

 e-ISSN: 2289-8131 Vol. 9 No. 3-8 45

GPU-based implementation of CABAC for
3-D Medical Image Compression

Afandi Ahmad1, 3, Azlan Muharam2, 3, Abbes Amira4

1Department of Computer Engineering, Faculty of Electrical and Electronic Engineering,
Universiti Tun Hussein Onn Malaysia (UTHM), Johor, 86400, Malaysia

2Kolej Komuniti Masjid Tanah, Kementerian Pendidikan Tinggi, Paya Rumput, 78300 Masjid Tanah, Melaka, Malaysia
3Reconfigurable Computing for Analytic Acceleration Focus Group (ReCAA),

Microelectronics and Nanotechnology – Shamsuddin Research Centre (MiNT-SRC),
Universiti Tun Hussein Onn Malaysia (UTHM), Johor, 86400, Malaysia

4Department of Computer Science and Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
afandia@uthm.edu.my

Abstract—Context-based Adaptive Binary Arithmetic Coder

(CABAC) is the advanced entropy coding tool employed by
main and higher profiles of H.264/AVC. In these applications,
hardware acceleration is needed as the computational load of
CABAC is high. To improve the implementation time,
Graphical Processing Unit (GPU) NVIDIA GeForce 820M has
been used. This paper describes the design and GPU
implementation of CABAC and comparative study of Discrete
Wavelet Transform (DWT) and without DWT for three-
dimensional (3-D) medical image compression systems. The
proposed system architectures were simulated in MATLAB.
Implementation results on Magnetic Resonance Image (MRI)
and Computed Tomography (CT) images with GPU and
Central Processing Unit (CPU) are presented, showing GPU
significantly outperformed with respect to a single-threaded
CPU implementation. These results revealed that GPU is the
best candidate for image compression application. In overall,
CT and MRI modalities with DWT outperform in term of
compression ratio, Peak Signal to Noise Ratio (PSNR) and
latency compared with images for CT and MRI without DWT
process.

Index Terms— Context-based Adaptive Binary Arithmetic
Coder; Discrete Wavelet Transform; Graphical Processing
Unit; Compression Ratio; Peak Signal to Noise Ratio

I. INTRODUCTION

Medical image compression plays in medical data
management as hospitals move towards filmless imaging
and go completely digital [1]. Several medical imaging
processing modalities, such as computed tomography (CT),
positron emission tomography (PET), and magnetic
resonance image (MRI), have allowed clinicians and
medical researchers to study the structural and functional
features of the human body, thereby assisting the clinical
diagnosis [2]. Reducing image file sizes yield reduction in
transmission times and this gives an advantage to
Teleradiology site. Even as the quantity of storage media
continues to expand, it is expected that the volume of
uncompressed data produced by hospitals will exceed the
storage capacity and this will increase operating costs.

According to the framework of mature hybrid block-based
coding, H.264/AVC video compression standards capable of
manipulating an integration of novel advanced coding
technologies. The latest video coding standard nearly
provides 50% with a reduction of the bit rate for
corresponding quality relative to the achievement of

preceding standards [3], [4]. The final block of H.264/AVC
was the entropy coding techniques referred as a context-
based adaptive binary arithmetic coder (CABAC) and
context-adaptive variable length coding (CAVLC). CAVLC
capable even at low bit rates to perform higher coding
efficiency as well as minimise the unnecessary data, while
CABAC deal with a higher computational application for
lossless compression images.

Moreover, CABAC usually capable to decreased in bit-
rate around 9% - 14% correlated to CAVLC [5]. The way to
attain higher compression efficiency, CABAC is fully
utilized in this research and graphical processing unit (GPU)
hardware is used to speed up the computational complexity
of the three-dimensional (3-D) compression processes. The
motivation of using CABAC in this research because of the
better complexity heterogeneous reconfigurable systems
composed of a multimedia processor and a hardware
accelerator [6]. Currently, researchers have moved from
serial computing platforms to high-performance computing
(HPC) platforms, such as field programmable gate array
(FPGA), multicore processors, and GPU [7]. To date, the
programmable GPU has demonstrated an outstanding
performance in many applications beyond graphics, such as
a database, numerical and simulation computations [8].

Generally, data-parallel for GPU programs and a large
amount of data will execute the same instruction sequence
[9]. Threads can be arranged into one-dimensional (1-D),
two-dimensional (2-D) or 3-D grids and efficiently mapped
onto physical cores [10]. More importantly, GPU is treated
by other researchers as a co-processor, in which GPU can
execute at its own speed without the stringent control of the
central processing unit (CPU) program [11].

This research targeted at developing a novel
implementation of 3-D medical image compression system
using CABAC. Several medical image modalities have
been deployed for software simulation as well as a hardware
implementation. Next, comprehensively evaluation of the
transform and CABAC implementation in terms of
compression ratio (CR), peak signal to noise ratio (PSNR),
and latency is also addressed.

The structure of the paper is organized as follows.
Section II presents the algorithm and methodology of 3-D
HWT with CABAC entropy coding. Section III explains the
experimental procedures on GPU and CPU. Experimental
results, discussion, comparison and analysis are described in
Section IV. While section V concludes this paper.

Journal of Telecommunication, Electronic and Computer Engineering

46 e-ISSN: 2289-8131 Vol. 9 No. 3-8

Figure 1: (a) Framework of compression system (b) Architecture for 3-D Haar with transpose-based computation (c) Input for sub-images (d) Output for

sub-images

II. ALGORITHM AND METHODOLOGY

The proposed system for 3-D Haar wavelet transform

(HWT) transposed-based computation used HWT illustrated
in Figure 1. On the transformed array, conducting on the
rows (columns) of the array for the first 1-D HWT and next
for the columns (rows). Furthermore, the third 1-D HWT
performed the corresponding pixels in each of the N sub-
images that form the third dimension. A couple of memory
bank is used to store transposed coefficients into memory
attach with a fetch unit module and for the following 1-D
HWT calculation system reads back the coefficients.

Basically, an image is represented as a 2-D array of
coefficients, where each coefficient is representing the
brightness level of the image. Virtually, the smooth colour
variations of an image known as low-frequency variations,
while the sharp variations as high-frequency variations. The
smooth variations are demanding more importance than the
sharp variations because the base of an image is established
by the low-frequency variations.

On the other hand, the high-frequency variations are
added to the image to shows the details of the image.
Hence, DWT is selected to decompose the variations of the
image into sub-images of different size resolution levels.
HWT is the simplest types of wavelet that can contribute to
the image decomposition. Moreover, the HWT algorithm
computations only take two elements wide at a time, hence,
the HWT algorithm is exactly reversible without having the
edge effects.

A. Proposed System Architectures
The pre-sequence algorithm before conducting encoding

and decoding process in CABAC are given in Figure 2. The
DWT process with Haar filter represents a dashed line. All
decimal values from the picture will be converted to decimal
with new array (72 × 1) before conducting encoding
process. The same process repeated at decoding process.
Basically, a 2-D array of coefficients is represented as an
image, where the brightness level of the image is
representing of each coefficient. Virtually, low-frequency
variations known as the smooth colour variations of an
image, while the high-frequency variations as sharp
variations.

Since low-frequency variations more matured, demanding

of sharp variation reduce compared with smooth variations.
Moreover, in order to show the details of the image, the
high-frequency variations are added to the image. Hence,
DWT is selected to decompose the variations of the image
into sub-images of different size resolution levels. An
overview of the proposed medical image compression
system using CABAC with transform and quantization
blocks is illustrated in Figure 3.

Figure 2: The flow of encoding and decoding for CABAC with and without
DWT

GPU-based implementation of CABAC for 3-D Medical Image Compression

 e-ISSN: 2289-8131 Vol. 9 No. 3-8 47

Figure 3: A full description of the proposed medical image compression
system using CABAC consist of transform and quantization blocks

B. Context-based Adaptive Binary Arithmetic Coding
(CABAC) Block

Huffman and Golomb-Rice compression methods lagging
behind after arithmetic coding (AC) integrate with efficient
context modeling provide excessive compression ratios [12].
On the other side, CABAC mainly has two parts. Firstly,
produced by the video encoder coefficients, events, and
binary symbols converted from parameters. Specific
context come from each symbol have been assigned. Then,
by using the context information the binary symbols have
been compressed. Figure 4 illustrated a diagram of CABAC
blocks diagram with three stages of the process. This
research explained the implementation of context
information managing and, binary arithmetic coder.
Meaning that the recursive operation passes through the
context managing and encoding iteration.

To achieve best compression performance for CABAC,
three (3) parameters have been considered. According to
the element’s context, firstly determine suitable probability
models for each syntax element. Next, adapting probability
estimates based on local statistic and arithmetic coding. The
following stages, for coding process where is a data symbol
involves.

Binarization process means only accept binary decision
either ‘1’ or ‘0’ to proceed for encoding. While the
transform coefficient or motion vector of non-binary valued
symbols are converted into binary code prior to arithmetic
coding. For a binarized symbol of each bit or bin will repeat
this process.

Furthermore, context model selection was the probability
model for one or more bins of the binarized symbols. This
model may be chosen from a selection of available model
depending on the statistics of recently coded data symbols.
The probability of each bin being ‘1’ or ‘0’ will store by
context model.

 Each bin has been encoded based on the chosen
probability model is called arithmetic encoding. There are
only have two sub-ranges for each bin corresponding to ‘0’
and ‘1’. Actual coded value as a reference for probability
update.

Figure 4: CABAC blocks diagram with three stages of the process

In arithmetic coding, different symbols probability

influenced the iterative division of an interval. Binary coder
conducted by CABAC with certain scenario during high
compression efficiency that permits substantial complexity
reduction. More specifically, Q-coder family is related to
the CABAC arithmetic coder. In performing low and range
to the lower point and the length of the current interval, the
encoding equations (1) and (2) are:

MPS Most Probable Symbol (1)
lownew = low
rangenew = range−rLPS
LPS Least Probable Symbol (2)
lownew = low +range−rLPS rangenew = rLPS

The current context of the encoding state and the value of
range will draw the value of range least probable symbol
(rLPS). At whatever time, which symbols were encoded
will keep track by low value. For least probable symbol
(LPS) length of range decreases tremendously. More bits
needed for encoding if the smaller values of range need
higher precision. Despite used integer arithmetic, after
every iteration range value is normalized. On top of that,
CABAC offered a mode for encoding equally probable
symbols. Not necessary for context accessing in this mode.
Faster implementation in software also allows. At the end
of the encoding process, the value of range decreases while
the value of low increases continuously. To remain the size
of both operands within the range, every cycle is
normalized.

III. EXPERIMENTAL PROCEDURE

In this section, the serial, as well as the parallel

implementation of the CPU and GPU procedures, was
present. For parallel implementation, integrated of
MATLAB 2013a and also with CUDA 7.5 toolkit have been
used. As shown in the procedure, IM represent the
complete 3-D medical images with DWT Haar filter.
Time1 indicates the full cycle of time-consuming to process
the 3-D image in Host/CPU. Where time2 represent the

Journal of Telecommunication, Electronic and Computer Engineering

48 e-ISSN: 2289-8131 Vol. 9 No. 3-8

time consuming to execute the process in GPU with
tabulation of the array. Next, time3 indicates of time-
consuming copy data from GPU to host/CPU. Time4 its
transmitting time from CPU to GPU. For gather function
indicates transfer distributed array or gpuArray to local
workspace. Speed up function was differentiated between
time1 and time2.

Procedure Communicate with Host (CPU) and GPU

1: IM=idwt2(zsimf,'haar');
2: time1 = toc;
3: tic;
4: A2 = gpuArray(zsimf);
5: time4 = toc;
6: tic;
7: B2 = (A2);
8: time2 = toc;
9: CC = gather(B2);
10: time3 = toc;
11: speedUp = time1/time2;
12: disp(speedup)
13: disp(['Time on CPU is ' num2str(time1)])
14: disp(['Time on GPU is ' num2str(time2)])
15: disp(['Time for gathering data from GPU back to
 CPU is ' num2str(time3)])
16: disp(['Time for transmitting data from CPU to
 GPU is ' num2str(time4)])

A. Implementation Setup
Implementation setup for this research was configured and

executed via CPU and GPU. The following components are
used for conducting experiments:

i. Four (4) sizes of the input image (256×256,
396×354, 512×512, and 828×1024).

ii. Two (2) type of modalities (MRI and CT) with
JPEG and DICOM format.

iii. DWT with Haar filter

Basically, by using GPU array function in MATLAB the
image from Host or CPU is copied to transfer to GPU
memory. The main objective of array function to copies the
numeric array X to GPU and returns a gpuArray object.
More than that can operate on this array by passing its
gpuArray to the feval method of a CUDA kernel object, or
by using one of the methods defined for gpuArray objects
in establishing arrays on a GPU. The output is the same as
the input if the input argument is already a gpuArray. By
using gather function the array from the GPU to the
MATLAB workspace have retrieved.

Generally, GPU is described as a massively multi-
threaded architecture containing hundreds of processing
elements (cores) in computing purpose. Four (4) stage
pipeline originally comes from each core. Symmetric
processors (SPs) consist of eight (8) core is grouped in a
single instruction multiple data (SIMD) fashion into a
symmetric multiprocessor (SM) so that each core in an SM
executes the same instruction. The GeForce 820M has 1024
maximum thread per block, which makes for a maximum
thread block size [1024, 1024, 654]. Each core can store a
number of thread contexts. Data fetch latencies are tolerated
by switching between threads. Moreover that, clock rates
1250, 000 kHz. The CUDA API allows a user to create a
large number of threads to execute code on the GPU.
Blocks is a group of threads and blocks make up a grid.

Next, for execution, each SM blocks are serially assigned.
The warps basically consist of blocks themselves are
divided into SIMD. Only one warp at a time will execute by
SM. At each level, GPU also has various memory types.

IV. IMPLEMENTATION RESULTS AND DISCUSSIONS

Implementation was conducted using MATLAB software

and two (2) types of modalities MRI and CT with a different
format, which is joint photographic experts group (JPEG)
and digital imaging and communications in medicine
(DICOM). For DICOM images, CT (dental scan), and MRI
(standard thoracic), while JPEG images CT (brain), and
MRI (weighted human brain). Results are shown for four
(4) image sizes as illustrated in Figure 6 and 7 and Table 2.
Details for the hardware selection listed in Table 1.

Table 1

Properties of Hardware Selection

Device/Hardware Specification
CPU Intel (R) Core (TM) i5-4210U CPU@1.7GHz,

8 GB RAM
GPU NVIDIA Geforce 820M (1.8 GHz), 2048 MB

global memory

A. Compression Efficiency
To verify the efficiency of our proposed method, two

parameters, compression ratio (CR) and PSNR have been
used and it is defined as:

datacompress
datauncompressCR = (3)

dataimageoriginal
dataimagerecontructPSNR = (4)

The CR is based on a comparison of the uncompressed
and compressed frame data [13]. A higher CR indicates a
higher degree of data reduction in another way higher ratio
is better. Moreover that, PSNR represents the difference
between the reconstructed and original data, with a smaller
PSNR indicating that more errors have been introduced
between the original and reconstructed data.

In term of objective evaluation for N=8, each image is
compressed with CABAC entropy coding. Figure 5
graphically shows the performance of PSNR without DWT
and with DWT process. DICOM and JPEG modalities
reveal that each image increased the number of PSNR once
DWT process attached during the execution process image
compression.

Moreover that, DWT will accelerate the pixel of images
depending on proposed transform architecture. PSNR and
mean square error (MSE) are used to comparing the squared
error between the original image and the reconstructed
image. There is an inverse relationship between PSNR and
MSE. Meaning that higher PSNR generally indicates the
reconstruction of a higher quality of the image. Next,
latency process depending on volumes of images has been
using during simulation. Different image size produce
differs times to process the image, either same or different
modality.

On another perspective of analysis such as CR, the size of
images proportional with time-consuming to execute the
images, meaning that massive size of images will take more

GPU-based implementation of CABAC for 3-D Medical Image Compression

 e-ISSN: 2289-8131 Vol. 9 No. 3-8 49

time and reduce the performance of CR as shown in Table 2.
Furthermore, different modalities of images have the own
size of the pixel itself. Another essential point, once adding
DWT process to grey scale compression system, as
illustrated in Table 3 and 4, reveal the performance of DWT
outperform the grey scale, in term of CR, PSNR and latency.

In the same way, when adding DWT on the image
compression block, will drive the image effectively follow
by the architecture have been proposed. Biggest the image
size will reduce the effectiveness of compression process
due to decrease compression ratio. The compression ratio
and quality of image reconstructed depending on several
aspects such as global frequencies and sharpness that occur
in the frame [14]. Meaning for lossless compression that
DWT performs significant results with high quality and
convincing useful for medical image compression
application.

B. Speed Up
After profiling the GPU implementation of the CABAC

encoding and decoding process, their achievement of the
speedup is obtained with respect to the CPU
implementation. Additionally, the CPU timers have been
used to measure the compression time of the CPU
implementation, while for the GPU implementation
compression time is retrieved by timer inclusive with the
CUDA environment [15]. Speed up indicates the ratios
between total CPU and total GPU time. Afterward, the
speedup is calculated as:

timeGPUtotal
timeCPUtotalSpeedup =

(5)

Table 3 shows the running time of CPU/host and
GPU/device. The compression time is much larger than the
data transfer time for CPU. Inversely with GPU
implementation, the compression time is much smaller than
the data transfer time from GPU to CPU. This situation
occurs reflect on GPU characteristic and architecture. The
GPU consists of a huge number of parallel processors with a
memory hierarchy that allows for the concurrent processing
of thousands of threads [16].

Along with this situation, GPU is generally programmed
in a single program multiple threads (SPMT) fashion in
which GPU processors execute the same program on
different parts of the data using different threads. From the
Table 3, reveal that the JPEG type of modalities is faster
than DICOM. This because JPEG files (JFIF) contain a
single monochrome or colour still image and no
(standardized) meta information. While DICOM files
contain one or more monochrome or colour images and a
rich set of standardized meta information. The image data
inside the DICOM file can either be uncompressed (native)
or compressed. DICOM supports a number of compression
algorithms, including JPEG.

C. Comparison between the Proposed Method and

Previous Work
To verify our proposed method, comparison with previous

work has been carried out. The CR, PSNR and the
processing times on the GPU are listed in Table 4. The CR
of the proposed method closely to 83%, which is the lowest
CR as compared with other methods but more than 80%.
Another essential point, the PSNR of the output image of the

proposed method outperforms the counterparts in [17] and
[18] but lower than [13]. Notwithstanding the PSNR and
CR of the proposed approach are worse than the
counterparts in [13], the processing time is outperformed
with others previous work.

Figure 5: Comparison of PSNR with different of modalities on GPU and
CPU where G/S means grey scale

Figure 6: Comparative study of original and reconstructed CT and
MRI images for the first slices without DWT

Figure 7: Comparative study of original and reconstructed CT and MRI
images for the first slices with DWT

V. CONCLUSION

It can summarise that the comparative study of

performance between DWT and without DWT process for
3-D medical image compression shows images for CT and
MRI modalities with DWT outperform in term of
compression ratio, PSNR and latency compare with both
images without DWT process. Subsequently, GPU
implementation of lossless compression using CABAC is
presented as well as the parallelization strategy followed,
utilizing NVIDIA GPU parallel architecture.

Journal of Telecommunication, Electronic and Computer Engineering

50 e-ISSN: 2289-8131 Vol. 9 No. 3-8

Table 2

Overall Performance and Comparison with Different Modalities With And Without DWT on CPU and GPU

CT MRI

DICOM-DWT DWT DICOM-DWT DWT
CPU GPU CPU GPU CPU GPU CPU GPU

Compression ratio (%) 56 79.89 83 43.61
 DICOM G/S DICOM G/S

Compression ratio (%) 11.3 76.6 78.6 77.1

Table 3
 Time Performance, GPU Speed Up Ratios and Comparison with Different Size (In Seconds) Of Two Scenarios Using GPU And CPU Implementations

Images modalities Image size Compress on

GPU (s)
Transfer
GPU→
CPU (s)

All (s) Compress on
CPU (s)

Transfer
CPU→
GPU (s)

All (s) GPU speed
up ratios

MRI (DWT) 256 ×256
(DICOM)

0.0570 0.0027 0.0597 23.7520 0.0016 23.753 397.87
MRI (Grey scale) 0.0036 0.0317 0.0353 27.3388 0.0005 27.339 774
CT (DWT) 396 ×354

(JPEG)
0.0603 0.0041 0.8376 51.6109 0.0570 51.668 61.69

CT (Grey scale) 0.0600 0.0050 0.0650 65.1850 0.0838 65.269 1.0 × 103
CT (DWT) 512 ×512

(DICOM)
0.0795 0.0034 0.0826 150.4017 0.0783 150.48 1.8 × 103

CT (Grey Scale) 0.0034 0.0042 0.0076 156.2804 0.0005 156.28 20 × 103
MRI (DWT) 828 ×1024

(JPEG)
0.0709 0.0068 0.0777 256.6969 0.0671 256.73 3.3 × 103

MRI (Grey scale) 0.0829 0.0426 0.1255 312.8042 0.0797 312.88 2.5 × 103

Table 4
Comparison of The Proposed Method and Previous Work

 Wavelet

transform [17]
Lossless
compression [13]

The largest
variation
algorithm [18]

Proposed
(DICOM-DWT)-
MRI

Compression ratio 2 2.43 1.23 17
PSNR(dB) 36.08 73.09 40.36 57.25
Processing time (ms) 20.96 7.94 5.07 0.5

Implementation results are achieved for MRI and CT
images, showing significant high performance and speed up
of the GPU implementation when compared to its CPU
counterpart. The outstanding results of the GPU
performance with respect to CPU, mainly because the GPUs
consists of a huge number of parallel processors with a
memory hierarchy that allows for the concurrent processing
of thousands of threads. Furthermore, GPU is generally
programmed in an SPMT fashion in which GPU processors
execute the same program on different parts of the data
using different threads.

REFERENCES

[1] M. A. M. Salem, M. Appel, F. Winkler, and B. Meffert, “FPGA-based

smart camera for 3D wavelet-based image segmentation,” in 2008 2nd
ACM/IEEE International Conference on Distributed Smart Cameras,
ICDSC 2008, 2008.

[2] G. Z. G. Zhang, M. Talley, W. Badawy, M. Weeks, and M. Bayoumi,
“A low power prototype for a 3D discrete wavelet transform
processor,” ISCAS’99. Proc. 1999 IEEE Int. Symp. Circuits Syst. VLSI
(Cat. No.99CH36349), vol. 1, 1999.

[3] J. Ostermann et al., “Video coding with H.264/AVC: Tools,
performance, and complexity,” IEEE Circuits Syst. Mag., vol. 4, no.
1, pp. 7–28, 2004.

[4] T. Wiegand, “Overview of the H. 264/AVC video coding standard,”
… Syst. Video …, vol. 13, no. 7, pp. 560–576, 2003.

[5] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive
binary arithmetic coding in the H.264/AVC video compression
standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7,
pp. 620–636, 2003.

[6] R. A. Kandalkar and P. M. R. Ingle, “CABAC Entropy Decoding
Algorithm Implementation on FPGA For H . 264,” Int. J. Emerg.
Trends Electr. Electron., vol. 5, pp. 70–75, 2013.

[7] S. Mittal and J. S. Vetter, “A Survey of CPU-GPU Heterogeneous
Computing Techniques,” ACM Comput. Surv., vol. 47, no. 2, pp. 1–

36, 2015.
[8] Y. Tan, S. Member, and K. Ding, “A Survey on GPU-Based

Implementation of Swarm Intelligence Algorithms,” IEEE Trans.
Cybern., pp. 1–14, 2015.

[9] H. L. L. Khor, S. C. Liew, J. M. Zain, S. Engineering, L. T. Razak,
and P. D. Makmur, “A review on parallel medical image processing
on GPU,” 2015 4th Int. Conf. Softw. Eng. Comput. Syst. ICSECS 2015
Virtuous Softw. Solut. Big Data, pp. 45–48, 2015.

[10] Z. Juhasz and G. Kozmann, “A GPU-based simultaneous real-time
EEG processing and visualization system for brain imaging
applications,” 2015 38th Int. Conv. Inf. Commun. Technol. Electron.
Microelectron. MIPRO 2015 - Proc., no. May, pp. 299–304, 2015.

[11] S. Philip, B. Summa, V. Pascucci, and P. T. Bremer, “Hybrid CPU-
GPU solver for gradient domain processing of massive images,” Proc.
Int. Conf. Parallel Distrib. Syst. - ICPADS, pp. 244–251, 2011.

[12] E. H. Sibley, I. A. N. H. Willen, R. M. Neal, and J. G. Cleary,
“Arithmetic Coding for data compression,” vol. 30, no. 6, 1987.

[13] U. W. Lok and P. C. Li, “Transform-Based Channel-Data
Compression to Improve the Performance of a Real-Time GPU-Based
Software Beamformer,” IEEE Trans. Ultrason. Ferroelectr. Freq.
Control, vol. 63, no. 3, pp. 369–380, 2016.

[14] A. Ahmad, “Efficient Implementation Of A 3-D Medical Imaging
Compression System Using CAVLC,” in Proceeding of 2010 IEEE
17th International Conference on Image Processing, 2010, pp. 3773–
3776.

[15] L. Santos, E. Magli, R. Vitulli, J. F. Lopez, and R. Sarmiento,
“Highly-parallel gpu architecture for lossy hyperspectral image
compression,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol.
6, no. 2, pp. 670–681, 2013.

[16] D. Keymeulen, N. Aranki, B. Hopson, A. Kiely, M. Klimesh, and K.
Benkrid, “GPU lossless hyperspectral data compression system for
space applications,” IEEE Aerosp. Conf. Proc., 2012.

[17] P. Govindan, T. Gonnot, S. Gilliland, and J. Saniie, “3D ultrasonic
signal compression algorithms for high signal fidelity,” Midwest
Symp. Circuits Syst., vol. 2, no. 2, pp. 1263–1266, 2013.

[18] A. Miguel De Freitas, M. R. Jimenez, H. Benincaza, P. Jean, and Von
Der Weid, “A new lossy compression algorithm for ultrasound
signals,” Proc. - IEEE Ultrason. Symp., pp. 1885–1888, 2008.

	I. Introduction
	II. Algorithm and Methodology
	A. Proposed System Architectures
	B. Context-based Adaptive Binary Arithmetic Coding (CABAC) Block

	III. Experimental Procedure
	A. Implementation Setup

	IV. Implementation Results and Discussions
	A. Compression Efficiency
	B. Speed Up
	C. Comparison between the Proposed Method and Previous Work

	V. Conclusion
	References

