 

 

Figure. 6: The error between desired and optimized beam with the 
corresponding angle [11] 

 

B. Complex activation functions 

Further tests on the precision of the SNWOM method were 

carried out with a variety of desired array factors, the desired 

array factor function selected is f(φ) = sinc(φ- φ0)  in order to 

form a single desired beam, where φ0  is the desired angle. 

The beam steering towards desired angles of π/3, π/2, 2π/3 

and 5π/3 using six elements were done with the bipolar 

sigmoid activation function. It is observed that the desired 

radiation patterns closely matched the Perceptron generated 

beam. The results in Figure 7 show the generated beams 

using three different complex activation functions and it is 

observed that the SNWOM works well in generating 

radiation beams that closely match the desired single beam. 

The experiments done using Single Perceptron shows that the 

technique is fast where the best set of antenna patterns can be 

provided within milliseconds. Although the generated beam 

precision depends on the dipole placement and the selected 

characteristics of the desired beam, it is a fast, efficient and 

simple method for the weight optimization and smart antenna 

beam generation. In the antenna based beamforming, the 

beamformer may handle both signal receiver and a single 

cluster of receivers in one geometrical location, or multiple 

clusters or antennas. 

 

  
(a) Hyperbolic Tangent function (b) Bipolar sigmoid function 

 
(c) Squash or Elliot function 

 

Figure 7: Radiation patterns for six elements using different activation 

functions [12] 

 

V. CONCLUSION 

 

The accuracy and the efficiency of adaptive beamforming 

problem have been tested for the new method proposed: the 

SNWON. The weights are optimized using appropriate real 

and complex activation functions. The results show that the 

performance is much better than LMS method where the 

radiation patterns obtained from optimized weights closely 

match the desired radiation patterns. The weight coefficients 

are complex values. From the error comparison, it can be 

concluded that the power loss in the main beam has been 

reduced by increasing the number of array elements and the 

beam-widths becoming closer to the desired beams. When 

the Perceptron is used to construct a broadside beam antenna, 

the increase in the number of elements gives a greater match 

with the two main beams on either side of the line along 

which the linear array is placed. Knowing that the Perceptron 

based linear array antenna does not provide a single rotatable 

beam antenna and tends to produce back lobes as well, to 

obtain single beam Perceptron beamforming complex 

activation functions need to be used. The proposed 

Perceptron based beamformer may be implemented on any 

chip-based MIMO techniques, including transmitting 

beamforming, spatial multiplexing, space-time block coding 

and cyclic delay diversity. 
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