
 e-ISSN: 2289-8131 Vol. 9 No. 3-10 19

High Speed and Throughput Evaluation of SHA-1

Hash Function Design with Pipelining and

Unfolding Transformation Techniques

Shamsiah binti Suhaili1, Takahiro Watanabe2 and Norhuzaimin Julai1
1Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan.

2Graduate School of Information, Production and System, Waseda University, Kitakyushu-shi, Fukuoka, 808-0135 Japan.

sushamsiah@unimas.my

Abstract—In recent years, designing of SHA-1 hash function

has become popular because it was important in security design

application. One of the applications of SHA-1 hash function was

HMAC where the architecture of SHA-1 needed to be improved

in terms of speed and throughput in order to obtain the high-

performance design. The objective of this project was to design

high speed and throughput evaluation of SHA-1 hash function

based on a combination of pipelining and unfolding techniques.

By using both techniques in designing the architecture of SHA-

1 design, the speed of SHA-1 hash function can be increased

significantly as well as throughput of the design. In this paper,

five proposed SHA-1 architectures were designed with different

stages of pipelining such as 1, 4 and 40 stages. The results

showed the high-speed design of SHA-1 design can be obtained

by using 40 stages pipelining with unfolding factor two. This

design provided a high-speed implementation with maximum

frequency of 308.17 MHz on Arria II GX and 458.59 MHz on

Virtex 5 XC5VLX50T. Furthermore, the throughput of the

design also increased about 150.269 Gbps and 223.618 Gbps on

Arria II GX and Virtex 5 XC5VLX50T respectively. Thus, high-

speed design of SHA-1 hash function was successfully obtained

which can give benefit to society especially in security system

data transmission and other types of hash functions.

Index Terms—FPGA; Pipelining; SHA-1 Hash Function;

Unfolding Transformation.

I. INTRODUCTION

Cryptography is the the science of writing messages in secret

codes; no one can read an encrypted message except the

intended receiver. There are three types of cryptographic

algorithms: symmetric cryptographic (secret key),

asymmetric cryptographic (public key), and hash function.

Cryptographic hash function or known as message digest

algorithm is an algorithm that translates a random string of

characters into hash code output [1]. Hash function is widely

used for cryptographic application and it is useful for message

authentication because it is strong enough against collision.

There are different types of hash function such as SHA-1,

MD5, RIPEMD160, and others. This paper focuses on

cryptographic SHA-1 hash function because it is simple and

is widely used in digital signature applications, Keyed-hash

Message Authentication Codes (HMACs) and Hash-based

Key Derivation Functions (Hash-based KDFs) [2]. Efficient

implementation of cryptographic hash function on

reconfigurable hardware is one of the problems that need to

be solved. Thus, high performance of hash function design in

terms of speed, and area is important to improve the

throughput of the hash function design since nowadays all the

security system need fast implementation. Maximum

frequency needs to be considered in designing hash function

in order to increase the speed of the design. Besides, efficient

hash function also has small area implementation. Thus, in

order to improve the speed and area, this paper proposes the

architecture of SHA-1 40 stages pipelining with unfolding

factor 2 transformations. Besides, this method can also be

implemented to other hash functions to improve the speed of

the design.

There are many researchers have been designed SHA-1

algorithm based on FPGA. Some of them tried to increase the

frequency and throughput of the SHA-1 design [3-14]. J. Kim

[3] proposed unfolding transformation with 4 stages

pipelining whose throughput was 7.4 Mbps. E. H. Lee [10]

and H. Michail [12] proposed SHA-1 design whose

throughputs were 5.9 Gbps and 4.7 Gbps respectively with 4

stages pipelining. L. Jiang [5] improved the throughput by

applying the unfolding transformation with 40 stages

pipelining. This structure gave 76.2 Gbps of throughput but

large area implementation which was about 32048 total

registers and 33764 ALUTs. Thus, this paper proposed a

combination of pipelining and unfolding transformation to

improve the performance of SHA-1 hash function.

II. FUNDAMENTALS OF SHA-1 ALGORITHM

SHA-1 hash function algorithm takes arbitrary input

message with the length of the message less than 264 bits. The

output of hash function is called message digest or hash code.

SHA-1 hash function produces 160 bits output of hash code

with the processing of 512 bits message inputs and 160 bits

initial value. There are several steps need to be considered in

order to produce 160-bit SHA-1 hash output. First, the

message needs to be padded, so its length is congruent to 448

modulo 512. After that, the input message will be followed

by single 1-bit input at the end of the message, and then 0 bits

are padded until the last 64-bit which is the length of the

message. After padding the message, the inputs of 64 bits are

appended to the message. Therefore, overall message padding

is 512 bits together with the length of the message. Table 1

shows buffer initialization of SHA-1 hash function in

hexadecimal. There are five different inputs buffer

initialization such as A, B, C, D, and E. These inputs are fixed

for any kind of SHA-1 hash function.

After initialization process, the next step is to process the

512-bit input message which is in 16 blocks with 32-bit per

block. Figure 1 illustrates 80 steps of message processing

Journal of Telecommunication, Electronic and Computer Engineering

20 e-ISSN: 2289-8131 Vol. 9 No. 3-10

with 20 steps for four different non-linear function of SHA-1

hash function. Each step function has the same structure but

different non-linear function, f, constant value, K and

message, W. Table 2 and Table 3 show the non-linear

function and constant value, K of SHA-1 hash function

respectively.

Figure 1: SHA-1 Algorithm

Table 1
Buffer Initialization of SHA-1 Algorithm

Register Buffer Initialization (Hex)

A 32’h67452301

B 32’hefcdab89

C 32’h98badcfe
D 32’h10325476

E 32’hc3d2e1f0

Table 2

Non-Linear Function of SHA-1 Algorithm

Step Number Function F(B,C,D)

0 ≤ 𝑡 ≤ 19 (𝐵 ˄ 𝐶) ⊕ (¬𝐵 ˄ 𝐷)

20 ≤ 𝑡 ≤ 39 𝐵 ⊕ 𝐶 ⊕ 𝐷

40 ≤ 𝑡 ≤ 59 (𝐵 ˄ 𝐶) ⊕ (𝐵 ˄ 𝐷) ⊕ (𝐶 ˄ 𝐷)

60 ≤ 𝑡 ≤ 79 𝐵 ⊕ 𝐶 ⊕ 𝐷

Table 3

Constant, Kt of SHA-1 Algorithm

Step Number Constant, Kt (Hexadecimal)

0 ≤ 𝑡 ≤ 19 32’h5a827999

20 ≤ 𝑡 ≤ 39 32’h6ed9eba1

40 ≤ 𝑡 ≤ 59 32’h8f1bbcdc

60 ≤ 𝑡 ≤ 79 32’hca62c1d6

Message inputs for SHA-1 algorithm are taken from the

first 15 messages which are directly from data input and the

rest of message input will be using the following Equation (1).

ROTLa(b) denotes rotation to the left of 𝑏 by 𝑎 position.

Equation (2) provides the output for five different registers A,

B, C, D, and E. Figure 2 illustrates the compression function

of SHA-1 algorithm. The output A is the crucial part where it

consists of non-linear function, input message, W, constant,

K, input E and shift A to the left by 5. Finally, buffer

initialization input will be added to the last output rounds to

produce message digest of SHA-1 hash function.

Wt = ROTL1(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) (1)

T = (A <<5) + f(B,C,D) + Wt + Kt + E

A = T, B = A, C = B << 30, D = C, E = D
(2)

Figure 2: Compression Function of SHA-1 Algorithm

III. PROPOSED SHA-1 DESIGN

In this project, iterative and pipelining techniques are

applied to SHA-1 hash function algorithm in order to increase

the speed of the design [15]. Several methods have been

proposed such as iterative, inner-round pipelining and outer-

round pipelining. In order to improve the throughput of SHA-

1 design, unfolding transformation technique was proposed

[16]. Unfolding algorithm is one of the techniques that can be

used by DSP application to obtain a new program that

performs more than one iteration of the original program. The

number of iterations is introduced as unfolding factor, J. By

applying these techniques to SHA-1 architecture, the high

performance of SHA-1 hash function can be obtained.

There are five proposed SHA-1 to be designed and

evaluated as follows: (1) iterative SHA-1, (2) inner-round

pipelining SHA-1, (3) 4 stages pipelining SHA-1, (4) 40

stages pipelining SHA-1 and (5) 40 stages pipelining with

unfolding transformation factor 2 SHA-1. These architectures

are designed using Verilog code and synthesized with both

Altera and Xilinx tools. Figure 3 shows the architecture of 4

stages pipelining with five different inputs. This figure can be

used to construct the architecture of 40 stages pipelining with

unfolding factor two where each stage consists of two rounds.

Some modification has been made in terms of input and

output of the modules to obtain the output of specific

proposed design. This design starts with buffer initialization

which is init module. In this module, there are five different

E

E

E

D

D

D

E

IV

A D

B

B

B

A B C

A

A

C

C

C

+ + + + +

Message, W

f3, K3, W[40…59] 20 Steps

f4, K4, W[60…79] 20 Steps

f1, K1, W[0…19] 20 Steps

f2, K2, W[20…39] 20 Steps

160-Bit Output of SHA-1

<< 5

<< 30

func

A B C D E

A B C D E

Kt

Wt

High Speed and Throughput Evaluation of SHA-1 Hash Function Design with Pipelining and Unfolding Transformation Techniques

 e-ISSN: 2289-8131 Vol. 9 No. 3-10 21

fixed values of buffer initialization values as mentioned in

Table 1. In order to execute schedule module, 80 rounds of

counter module need to be designed. Schedule module is a

module that executes message input to step function. The

message input for the first 15 data input of SHA-1 comes

from 512-bit message input which has been divided into 15

blocks of 32-bit message input. In this schedule module, the

message after 15 rounds will be calculated using the formula

given in Equation (1).

Figure 3: 4 Stages of SHA-1 Algorithm Architecture

A. Compression Function of Unfolding SHA-1 Algorithm

The main objective of this project is to obtain high-speed

design. Therefore, four and forty stages of pipelining SHA-1

design are proposed. By adding registers at different stages of

round can improve the maximum frequency of the design.

Four registers are applied to A, B, C, D, and E of compression

function with 20 rounds for each stage and forty registers are

applied to A, B, C, D, and E of compression function with

two rounds for each stage. In order to improve the throughput

of SHA-1 design, unfolding transformation technique has

been proposed. In this paper, the unfolding technique is

designed based on factor 2. Figure 4 illustrates the structure

of compression function of SHA-1 algorithm using unfolding

transformation technique. From this figure, there are two

non-linear functions such as Func and Funct+1 with three

different inputs. Furthermore, 8 addition operations are

performed in parallel form in this architecture. It consists of

four shifters such as circular left shift of A by 30, circular left

shift of B by 30, circular left shift of A by 5 and circular left

shift of Temp by 5. This process reduces the number of

processing cycle of SHA-1 design from 80 cycles to 40 cycles

where two hash operations are executed per cycle. Small

number of latency can increase the throughput of SHA-1

design. Hence, efficient and high-performance design can be

obtained. The outputs of SHA-1 unfolding algorithms are

shown in the following equation.  baROTL represents circular

left shift or left rotation operation of b by a position to the

left, and  rqptfunc ,, means non-linear function at time t for

three different input qp, and r .

    tKtWtEtDtCtBfunctAROTLTemp  ,,5

  11,30,1

}{5
2













tKtWtDtCBROTLtAtfunc

TempROTLtA

TemptB  2

 tAROTLtC 30
2 

 tBROTLtD 30
2 

tCtE  2

(3)

Figure 4: Unfolding Transformation of SHA-1 Algorithm Compression

Function

IV. RESULTS AND DISCUSSION

The five SHA-1 designs (1) iterative, (2) inner pipelining,

(3) 4 stages pipelining, (4) 40 stages pipelining and (5) 40

stages pipelining with unfolding factor 2 transformation were

successfully designed using Verilog code. These designs

were synthesized and implemented using both Altera Quartus

II 15.0 and Xilinx ISE design suite 14.7. The proposed SHA-

1 designs were simulated using ModelSim for both functional

and timing simulation to verify the correctness of the design.

TimeQuest timing analyzer was used to optimize the design

by giving appropriate clock constraint of sdc (synopsys

design constraint) file in order to meet the timing

requirement. Table 4 and Table 5 show the five proposed

SHA-1 design results obtained on Arria II GX and Virtex 5

XC5VLX50T after synthesis and implementation process.

The following formula can be used to calculate the

throughput of SHA-1 design. p denotes the number of

pipeline stages in the SHA-1 design.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
512 × 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑝

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
 (4)

The novelty of this design is using combination method

between unfolding and the number of pipelining stages as

shown in Table 4 and 5. Table 4 shows the result for

Register

Register

Register

Register

Round 1, 20 Steps

Round 2, 20 Steps

Round 3, 20 Steps

Round 4, 20 Steps

A

B

C D E

A B C D E

Journal of Telecommunication, Electronic and Computer Engineering

22 e-ISSN: 2289-8131 Vol. 9 No. 3-10

unfolding SHA-1 40 stages pipelining give high throughput

which is about 150.27 Gbps on Arria II GX. The maximum

frequency of this design improves significantly on Xilinx

Virtex 5 XC5VLX50T with 458.60 MHz as shown in Table

5. Since the latency for this unfolding SHA-1 design reduces

from 80 cycles to 40 cycles, the throughput of this design

increases up to 223.62 Gbps. Besides, the total register of the

SHA-1 unfolding transformation with 40 stages pipelining

reduces for both Altera and Xilinx implementation.

Table 4
Synthesis and Implementation based on Altera Arria II GX

Design Pipeline Maximum Frequency (MHz) ALUTs Total Registers Latency Throughput (Mbps)

SHA1_ite 1 279.64 402 720 82 1746.04
SHA1_inner 1 281.53 411 681 82 1757.85

SHA1_4 4 316.76 976 715 82 7911.27

SHA1_40 40 321.54 6715 3229 82 80306.57
SHA1_Unfold40 40 308.17 9799 718 42 150269.56

Table 5

Synthesis and Implementation based on Xilinx Virtex5 XC5VLX50T

Design Pipeline Maximum Frequency (MHz) Slice Register Slice LUT Latency Throughput (Mbps)

SHA1_ite 1 233.899 720 897 82 1460.44

SHA1_inner 1 232.918 681 950 82 1454.32
SHA1_4 4 430.024 974 1332 82 10740.11

SHA1_40 40 427.546 5953 6465 82 106782.22

SHA1_Unfold40 40 458.593 3448 11994 42 223618.68

V. CONCLUSION

In conclusion, the five SHA-1 designs such as SHA-1

iterative, SHA-1 inner pipelining, SHA-1 4 stages pipelining,

SHA-1 40 stages pipelining and SHA-1 40 stages pipelining

with unfolding factor 2 transformation were designed using

both Altera Quartus II and Xilinx ISE design suite 14.7 and

evaluated. Simulation results showed that SHA-1 40 stages

pipelining with unfolding factor 2 transformations provided

the higher speed and throughput of SHA-1 design. By using

the techniques of pipelining and unfolding, the throughput

increased up to 159.3 Gbps on Arria II GX and 223.6 Gbps

on Virtex 5 XC5VLX50T. The maximum frequency of

unfolding SHA-1 40 stages pipelining design was 308.17

MHz and 458.6 MHz on Arria II GX and Virtex 5

XC5VLX50T respectively. This design only used 9799

combinational ALUTs and 718 total registers on Arria II GX.

For Virtex 5 XC5VLX50T, the usage of slice LUT and slice

register was about 11994 and 3448 respectively. Hence, by

using appropriate FPGA device, the high frequency and small

area implementation can be obtained. This proposed SHA-1

design provided better performance compared with

traditional designs. As a result, our proposed technique can

improve the performance of SHA-1 design which is useful

for security system design and other hash functions.

ACKNOWLEDGEMENTS

This project was supported by Universiti Malaysia

Sarawak (UNIMAS).

REFERENCES

[1] Federal Information Processing Standards Publication, Secure Hash

Standard (SHS), FIPS PUB 180-4, Information Technology
Laboratory National Institute of Standards and Technology

Gaithersburg, Mar. 2012.

[2] Q. Dang, Draft NIST Special Publication 800-107(Revised),
Recommendation for Applications Using Approved Hash Algorithms,

Computer Security Division, Information Technology Laboratory,

Computer Security, Sep. 2011.
[3] J. Kim, H. Lee, Y. Won, “Design for High Throughput SHA-1 Hash

Function on FPGA,” Fourth International Conference on Ubiquitous

and Future Networks (ICUFN), pp. 403-404, 2012.
[4] L. Miao, X. Jinfu, Y. Xiaohui, Y. Zhifeng, “Design and

Implementation of Reconfigurable Security Hash Algorithms based on

FPGA, Information Engineering,” ICIE’09 WASE International
Conference, Taiyuan, Chanxi, pp .381-384, 2009.

[5] L. Jiang, Y. Wang, Q. Zhao, Y. Shao, X. Zhao., “Ultra High

Throughput Architectures for SHA-1 Hash Algorithm on FPGA,”
Computational Intelligence and Software Engineering, CiSE 2009,

International Conference, Wuhan, pp. 1-4, 2009.

[6] P. Kitsos, N. Sklavos, and O. Kaufopavlou, “An efficient
implementation of the digital signature algorithm,” Proceedings of 9th

IEEE International Conference on Electronics, Circuits and Systems,

vol. 3, pp. 1151-1154, 2002.

[7] G. Selimis, N. Sklavos, and O. Koufopavlou, “VLSI Implementation

of the Keyed-Hash Message Authentication Code for the Wireless

Application Protocol,” Proceedings of the 10th IEEE International
Conference on Electronics, Circuits and Systems, vol. 1, pp 24-27,

2003.

[8] N. Sklavos, E. Alexopoulos and O. Koufopavlou, “Networking Data
Integrity, High Speed Architectures and Hardware Implementations,”

The International Arab Journal of Information Technology, vol. 1, no.

0, pp. 54 – 59, Jul. 2003a.
[9] N. Sklavos, G. Dimitroulakos, and O. Koufopavlou, “An Ultra High

Speed Architecture for VLSI Implementation of Hash Functions,”

Proceedings of the 10th IEEE International Conference on
Electronics, Circuits and Systems ICECS, vol. 3, pp. 990-993, 2003b.

[10] E. H. Lee, J. H.Lee, I. H.Park, K. R.Cho, “Implementation of high-

speed SHA-1 architecture,” IEICE Electronics Express, vol. 6, no. 16,
pp. 1174-1179, 2009.

[11] I. I. Yiakoumis, M. E. Papadonikolakis, H. E. Michail, A. P.

Kakarountas, C. E. Goutis, “Maximizing the hash function of
authentication codes,” IEEE Potentials, vol. 25, no. 2, pp. 9 -12, Mar.

2006.

[12] H. Michail, C. Goutis, “Holistic Methodology for designing Ultra
High-Speed SHA-1 hashing Cryptographic Module in hardware,”

IEEE International Conference on Electron Devices and Solid-State

Circuits, 2008, EDSSC, 2008.
[13] J. H. Lee, S. C. Kim, Y. J. Song, “High-Speed FPGA Implementation

of the SHA-1 Hash Function,” IEICE Trans. Fundamentals, vol. E94-

A, no. 9, pp. 1873 – 1876, Sep. 2011.
[14] S. Suhaili, T. Watanabe, “High Throughput Evaluation of SHA-1

Implementation using Unfolding Transformation”, ARPN Journal of

Engineering and Applied Sciences, vol. 11, no. 5, pp. 3350 – 3355,
Mar. 2016.

[15] F. R. Henriquez, N. A. Saqib, A. D. Perez, C. K. Koc, “Cryptographic

Algorithms on Reconfigurable Hardware,” Springer series on Signal
and Communication, pp. 58-59, 2006.

[16] K. K. Parhi. “VLSI Digital Signal Processing Systems: Design and

Implementation,” John Wiley & Sons, Inc. pp. 119-140, 1999.

