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Abstract—Near infrared spectroscopic analysis requires a 

predictive model to extract relevant information from a complex 

near infrared spectral data so that the internal composition of 

products can be measured indirectly. Even though ensemble 

models show a better predictive performance compared to that 

of a single model in most cases, the computational cost will be 

multiplied for building multiple models. Besides, a combination 

of several different sub-models causes an ensemble model to be 

much complex than a single model. Thus, this study proposes the 

bootstrapping adaptive linear neuron (Adaline) that adapts the 

philosophy of bootstrapping aggregation approach. Without 

changing the architecture of an Adaline, the results indicate that 

the proposed the bootstrapping Adaline is promising to achieve 

a better performance than an Adaline with an average 18.6% 

improvement. This suggests that the bootstrapping algorithm is 

promising to enhance the predictive accuracy of the Adaline 

model in near infrared spectroscopic analysis. 

 

Index Terms—Adaptive Linear Neuron; Bootstrapping; Near 

Infrared Spectroscopic Analysis. 

 

I. INTRODUCTION 

 

Near infrared spectroscopic analysis aims to extract relevant 

information from a highly collinear and over-lapping near 

infrared spectral data so that the internal composition of 

products can be non-destructively predicted [1, 2]. This is 

because the near infrared spectrum can be acquired non-

destructively from a given sample that is either solid or liquid. 

Recent technology development has reduced the size and cost 

of near infrared spectrometers. However, the development of 

better predictive models is still an area that both researchers 

and industries concern about so that this technology can be 

applied in new applications [3]. 

Ensemble modelling approaches have attracted the 

attention of researchers as new approaches to enhance the 

predictive accuracy of a predictive model. Generally, there 

are two steps in producing an ensemble model. First, several 

divert sub-models are created. Second, the outputs of these 

sub-models are aggregated to produce a single output. For 

example, bootstrap aggregating (also known as Bagging) 

combines the outputs of multiple sub-models that are created 

using bootstrapping resampling strategy as its output. 

Bootstrapping algorithm can provide reliable point and 

interval estimation without any assumption about probability 

distributions and is applicable even for small data size [4]. 

Even though ensemble models show a better predictive 

performance compared to a single model in most cases, the 

computational cost will be multiplied for building multiple 

models [5-9]. Additionally, it is harder to understand and 

interpret the data using an ensemble predictive model because 

the architecture of the model is much more complex than that 

of a single model. 

Adaptive linear neuron (Adaline) has been widely 

considered as a single layer artificial neural network. Unlike 

artificial neural network that contains lots of tunable 

parameters, Adaline only consists of two tunable parameters, 

i.e. the learning rate and the number of adaptation cycles. The 

former is to ensure the stored information is only disturbed in 

the smallest extent possible during training session according 

to the minimal disturbance principle [10]. The latter is to 

make sure the Adaline has been trained sufficiently without 

under-fitting or over-fitting problem. Using optimal learning 

rate and sufficient adaptation cycles, Adaline coupled with 

linear transfer functions and least mean square (LMS) 

learning algorithm has been found to be able to extract useful 

information for quantitative analysis and variable reduction 

in a near infrared spectroscopic analysis [11]. This could be 

due to the involvement of LMS algorithm that is capable of 

extracting useful information from complex signals [12]. 

This study aims to investigate the possibility to aggregate 

the basic ideas of Bagging approach and Adaline into a single 

model. The main idea of the former is that the strengths of a 

number of divert models that created using different 

bootstrapping sample sets can be aggregated to produce a 

better model. The latter, on the other hand, states that it is 

crucial to ensure that each learning session has a minimum 

effect on previous training pattern, i.e. minimal disturbance 

principle. After that, this paper evaluates the performance of 

the proposed model using an experimental near infrared 

spectroscopic data. 

II. MATERIAL AND METHODS 

In this study, firstly, the raw data was analyzed (Part A), 

and pre-processed (Part B). After that, the relationship 

between the soil organic matter (SOM) and its respective near 

infrared (NIR) spectral data was modeled using the proposed 

model by means of Adaline coupled with the Bootstrapping 

algorithm (Part D). Lastly, the predictive accuracy of the 

proposed Bootstrapping Adaline was compared with the 

Adaline without the proposed strategy (Part C). 

 

A. Spectral Data and Component of Interest 

A total of the 108 near infrared (NIR) spectral data of the 

soil samples that measured in Abisko, Northern Sweden 

(681210N, 181490E) were used in this study (source: 

http://www.models.kvl.dk/datasets/). These NIR spectral 

data ranged from 700 to 2498 nm, with an interval of 2 nm. 

72 spectral data were acquired from soil samples with a depth 
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of 0 to 5cm; while the remainders were acquired from soil 

samples with a depth of 5 to 10 cm [13]. The component of 

interest, i.e. the soil organic matter (SOM) of each soil 

sample, on the other hand, was measured using the loss on 

ignition test at 550 degrees Celsius [13]. 

 

B. Data Pre-processing 

MATLAB (version R2009b, win64) was used to process 

and analyse the data in this study. First, all the data were 

randomly separated into two different data sets with an equal 

amount, i.e. 54 each. The range of a testing data set should 

within the range of the training data set so that extrapolation 

prediction can be avoided. Thus, the data set that had soil 

organic matter (SOM) from 42.91 to 95.85 % was chosen as 

the training dataset. While another data set, in which the SOM 

was from 44.11 to 95.52 %, was selected as the testing data 

set. The mean and standard deviation of training data were 

85.27 and 11.15 %, respectively. The mean and standard 

deviation of testing data were 85.58 and 10.59 %, 

respectively.  

Next, second order Savitzky-Golay (SG) derivative with a 

filter length of 34 nm was used to improve the signal-to-noise 

ratio of the spectral data. After that, the spectral data of the 

training set were normalized into a range of -1 and 1. The 

return parameter of the normalization was retained to pre-

process the spectral data of the testing set.  

The SOM values of training data, on the other hand, were 

normalized into a range of -1 and 1. The return parameter was 

used to post-process all predicted values into their normal 

scale so that the accuracy of a predictive model can be 

analyzed in the original scale. 

 

C. Adaptive Linear Neuron 

Adaptive linear neuron (Adaline) that coupled with 

Widrow-Hoff delta rule or least mean square (LMS) 

algorithm was used to predict the soil organic matter (SOM) 

using the near infrared (NIR) spectral data as its input signals. 

LMS algorithm updates its weights and bias with a minimal 

effect when a training sample in this study.  

In this study, the output of the Adaline is the predicted 

SOM. The k-th predicted SOM,
ky
 is the dot product of the k-

th input data,
kX and the trained weight vector, W , as that 

stated in Equation 1. The equations of W  and 
kX  can be 

represented by Equation 2 and Equation 3, respectively, and 
TX  is the transpose of X vector.  

 

 WXy T
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The first predictor of the k-th input data is the bias input 

that is the product of the 0,kx  (i.e. a unity signal) and the 0w

. The subsequent predictors (i.e. from 1,kx  to nkx , ) are the 

first to n-th wavelengths of the k-th spectrum, in which, n is 

the total number of wavelengths of a spectrum.  

During the training process, firstly, the residue is estimated 

using Equation 4. After that, the weight vector is updated 

according to Equation 5, in which, μ that controls the 

magnitude of the change in each training process. These two 

steps are repeated using different samples until a convergence 

is reached. The learning rate of the Adaline in this study was 

0.0001 that was identified in the previous study [11]. 
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D. Bootstrapping Adaptive Linear Neuron 

Figure 1 illustrates the training process of the proposed 

bootstrapping Adaline. For the proposed model, Adaline will 

be trained using different bootstrap samples in each iteration 

or adaptation cycle. First, 54 bootstrap samples 

)},(,),,(),,{( 54542211

bbbbbbb yxyxyxD   were randomly 

selected with replacement from the training data set, in which, 

b = 1. Second, these data 
1D  were used to train an Adaline 

using Equation 4 and Equation 5 once to perform one 

adaptation cycle. These two steps were repeated until the 

predictive performance of the Adaline is satisfied, i.e., 
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2 yxyxyxD  were used for the 

second adaptation cycle training and so on. The learning rate 

used was same as that used by the optimized Adaline, i.e. 

0.0001.  

Since the bootstrap samples were randomly selected by 

means of bootstrapping with replacement approach, the 

validation analysis was repeated for five times so that the 

effect of using different random samples could be 

investigated. 

 

 
Figure 1: The learning process of the proposed bootstrapping Adaline 

 

III. RESULTS AND DISCUSSION 

A. The Performance of the Proposed Model 

Table 1 tabulates the performance of the proposed 

bootstrapping Adaline with five different trials. The optimal 
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root mean square error of prediction (RMSEP) of the 

bootstrapping Adaline ranges from 1.8980 to 2.0434%, with 

a mean and deviation of 1.9373 and 0.0600%, respectively. 

Although a quite similar optimal RMSEP was achieved, i.e. 

deviation = 0.06%, the optimal iteration varied from 366 to 

1242. This suggests that the proposed model was capable of 

achieving similar optimal RMSEP when the model was 

trained optimally with sufficient adaptation cycles. For 

example, the proposed model was able to achieve the optimal 

RMSEP after it had been trained 366 times during the third 

trial. However, 1242 iterations were needed for the proposed 

model to achieve the optimal RMSEP during the fifth trial as 

that tabulated in Table 1. This could be due to the fact the 

training samples, i.e. bootstrap samples, for each adaptation 

cycle were different during different trials and adaptation 

cycles. Nevertheless, the similar predictive accuracy was 

achieved eventually for the five trials. 

 
Table 1 

The Performance of the Proposed Bootstrapping Adaline 
 

Trial 
Optimal 
Iteration 

Training 

performance 
Predictive performance 

RMSEC 

(%) 
rc 

RMSEP 

(%) 
rp 

1 733 0.5205 0.9978 1.8980 0.9868 

2 1077 0.4504 0.9976 2.0434 0.9868 
3 366 0.8134 0.9947 1.9150 0.9843 

4 887 0.5931 0.9977 1.9080 0.9865 

5 1242 0.5074 0.9986 1.9220 0.9868 

 

Figure 2(a) illustrates the RMSEP of the proposed 

bootstrapping Adaline during the five different training 

sessions for 5000 iterations. The results indicate that the 

RMSEP was highly dependent on the selected bootstrap 

samples in each iteration. Besides, the training session should 

be stopped immediately once the proposed model achieved 

its best accuracy. This is because the RMSEP of the proposed 

model might be worse if the training was continued with 

unwanted or redundant samples. This observation is in 

agreement with Lins et. al. (2015) who reported that the 

predictive accuracy may not be improved when the bootstrap 

replication is increased [4]. In other words, the model might 

be over-fitted if the training session did not stop at its optimal 

performance.  

Figure 2(b), on the other hand, indicates the root mean 

square error of calibration (RMSEC) of the proposed Adaline 

was improving when the iteration was increasing. This 

observation is not in line with the trend of the RMSEP. This 

indicates that an over-fitting problem would happen if the 

training was excessive, i.e. too optimistic calibration 

accuracy (e.g. RMSEC) was achieved. Thus, a better 

indicator is needed to avoid the potential overfitting problem.  

 

B. Bootstrapping Adaline vs. Adaline 

In the previous study, the best Adaline that used the full 

NIR spectrum achieved RMSEC and RMSEP of 0.8859% 

and 2.3800%, respectively; and 
cr  and 

pr  of 0.9960 and 

0.9860, respectively [11]. This shows that the proposed 

bootstrapping Adaline is promising in achieving an 

improvement of 18.6% in average. In other words, the 

involvement of the bootstrapping algorithm enhances the 

predictive accuracy of an Adaline. This could be due to the 

fact that only scarce samples were available in the present 

study, i.e. 108. The improvement may be due to the fact that 

the involvement of the bootstrapping algorithm could avoid 

suboptimal training performance that may happen during split 

sample or holdout validation approach [14].  

Even though there were 899 input variables from each NIR 

spectrum, the proposed bootstrapping Adaline appears to be 

able to avoid over-fitting problem during a training session. 

This is because the proposed model achieved much better 

RMSEC (i.e. between 0.4504 and 0.8134%) than the Adaline 

(i.e. 0.8859%). This indicates that the training performance 

(i.e. RMSEC) of the proposed bootstrapping Adaline was 

much optimistic than that achieved by the Adaline. 

Surprisingly, this optimistic performance did not cause an 

over-fitting problem. This is because the proposed model was 

able to achieve a better predictive accuracy in terms of 

RMSEP. The result suggests that the proposed bootstrapping 

Adaline is less susceptible to the number of input variables.  

 

 
(a) 

 
(b) 

 

Figure 2: The Root Mean Square Error (RMSE) of the proposed 

bootstrapping Adaline: (a) prediction, and (b) training. 

 

Nevertheless, the involvement of the bootstrapping 

algorithm causes the Adaline to be susceptible to the 

adaptation cycles. Since no similar sign of over-fitting from 

RMSEC during training process as that illustrated in Figure 2 

(b), a conventional early stopping or regularization is hard to 

be applied to train the model optimally based on training 

performance. This could be due to the use of different training 

samples in each iteration. Thus, a better strategy is needed so 

that the proposed model can always achieve its best 

performance without over-fitting issues. 
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IV. CONCLUSION 

 

The proposed bootstrapping Adaline is able to predict the 

SOM from near infrared spectral data with the root mean 

square error of prediction (RMSEP) that ranges from 1.8980 

to 2.0434%, with a mean and deviation of 1.9373 and 

0.0600%. This result shows that without changing the 

architecture of an adaptive linear neuron (Adaline), the 

proposed bootstrapping Adaline that adapts the philosophy of 

bootstrapping aggregation approach is capable of achieving a 

better performance than Adaline with an average of 18.6% 

improvement in predicting the soil organic matter (SOM) by 

means of near infrared spectroscopic analysis. In other words, 

bootstrapping algorithm is promising to enhance the 

predictive accuracy of the Adaline model in near infrared 

spectroscopic analysis. 

In future, several optimization strategies will be 

investigated to ensure the training process of the proposed 

bootstrapping Adaline will be stopped at its optimal state.  
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