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Abstract—Context-based Adaptive Binary Arithmetic Coder 

(CABAC) is the advanced entropy coding tool employed by 
main and higher profiles of H.264/AVC. In these applications, 
hardware acceleration is needed as the computational load of 
CABAC is high. To improve the implementation time, 
Graphical Processing Unit (GPU) NVIDIA GeForce 820M has 
been used. This paper describes the design and GPU 
implementation of CABAC and comparative study of Discrete 
Wavelet Transform (DWT) and without DWT for three-
dimensional (3-D) medical image compression systems. The 
proposed system architectures were simulated in MATLAB.  
Implementation results on Magnetic Resonance Image (MRI) 
and Computed Tomography (CT) images with GPU and 
Central Processing Unit (CPU) are presented, showing GPU 
significantly outperformed with respect to a single-threaded 
CPU implementation. These results revealed that GPU is the 
best candidate for image compression application.  In overall, 
CT and MRI modalities with DWT outperform in term of 
compression ratio, Peak Signal to Noise Ratio (PSNR) and 
latency compared with images for CT and MRI without DWT 
process.   
 

Index Terms— Context-based Adaptive Binary Arithmetic 
Coder; Discrete Wavelet Transform; Graphical Processing 
Unit; Compression Ratio; Peak Signal to Noise Ratio 

 
I. INTRODUCTION 

 
Medical image compression plays in medical data 
management as hospitals move towards filmless imaging 
and go completely digital [1].  Several medical imaging 
processing modalities, such as computed tomography (CT), 
positron emission tomography (PET), and magnetic 
resonance image (MRI), have allowed clinicians and 
medical researchers to study the structural and functional 
features of the human body, thereby assisting the clinical 
diagnosis [2]. Reducing image file sizes yield reduction in 
transmission times and this gives an advantage to 
Teleradiology site. Even as the quantity of storage media 
continues to expand, it is expected that the volume of 
uncompressed data produced by hospitals will exceed the 
storage capacity and this will increase operating costs.   

According to the framework of mature hybrid block-based 
coding, H.264/AVC video compression standards capable of 
manipulating an integration of novel advanced coding 
technologies.  The latest video coding standard nearly 
provides 50% with a reduction of the bit rate for 
corresponding quality relative to the achievement of 

preceding standards [3], [4].  The final block of H.264/AVC 
was the entropy coding techniques referred as a context-
based adaptive binary arithmetic coder (CABAC) and 
context-adaptive variable length coding (CAVLC).  CAVLC 
capable even at low bit rates to perform higher coding 
efficiency as well as minimise the unnecessary data, while 
CABAC deal with a higher computational application for 
lossless compression images.   

Moreover, CABAC usually capable to decreased in bit-
rate around 9% - 14% correlated to CAVLC [5].  The way to 
attain higher compression efficiency, CABAC is fully 
utilized in this research and graphical processing unit (GPU) 
hardware is used to speed up the computational complexity 
of the three-dimensional (3-D) compression processes.  The 
motivation of using CABAC in this research because of the 
better complexity heterogeneous reconfigurable systems 
composed of a multimedia processor and a hardware 
accelerator [6].  Currently, researchers have moved from 
serial computing platforms to high-performance computing 
(HPC) platforms, such as field programmable gate array 
(FPGA), multicore processors, and GPU [7].  To date, the 
programmable GPU has demonstrated an outstanding 
performance in many applications beyond graphics, such as 
a database, numerical and simulation computations [8].   

Generally, data-parallel for GPU programs and a large 
amount of data will execute the same instruction sequence 
[9].  Threads can be arranged into one-dimensional (1-D), 
two-dimensional (2-D) or 3-D grids and efficiently mapped 
onto physical cores [10].  More importantly, GPU is treated 
by other researchers as a co-processor, in which GPU can 
execute at its own speed without the stringent control of the 
central processing unit (CPU) program [11].   

This research targeted at developing a novel 
implementation of 3-D medical image compression system 
using CABAC.   Several medical image modalities have 
been deployed for software simulation as well as a hardware 
implementation.  Next, comprehensively evaluation of the 
transform and CABAC implementation in terms of 
compression ratio (CR), peak signal to noise ratio (PSNR), 
and latency is also addressed.  

The structure of the paper is organized as follows.  
Section II presents the algorithm and methodology of 3-D 
HWT with CABAC entropy coding.  Section III explains the 
experimental procedures on GPU and CPU.  Experimental 
results, discussion, comparison and analysis are described in 
Section IV.  While section V concludes this paper. 
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Figure 1: (a) Framework of compression system   (b) Architecture for 3-D Haar with transpose-based computation (c) Input for sub-images (d) Output for 

sub-images 
 

II. ALGORITHM AND METHODOLOGY 
 
The proposed system for 3-D Haar wavelet transform 

(HWT) transposed-based computation used HWT illustrated 
in Figure 1.  On the transformed array, conducting on the 
rows (columns) of the array for the first 1-D HWT and next 
for the columns (rows).  Furthermore, the third 1-D HWT 
performed the corresponding pixels in each of the N sub-
images that form the third dimension.  A couple of memory 
bank is used to store transposed coefficients into memory 
attach with a fetch unit module and for the following 1-D 
HWT calculation system reads back the coefficients. 

Basically, an image is represented as a 2-D array of 
coefficients, where each coefficient is representing the 
brightness level of the image.  Virtually, the smooth colour 
variations of an image known as low-frequency variations, 
while the sharp variations as high-frequency variations.  The 
smooth variations are demanding more importance than the 
sharp variations because the base of an image is established 
by the low-frequency variations.   

On the other hand, the high-frequency variations are 
added to the image to shows the details of the image.  
Hence, DWT is selected to decompose the variations of the 
image into sub-images of different size resolution levels.  
HWT is the simplest types of wavelet that can contribute to 
the image decomposition.  Moreover, the HWT algorithm 
computations only take two elements wide at a time, hence, 
the HWT algorithm is exactly reversible without having the 
edge effects.   

 
A. Proposed System Architectures   
The pre-sequence algorithm before conducting encoding 

and decoding process in CABAC are given in Figure 2.  The 
DWT process with Haar filter represents a dashed line. All 
decimal values from the picture will be converted to decimal 
with new array (72 × 1) before conducting encoding 
process. The same process repeated at decoding process.  
Basically, a 2-D array of coefficients is represented as an 
image, where the brightness level of the image is 
representing of each coefficient.  Virtually, low-frequency 
variations known as the smooth colour variations of an 
image, while the high-frequency variations as sharp 
variations.  

 
Since low-frequency variations more matured, demanding 

of sharp variation reduce compared with smooth variations.  
Moreover, in order to show the details of the image, the 
high-frequency variations are added to the image.  Hence, 
DWT is selected to decompose the variations of the image 
into sub-images of different size resolution levels.  An 
overview of the proposed medical image compression 
system using CABAC with transform and quantization 
blocks is illustrated in Figure 3.   

 

 
 

Figure 2: The flow of encoding and decoding for CABAC with and without 
DWT 
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Figure 3: A full description of the proposed medical image compression 
system using CABAC consist of transform and quantization blocks 
 

B. Context-based Adaptive Binary Arithmetic Coding 
(CABAC) Block 

Huffman and Golomb-Rice compression methods lagging 
behind after arithmetic coding (AC) integrate with efficient 
context modeling provide excessive compression ratios [12].  
On the other side, CABAC mainly has two parts.  Firstly, 
produced by the video encoder coefficients, events, and 
binary symbols converted from parameters.  Specific 
context come from each symbol have been assigned.  Then, 
by using the context information the binary symbols have 
been compressed.  Figure 4 illustrated a diagram of CABAC 
blocks diagram with three stages of the process.  This 
research explained the implementation of context 
information managing and, binary arithmetic coder.  
Meaning that the recursive operation passes through the 
context managing and encoding iteration. 

To achieve best compression performance for CABAC, 
three (3) parameters have been considered.  According to 
the element’s context, firstly determine suitable probability 
models for each syntax element.  Next, adapting probability 
estimates based on local statistic and arithmetic coding. The 
following stages, for coding process where is a data symbol 
involves.  

Binarization process means only accept binary decision 
either ‘1’ or ‘0’ to proceed for encoding.  While the 
transform coefficient or motion vector of non-binary valued 
symbols are converted into binary code prior to arithmetic 
coding. For a binarized symbol of each bit or bin will repeat 
this process. 

Furthermore, context model selection was the probability 
model for one or more bins of the binarized symbols.  This 
model may be chosen from a selection of available model 
depending on the statistics of recently coded data symbols. 
The probability of each bin being ‘1’ or ‘0’ will store by 
context model. 

 Each bin has been encoded based on the chosen 
probability model is called arithmetic encoding.  There are 
only have two sub-ranges for each bin corresponding to ‘0’ 
and ‘1’.  Actual coded value as a reference for probability 
update. 

 

 
 

Figure 4: CABAC blocks diagram with three stages of the process 
 
In arithmetic coding, different symbols probability 

influenced the iterative division of an interval.  Binary coder 
conducted by CABAC with certain scenario during high 
compression efficiency that permits substantial complexity 
reduction.  More specifically, Q-coder family is related to 
the CABAC arithmetic coder.  In performing low and range 
to the lower point and the length of the current interval, the 
encoding equations (1) and (2) are: 
 
MPS Most Probable Symbol                                            (1) 
lownew = low 
rangenew = range−rLPS  
LPS Least Probable Symbol                                     (2) 
lownew = low +range−rLPS rangenew = rLPS 
 

The current context of the encoding state and the value of 
range will draw the value of range least probable symbol 
(rLPS).  At whatever time, which symbols were encoded 
will keep track by low value.  For least probable symbol 
(LPS) length of range decreases tremendously.  More bits 
needed for encoding if the smaller values of range need 
higher precision.  Despite used integer arithmetic, after 
every iteration range value is normalized.  On top of that, 
CABAC offered a mode for encoding equally probable 
symbols.  Not necessary for context accessing in this mode.  
Faster implementation in software also allows.  At the end 
of the encoding process, the value of range decreases while 
the value of low increases continuously.  To remain the size 
of both operands within the range, every cycle is 
normalized.    

 
III. EXPERIMENTAL PROCEDURE 

 
In this section, the serial, as well as the parallel 

implementation of the CPU and GPU procedures, was 
present.  For parallel implementation, integrated of 
MATLAB 2013a and also with CUDA 7.5 toolkit have been 
used.  As shown in the procedure, IM represent the 
complete    3-D medical images with DWT Haar filter.  
Time1 indicates the full cycle of time-consuming to process 
the 3-D image in Host/CPU.  Where time2 represent the 
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time consuming to execute the process in GPU with 
tabulation of the array.  Next, time3 indicates of time-
consuming copy data from GPU to host/CPU. Time4 its 
transmitting time from CPU to GPU.  For gather function 
indicates transfer distributed array or gpuArray to local 
workspace.  Speed up function was differentiated between 
time1 and time2. 

 
Procedure Communicate with Host (CPU) and GPU 

1: IM=idwt2(zsimf,'haar'); 
2: time1 = toc; 
3: tic; 
4: A2 = gpuArray(zsimf); 
5: time4 = toc; 
6: tic; 
7: B2 = (A2); 
8: time2 = toc; 
9: CC = gather(B2);    
10: time3 = toc; 
11: speedUp = time1/time2; 
12: disp(speedup) 
13: disp(['Time on CPU is ' num2str(time1)]) 
14: disp(['Time on GPU is ' num2str(time2)]) 
15: disp(['Time for gathering data from GPU back to    
      CPU is ' num2str(time3)]) 
16: disp(['Time for transmitting data from CPU  to   
      GPU is ' num2str(time4)]) 

 
A. Implementation Setup 
Implementation setup for this research was configured and 

executed via CPU and GPU.  The following components are 
used for conducting experiments: 

i. Four (4) sizes of the input image (256×256, 
396×354, 512×512, and 828×1024). 

ii. Two (2) type of modalities (MRI and CT) with 
JPEG and DICOM format. 

iii. DWT with Haar filter 
 

Basically, by using GPU array function in MATLAB the 
image from Host or CPU is copied to transfer to GPU 
memory.  The main objective of array function to copies the 
numeric array X to GPU and returns a gpuArray object.  
More than that can operate on this array by passing its 
gpuArray to the feval method of a CUDA kernel object, or 
by using one of the methods defined for gpuArray objects 
in establishing arrays on a GPU.  The output is the same as 
the input if the input argument is already a gpuArray.  By 
using gather function the array from the GPU to the 
MATLAB workspace have retrieved.   

Generally, GPU is described as a massively multi-
threaded architecture containing hundreds of processing 
elements (cores) in computing purpose.  Four (4) stage 
pipeline originally comes from each core.  Symmetric 
processors (SPs) consist of eight (8) core is grouped in a 
single instruction multiple data (SIMD) fashion into a 
symmetric multiprocessor (SM) so that each core in an SM 
executes the same instruction. The GeForce 820M has 1024 
maximum thread per block, which makes for a maximum 
thread block size [1024, 1024, 654].  Each core can store a 
number of thread contexts.  Data fetch latencies are tolerated 
by switching between threads.  Moreover that, clock rates 
1250, 000 kHz.  The CUDA API allows a user to create a 
large number of threads to execute code on the GPU.  
Blocks is a group of threads and blocks make up a grid. 

Next, for execution, each SM blocks are serially assigned. 
The warps basically consist of blocks themselves are 
divided into SIMD.  Only one warp at a time will execute by 
SM.  At each level, GPU also has various memory types.   

 
IV. IMPLEMENTATION RESULTS AND DISCUSSIONS 

 
Implementation was conducted using MATLAB software 

and two (2) types of modalities MRI and CT with a different 
format, which is joint photographic experts group (JPEG) 
and digital imaging and communications in medicine 
(DICOM).  For DICOM images, CT (dental scan), and MRI 
(standard thoracic), while JPEG images CT (brain), and 
MRI (weighted human brain).  Results are shown for four 
(4) image sizes as illustrated in Figure 6 and 7 and Table 2.  
Details for the hardware selection listed in Table 1. 

 
Table 1 

Properties of Hardware Selection 
 

Device/Hardware Specification 
CPU Intel (R) Core (TM) i5-4210U CPU@1.7GHz, 

8 GB RAM 
GPU NVIDIA Geforce 820M (1.8 GHz), 2048 MB 

global memory 
 

A. Compression Efficiency 
To verify the efficiency of our proposed method, two 

parameters, compression ratio (CR) and PSNR have been 
used and it is defined as: 

 

datacompress
datauncompressCR =  (3) 

dataimageoriginal
dataimagerecontructPSNR =  (4) 

The CR is based on a comparison of the uncompressed 
and compressed frame data [13].  A higher CR indicates a 
higher degree of data reduction in another way higher ratio 
is better.  Moreover that, PSNR represents the difference 
between the reconstructed and original data, with a smaller 
PSNR indicating that more errors have been introduced 
between the original and reconstructed data.  

In term of objective evaluation for N=8, each image is 
compressed with CABAC entropy coding.  Figure 5 
graphically shows the performance of PSNR without DWT 
and with DWT process.  DICOM and JPEG modalities 
reveal that each image increased the number of PSNR once 
DWT process attached during the execution process image 
compression.   

Moreover that, DWT will accelerate the pixel of images 
depending on proposed transform architecture.  PSNR and 
mean square error (MSE) are used to comparing the squared 
error between the original image and the reconstructed 
image.  There is an inverse relationship between PSNR and 
MSE.  Meaning that higher PSNR generally indicates the 
reconstruction of a higher quality of the image.  Next, 
latency process depending on volumes of images has been 
using during simulation.  Different image size produce 
differs times to process the image, either same or different 
modality.     

On another perspective of analysis such as CR, the size of 
images proportional with time-consuming to execute the 
images, meaning that massive size of images will take more 
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time and reduce the performance of CR as shown in Table 2.  
Furthermore, different modalities of images have the own 
size of the pixel itself.  Another essential point, once adding 
DWT process to grey scale compression system, as 
illustrated in Table 3 and 4, reveal the performance of DWT 
outperform the grey scale, in term of CR, PSNR and latency.   

In the same way, when adding DWT on the image 
compression block, will drive the image effectively follow 
by the architecture have been proposed.  Biggest the image 
size will reduce the effectiveness of compression process 
due to decrease compression ratio.  The compression ratio 
and quality of image reconstructed depending on several 
aspects such as global frequencies and sharpness that occur 
in the frame [14].  Meaning for lossless compression that 
DWT performs significant results with high quality and 
convincing useful for medical image compression 
application. 

 
B. Speed Up 
After profiling the GPU implementation of the CABAC 

encoding and decoding process, their achievement of the 
speedup is obtained with respect to the CPU 
implementation.  Additionally, the CPU timers have been 
used to measure the compression time of the CPU 
implementation, while for the GPU implementation 
compression time is retrieved by timer inclusive with the 
CUDA environment [15].  Speed up indicates the ratios 
between total CPU and total GPU time. Afterward, the 
speedup is calculated as: 

 

timeGPUtotal
timeCPUtotalSpeedup =  

 

(5) 

Table 3 shows the running time of CPU/host and 
GPU/device.  The compression time is much larger than the 
data transfer time for CPU.  Inversely with GPU 
implementation, the compression time is much smaller than 
the data transfer time from GPU to CPU.  This situation 
occurs reflect on GPU characteristic and architecture.  The 
GPU consists of a huge number of parallel processors with a 
memory hierarchy that allows for the concurrent processing 
of thousands of threads [16].   

Along with this situation, GPU is generally programmed 
in a single program multiple threads (SPMT) fashion in 
which GPU processors execute the same program on 
different parts of the data using different threads.  From the 
Table 3, reveal that the JPEG type of modalities is faster 
than DICOM. This because JPEG files (JFIF) contain a 
single monochrome or colour still image and no 
(standardized) meta information. While DICOM files 
contain one or more monochrome or colour images and a 
rich set of standardized meta information.  The image data 
inside the DICOM file can either be uncompressed (native) 
or compressed.  DICOM supports a number of compression 
algorithms, including JPEG.  

 
C. Comparison between the Proposed Method and 

Previous Work 
To verify our proposed method, comparison with previous 

work has been carried out. The CR, PSNR and the 
processing times on the GPU are listed in Table 4. The CR 
of the proposed method closely to 83%, which is the lowest 
CR as compared with other methods but more than 80%.  
Another essential point, the PSNR of the output image of the 

proposed method outperforms the counterparts in [17] and 
[18] but lower than [13].  Notwithstanding the PSNR and 
CR of the proposed approach are worse than the 
counterparts in [13], the processing time is outperformed 
with others previous work. 

 
 

Figure 5: Comparison of PSNR with different of modalities on GPU and 
CPU where G/S means grey scale 

 

 
 

Figure 6: Comparative study of original and reconstructed CT and   
MRI images for the first slices without DWT 

 

 
 

Figure 7: Comparative study of original and reconstructed CT and MRI 
images for the first slices with DWT 

 
V. CONCLUSION 

 
It can summarise that the comparative study of 

performance between DWT and without DWT process for 
3-D medical image compression shows images for CT and 
MRI modalities with DWT outperform in term of 
compression ratio, PSNR and latency compare with both 
images without DWT process. Subsequently, GPU 
implementation of lossless compression using CABAC is 
presented as well as the parallelization strategy followed, 
utilizing NVIDIA GPU parallel architecture.   
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Table 2 

Overall Performance and Comparison with Different Modalities With And Without DWT on CPU and GPU
 

 
CT MRI 

DICOM-DWT DWT DICOM-DWT DWT 
CPU GPU CPU GPU CPU GPU CPU GPU 

Compression ratio (%) 56 79.89 83 43.61 
 DICOM G/S DICOM G/S 

Compression ratio (%) 11.3 76.6 78.6 77.1 
 

Table 3 
 Time Performance, GPU Speed Up Ratios and Comparison with Different Size (In Seconds) Of Two Scenarios Using GPU And CPU Implementations 

 
Images modalities Image size Compress on 

GPU (s) 
Transfer 
GPU→ 
CPU (s) 

All (s) Compress on 
CPU (s) 

Transfer 
CPU→ 
GPU (s) 

All (s) GPU speed 
up ratios 

MRI (DWT) 256 ×256 
(DICOM) 

0.0570 0.0027 0.0597 23.7520 0.0016 23.753 397.87 
MRI (Grey scale) 0.0036 0.0317 0.0353 27.3388 0.0005 27.339 774 
CT (DWT) 396 ×354 

(JPEG) 
0.0603 0.0041 0.8376 51.6109 0.0570 51.668 61.69 

CT (Grey scale) 0.0600 0.0050 0.0650 65.1850 0.0838 65.269 1.0 × 103 
CT (DWT) 512 ×512 

(DICOM) 
0.0795 0.0034 0.0826 150.4017 0.0783 150.48 1.8 × 103 

CT (Grey Scale) 0.0034 0.0042 0.0076 156.2804 0.0005 156.28 20 × 103 
MRI (DWT) 828 ×1024 

(JPEG) 
0.0709 0.0068 0.0777 256.6969 0.0671 256.73 3.3 × 103 

MRI (Grey scale) 0.0829 0.0426 0.1255 312.8042 0.0797 312.88 2.5 × 103 
 

Table 4  
Comparison of The Proposed Method and Previous Work 

 
 Wavelet      

transform [17] 
Lossless 
compression [13] 

The largest 
variation 
algorithm [18] 

Proposed    
(DICOM-DWT)-
MRI 

Compression ratio 2 2.43 1.23 17 
PSNR(dB) 36.08 73.09 40.36 57.25 
Processing time (ms) 20.96 7.94 5.07 0.5 

 
 

Implementation results are achieved for MRI and CT 
images, showing significant high performance and speed up 
of the GPU implementation when compared to its CPU 
counterpart.  The outstanding results of the GPU 
performance with respect to CPU, mainly because the GPUs 
consists of a huge number of parallel processors with a 
memory hierarchy that allows for the concurrent processing 
of thousands of threads.  Furthermore, GPU is generally 
programmed in an SPMT fashion in which GPU processors 
execute the same program on different parts of the data 
using different threads. 
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