

 e-ISSN: 2289-8131 Vol. 3 No. 3-7 59

Harmony Search Algorithm for the Multiple

Runways Aircraft Landing Scheduling Problem

Omar Salim Abdullah 1, 2, Salwani Abdullah1, Hafiz Mohd Sarim1
1 Centre for Artificial Intelligence Technology, Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia.
2University of Diyala, College of Pure Science. Iraq.

omarsalim@siswa.ukm.edu.my

Abstract— This paper proposes a Harmony Search (HS)

algorithm to solve the multiple runways aircraft landing

scheduling (ALS) problem. ALS is a combinatorial optimization

problem that has been recognized as an NP-hard problem. It

deals with assigning landing times and runways for a set of

arrival aircrafts. Each aircraft has its predefined target landing

time within a time window, and a separation time between each

successive pairs of aircrafts. The objective of ALS problem is to

minimize the deviation from the target landing time of each

aircraft subject to a set of constraints. The performance of the

proposed algorithm is evaluated on thirteen benchmark

instances ranging from 10 to 500 aircrafts, and 1 to 5 runways.

The results show that the proposed algorithm works

considerably well on small-sized instances.

Index Terms—Aircraft Landing Scheduling Problem;

Combinatorial Optimization Problem; Harmony Search

Algorithm

I. INTRODUCTION

According to the aviation reports, there is a great increase in

the use of air transportation over the last years. Thus, air

transportation industries facing the problem of airspace

congestion in the terminal area especially in busy airports.

The increase of the number of passengers using air

transportation on one hand and the fixed number of airports

or runways in the airports on the other hand necessitates the

discovery of an efficient method to deal with congestion

problems. Air traffic controllers (ATC) have the

responsibility of giving the landing order of the arrival

aircrafts. Usually, they use the first come first save (FCFS)

strategy to generate the landing schedule. FCFS is a fair

strategy but it is not efficient when air space is congested.

Therefore, ATC needs to look for sufficient strategies for

managing the aircraft landing scheduling (ALS) problem.

The ALS problem deals in generating a landing schedule for

a set of aircrafts by assigning landing time and specific

runway for each aircraft, by taking into consideration the

safety constraints between each successive pair of aircrafts.

The goal is to minimize the total deviation from the

predefined target landing time and thus increasing the runway

throughput.

Different optimization approaches have been used to tackle

the ALS problem. Exact methods provide optimal solution in

many research papers with a small instance of the problem

[1]. While with large instances, exact methods are not the

suitable choice due to the time consumption growing

exponentially with the instances size. Metaheuristics

represent the suitable choice in this class of problem.

Different metaheuristic algorithms have been proposed for

the ALS problem in literature. For example, scatter search

[2], iterated local search [3] hybrid particle swarm

optimization with local search [4] and hybrid simulated

annealing with variable neighborhood search [5]. These

approaches show a better performance on a number of

instances.

In this work, we propose a harmony search (HS) algorithm

to tackle the ALS problem. HS is a well-known algorithm and

widely used to solve optimization problems [6-11]. Harmony

Search (HS) algorithm is a metaheuristic search algorithm

inspired from the musical performance by [12], where

musicians cooperate in tuning the pitches of their music tools

to generate a euphonious harmony. HS is a population based

stochastic algorithm with a simple design, clear concept and

few parameters. Due the efficiency and simplicity of HS, it

has been adopted in several optimization applications such as

engineering [13], scheduling [11]; [14], clustering [15] and so

many others [16]. To the best of our knowledge, HS has not

been used in ALS problem. This motivates us to investigate

the performance of the HS algorithm in ALS problem.

The structure of this paper is organized as follows: Section

2 presents the problem description and formulation of the

ALS problem. The fundamentals of the Harmony Search

(HS) algorithm is described in Section 3, followed by the

algorithm for ALS in Section 4, experimental results in

Section 5, and conclusion and future work in section 6.

II. PROBLEM DESCRIPTION AND FORMULATION

The problem description employed in this work is adopted

from [3]. The input for the ALS problem can be stated as

below:

n: the number of the arrival aircrafts.

m: the number of runways

Sij: the separation time (Sij > 0) between aircrafts i and j if they

are assigned to the same runway.

Sij: the separation time (Sij = 0) between aircrafts i and j if

they are assigned to the different runways.

Ti: the preferred landing time (target time) of aircraft i.

Ei: the earliest landing time of aircraft i.

Li: the latest landing time of aircraft i.

C1i: the incurred penalty per unit of time for late landing of

aircraft i.

C2i: the incurred penalty per unit of time for early landing of

aircraft i.

Journal of Telecommunication, Electronic and Computer Engineering

60 e-ISSN: 2289-8131 Vol. 9 No. 3-7

The decision variables used as follows:

xi: the assigned landing time of aircraft i (i =1, 2... n).

yij: equal to 1 if aircraft i is assigned to land before aircraft j.

Otherwise equals 0.

yir: equal to 1 if aircraft i is scheduled to land on a runway r

(r = 1,2,…, m). Otherwise equals 0.

δij: equal to 1 if aircrafts i and j are scheduled to land on the

same runway. Otherwise equals 0.

ai: the tardiness of landing when aircraft i is scheduled to land

after the target time, ai=max(0, xi-Ti).

bi: the earliness of landing when aircraft i is scheduled to land

before the target time, bi=max(0, Ti-xi).

The objective function is to minimize the total penalty

incurred from landing before or after the target time

formulated as follows:

 
1

 1 2
n

i

Minf aiC biC


  (1)

This is subject to the following:

Time window: landing time for aircraft i must be with its time

window:

i i iEt x Lt  i = (1, 2 ..,n) (2)

Separation time: for aircrafts i and j land on the same runway,

there is at least Sij time that must be considered between

them:

 – xj xi Sij i,j= 1,2,…,n i ≠ j (3)

The priority of landing for each successive pairs of aircrafts i

and j, either i or j lands first:

1ij jiy y  (4)

Each aircraft allocated to only one runway:

 – 1,ij ir jry y   i,j= 1,2,…,n i ≠ j,

r=1,2,….,m
(5)

Each aircraft must be allocated to only one runway:

1

 1
m

r

yir


 i = 1, 2…, n (6)

Note that, if two aircrafts land on different runways, no

separation time is required between them.

III. FUNDAMENTALS OF THE HARMONY SEARCH (HS)

ALGORITHM

HS algorithm is a population-based algorithm found by

Geem and Kim [12]. The inspiration of the HS algorithm

mimics a team of musicians in generating pleasing harmony

by interacting the harmonies of their music tools. The quality

of the resulted harmony is determined by the esthetic

standard. For the optimization process, HS algorithm can be

represented as an optimization technique to generate (near)

optimal solutions determined by the objective function.

Assume that there are three musicians playing different

musical instruments, such as a saxophone, a double bass, and

a guitar. Each musical instrument represents a decision

variable in the optimization problem as (x1, x2,x3). Each

pitch generated by any of these musical instruments has a

specific range. As example the musical instruments is the

saxophone with the range = {La, Si, Do} corresponding to the

decision variable x1 = {1, 2, 3}, the double bass with the

range = {Do, Re, Mi} corresponding to the decision variable

x2 = {3, 4, 5} and the guitar with the range = {Mi, Fa, Sol}

corresponding to the decision variable x3 = {5, 6, 7}. In the

optimization process, each musician represents a decision

variable. Therefore, if La is selected by the saxophone, Do is

selected by the double bass and Mi is selected by the guitar,

the new harmony will be (La, Do, and Mi). This new harmony

is evaluated by esthetic standards. Similarly, in the

optimization process, if the values of the decision variables

selected are 1, 3 and 5 respectively, then the new solution will

be represented as (1, 3 and 5). This new solution will be

evaluated by the objective function as a maximization or

minimization function according to the optimization problem

in hand.

The general scheme of HS algorithm described in Figure 1.

HS consists of five steps, as follows [18]:

Step 1: Parameters initialization,

Step 2: Harmony memory (HM) initialization and evaluation,

Step 3: Improvise new harmony,

Step 4: HM update,

Step 5: Termination Criterion.

Step 1: Initializing the algorithm parameters

The parameters of HS algorithm are initialized. HS algorithm

has the following parameters:

 Harmony Memory Size (HMS): This parameter is equal

to the population size in the metaheuristic algorithm. In

the HS algorithm, a number of solutions is stored in the

harmony memory (HM). The HM represented in our

work is a two-dimensional matrix (as in Figure 2) where

Figure 1: General Scheme of a HS Algorithm

Harmony Search Algorithm for the Multiple Runways Aircraft Landing Scheduling Problem

 e-ISSN: 2289-8131 Vol. 9 No. 3-7 61

the rows represent the solutions and the columns

represent the decision variables. The size of the row and

the column are equal to HMS and the decision variables

of the problem in hand, respectively. f(x1), f(x2)..., and

f(xn), as shown in Figure 2 represents the deviation from

a preferred target time of each aircraft based on Eq. (1).

Figure 2: HM Representation [15]

 Harmony Memory Consideration Rate (HMCR): This

parameter is used in the improvisation process to

determine whether the value of decision variable of a

new harmony will be selected from HM, or it will be

generated at random from the possible range between [0,

1]. The probability of randomly selecting the decision

variable value from the possible range is given as 1-

HMCR.

 Pitch Adjustment Rate (PAR): This parameter is used to

decide whether to maintain or to modify the value of the

selected decision variables from HM to its neighboring

value. The value of PAR is between [0,1]

 Number of Improvisations (NI): This parameter

represents the number of iterations of the HS algorithm.

Step 2: HM initialization

This step represents the generation of a population of

solutions. The number of solutions in this population is equal

to the HMS. The size of the solution is equal to the size of the

decision variables and evaluated by the objective function

f(x). The solution is generated at random by assigning

random values of each decision variable from the range

bounded by the lower and upper bounds as;

[0,1]*()j

i i i ix Lx rand Ux Lx   (7)

where rand returns a random number between [0,1], Uxi and

Lxi are the upper and lower bounds of the decision parameter,

respectively.

Step 3: Improvising new harmony

In this step, a new harmony (solution) Xnew is generated

according to the following procedure:

Assuming k is the number of the decision variables. Solution

X in HM can be represented as X = {x1, x2, x3,..,xk}. To

generate a new harmony Xnew = {x1new, x2new, x3new,..,

xknew }, the improvisation process will undergo to the

following procedure:

 Generate a random number between [0,1].

 If the generated random number is less than HMCR, the

decision variables of the new solution Xnew will be

assigned from the HM. Otherwise, it will be randomly

assigned from its range according to the probability of 1-

HMCR.

 The decision variables assigned according to the HMCR

will be adjusted according to the value of PAR. The

adjusting process starts by generating a random number

between [0,1]. If the generated random number is less

than PAR, the decision variables assigned by HMCR will

be adjusted. Otherwise, the decision variables will not

change.

Step 4: Updating the HM

The new harmony (generated in Step 3) will replace the worst

harmony in the HM if its fitness is better than the worst

harmony.

Step 5: Termination criteria

The process of HS algorithm will terminate when the

maximum number of improvisation NI is reached. Otherwise,

repeat Step 3 and Step 4.

IV. THE ALGORITHM

This section presents the initial solution construction, and

the application of the HS on the ALS problem.

A. Initial Solution Construction

In the ALS problem, a solution is represented as a sequence

of landing aircrafts, landing times and runways allocated for

all the aircrafts in the sequence. The initial solution algorithm

is described in Figure 3.

Initial solution construction

1. Let n: number of the aircrafts, m: number of runways
2. Let Sij: separation time between aircraft i and aircraft j, xi : landing

time of aircraft i
3. Let T: target landing time {T1,T2,…,Tn}

4. Generate m sequences {seq1, seq2, …, seqm} // sequence for runway

5. Randomly select one seq for each runway

6. If there is an aircraft a is not assigned to runway

7. Add a to d1 // d1 ϵ m
8. Else, return seq1, seq2,.., seqm

9. Endif

10. Sort seq1, seq2,.., seqm according to their target landing time T in
ascending order. {T1<T2<T3…, Tn}

11. For i=1 to n do

12. If Ta ≤ Tb + Sab
 // a,b ϵ n

13. Set xb = Tb

14. Else

15. xb = Ta + Sab

16. Endif

17. Endfor i
18. Return the generated solution.

Figure 3: Initial Solution Construction

The algorithm starts by assigning the values for the number

of the aircrafts (n), number of runways (m) and target landing

time (Tn). Then, we divide the aircrafts into a number of

sequences equal to the number of runways. For each runway

d, randomly select one sequence, seq, of aircrafts. If there is

a modulus or remainder from the division, we add it to the

first runway (d1). Next, aircrafts are sorted in ascending

order based on their target landing time. For each aircraft i,

assign landing time (x) based on their target landing time (T)

with respect the separation time constraint. Note that, in

assigning the landing time (x) for each aircraft, the separation

time between each successive pair of aircrafts (Sij) must be

respected in order to maintain the feasibility of the solution.

Journal of Telecommunication, Electronic and Computer Engineering

62 e-ISSN: 2289-8131 Vol. 9 No. 3-7

Thus, the landing time (x) for each aircraft equals to its target

landing time (T) if it does not violate the separation time

constraint. Otherwise, the landing time (x) is equal to the

target landing time (T) plus the separation time (of the

preceding aircraft) and end the for loop statement. Finally,

return the generated initial solution. Figure 4 shows the

representation of the solution. The first row represents the

sequence of aircraft. The landing time for each aircraft is

represented in the second row. Each aircraft is allocated to a

specific runway as in the third row. Based on Figure 4, a

sequence of three aircrafts (denoted as A1, A2 and A3) are

assigned to land on Runway 1. Landing time for aircraft A1

is 150, landing time for aircraft A2 is 160 and landing time of

A3 is 782. The same procedure is repeated for the other

sequences of the aircrafts.

Aircraft id A1 A2 A3 … An

Landing time (

x)

150 160 782 …

Runway no Runway1 Runway... Runway m

Figure 4: Initial Solution Representation

For a better understanding, here we give an example how the

assignment of aircrafts to runways is carried out. Assume that

there are 10 aircrafts and 3 runways. Firstly, we divide the

number of aircrafts with the number of runways (i.e., 10/3).

The result of this division is three aircrafts for each runway,

and there are 1 remaining aircraft which has not yet been

assigned. Thus, the remaining aircraft will be assigned to

Runway 1. In case there are 2 remaining aircrafts, each of

them will be assigned to Runway 1 and Runway 2.

B. HS Algorithm for ALS Problem

In this section, we describe the implementation of the HS

algorithm in solving the ALS problem as in Figure 5.

Firstly, the HS parameters are initialized, and an empty

solution Si is generated. Improvising the new solution is based

on the values of the HMCR and PAR as follows: The decision

variables of the ALS problem which are the landing time x

and the runways number m for each aircraft. Based on HMCR

and the random number generated as in the third step of the

HSA in the section 3, the improvisation process will be

repeated up to the maximum number of improvisation NI that

identified in Step 1. According to the number of the decision

variables, random number r1 will be generated between [0,1].

If the value of the random number r1 is less then HMCR, the

decision variables will be selected from the HM. Next,

random number r2 will generated between [0,1]. If r2 is less

than PAR, the selected decision variables according to

HMCR will be adjusted i.e., swap two aircrafts that are

randomly selected and generate a new landing time for them.

Note that one swap operation is carried out when decision

variables need to be adjusted. Otherwise, no change will be

made. The HM is updated if the new solution is better than

the worst solution in the HM. The procedure continues until

the stopping criterion, which is the number of improvisations

is met.

Figure 5: Improvising New Solution in ALS Problem on HS
Algorithm

V. EXPERIMENTAL RESULTS

Benchmark instances, parameter setting and experimental

results are presented in this section. The proposed method is

coded in the Java programming language and run on a

personal computer with 3.4 GHz Core i5 CPU and 4 GB of

RAM

A. Benchmark Instance

We used 13 well-known instances (with 49 instance id) to

verify the performance of the proposed methods that we

introduced by [17] and is available in OR Library and can be

freely download from OR-library

([http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.ht

ml] . The number of aircrafts ranges from 10 to 500 and the

number of runways ranges from 1 to 5. There are two

categories of datasets i.e., small instance (Airland1 to

Airland8) and large instance (Airland9 to Airland13).

B. Parameters Setting

There are five parameters that need to be determined in

advance. We conduct some preliminary tests to set the

parameter values for the HMCR, PAR, HMS and NI, where

the values of all parameters are determined one by one

manually, by changing one value while fixing the rest. The

values of the parameters of HS algorithm are presented in

Table 1.

HS algorithm for ALS

1. Input: population of solutions, HMCR, PAR, x, m // x:

landing time of aircraft, m: the total number of runways,

2. for i = 1 to NI

3. Si= Φ

4. for j = 1 to the number of decision variables

5. r1 = uniform random number between [0,1]

6. if r1 < HMCR

7. Si
j= randomly select aircraft p and assign landing

time x and runway m from HM // p ϵ n

8. r2= uniform random number between [0,1]

9. if r2 < PAR

10. Si
j = randomly select aircrafts p1,p2 based on

the probability of PAR + bw

11. swap [p1, p2]

12. assign new landing time p1(x), p2(x)

13. else maintain [p1,p2] in same order

14. endif

15. else select x, m from the range with the probability of [1-

HMCR]

16. endif

17. Add Si
j to HM

18. endfor

Harmony Search Algorithm for the Multiple Runways Aircraft Landing Scheduling Problem

 e-ISSN: 2289-8131 Vol. 9 No. 3-7 63

 Table 1

 The Parameter Settings of the HS Algorithm

No Parameter Suggested

Value

1 HMCR 0.95

2 PAR 0.5

3
4

5

HMS
NI

bw

20
1000

1

C. Result and Comparisons

The performance of the HS algorithm is compared with the

best-known solutions reported by the state of the art

algorithms for ALS instances. The algorithms in comparison

are as presented in Table 2.

The results are presented in Table 3 in terms of the

percentage gap from the best known values in the literature

(BKV) which is calculated as follows: Δ(%)=((B

BKV)/BKV)) *100, where B is the best result returned by the

tested algorithm over 30 runs and the BKV results are taken

from [11]. ∆(%) = 0 means the obtained solution is equal to

the BKV, -∆(%) indicates the obtained solution superior than

the BKV, and +∆(%) indicates that the obtained solution is

inferior than the BKV. The number of aircrafts (N) and the

number of runways (m) in each instance reported in Table 3.

In the table, the best results obtained by the compared

algorithms are indicated in bold. From the results reported in

Table 3, it can be observed that:

- Comparing the results of the HS algorithm with BKV,

HS algorithm matches the best-known results on small-

sized instances (10 out of 49 instances id) i.e., instance#

3,5,6,8,9,12,13,17,20 and 25.

- Comparing the results of the HS algorithm with other

algorithms in comparison also show similar results in

which it works considerably well on small-sized

instances.

- The HS algorithm shows weak performance on large-

sized instances in comparison with best-known

solutions and other compared algorithms. This is

expected, since in this work a basic HS algorithm is

employed without any modification in comparison with

other algorithms that include an improvement

mechanism on the basic algorithm. For example, local

search is hybridized with the particle swarm

optimization in HPSO-LS, different perturbation

operators are employed in the iterated local search by

[3], hybridization between simulated annealing and

variable neighbourhood descent and variable

neighbourhood search in [5]

The performance of the HS algorithm possibly can be further

improved by considering the following:

Employ an online/adaptive instead of offline parameter

tuning, control the diversity of the solution in the population

during the optimisation process and possibly and hybridise

with a local search.

Table 2

State of the Art Algorithms in Comparison

Algorithm

Symbol

References Description

1 SS [11] Scatter search algorithm
with linear objective

function

2 ILS [12] An iterated local search
algorithm with multiple

perturbation operators and

time varying perturbation
strength

3

HPSO-LS

[2]

Hybrid particle swarm

optimization algorithm in a
rolling horizon

4

SA-VND [13] Simulated annealing with

variable neighborhood
descent

5 SA-VNS [13] Simulated annealing with

variable neighborhood
search

VI. CONCLUSIONS AND FUTURE WORK

The aircraft landing scheduling problem has been studied

in this work. A Harmony Search (HS) algorithm has been

proposed to solve the problem. Numerical experiments on 13

well-known datasets ranged from 10 to 500 aircrafts, and

from 1 to 5 runways have been presented to show the

effectiveness of the HS in producing a minimum deviation

from the target landing time. In addition, the results showed

that HS is competitive in terms of ∆ (%) when compared to

best known results on small-sized instances. For future work,

we intend to investigate an adaptive mechanism to control

parameters of the proposed algorithm. We believe that better

solutions can be obtained if the parameter is adaptively

modified during the optimization process.

ACKNOWLEDGMENT

This work was supported by the Ministry of Higher

Education, Malaysia (FRGS/1/2015/ ICT02/UKM/01/2), and

the Universiti Kebangsaan Malaysia (DIP-2016-024).

Journal of Telecommunication, Electronic and Computer Engineering

64 e-ISSN: 2289-8131 Vol. 9 No. 3-7

Table 3

The Computational Results of HS Algorithm Compared to the State of the Art Algorithms

Instance

name

Instance

no.

N m BKV HS HPSO-LS ILS SS SA-

VND

SA-

VNS

∆ (%) ∆ (%) ∆ (%) ∆ (%) ∆ (%) ∆ (%)

Airland1 1. 10 1 700 72,857.14 0 0 0 0 0

 2. 2 90 33,333.33 0 0 0 0 0

 3. 3 0 0 0 0 0 0 0

Airland2 4. 15 1 1,480 37,162.16 0 0 0 0 0

 5. 2 210 0 0 0 0 0 0

 6. 3 0 0 300 0 0 100 100

Airland3 7. 20 1 820 179.27 0 0 0 0 0

 8. 2 60 0 16,667 0 0 16.66 16.66

 9. 3 0 0 100 0 0 100 100

Airland4 10. 20 1 2,520 77,777.78 0 0 0 0 0

 11. 2 640 6.25 3,125 0 0 3.12 3.12

 12. 3 130 0 23,076.90 0 0 23.07 27.02

 13. 4 0 0 300 0 0 100 100

Airland5 14. 20 1 3,100 129,677.40 0 0 0 0 0

 15. 2 650 67,692.31 0 0 0 0 0

 16. 3 170 41,176.47 0 0 0 0 0

 17. 4 0 0 300 0 0 100 100

Airland6 18. 30 1 24,442 23,774.65 0 0 0 0 0

 19. 2 554 18,050.54 0 0 0 0 0

 20. 3 0 0 0 0 0 0 0

Airland7 21. 44 1 1,550 3,264.78 0 0 0 0 0

 22. 2 0 2820 0 0 0 0 0

Airland8 23. 50 1 1,950 116,923.10 0 0 52.05 0 0

 24. 2 135 18,518.52 0 0 0 0 0

 25. 3 0 0 100 0 0 100 100

Airland9 26. 100 1 5,611.70 147.84 0 0 30.06 8.55 8.55

 27. 2 452.92 120,096.30 -1,947.36 -1.74 5.67 -0.58 0

 28. 3 75.75 245,610.60 0 -2.31 0 0 0

 29. 4 0 909.20 0 0 0 0 0

Airland10 30. 150 1 12,329.31 168,350.90 -0.30 -0.06 44.96 0 0

 31. 2 1,288.73 127,812.70 11,227.332 -1.37 7.87 -5.39 0

 32. 3 220.79 411.64 -6,576.38 -9.41 8.88 -6.49 0

 33. 4 34.22 1,456.08 3,097.60 -6.16 16.74 3.09 3.09

 34. 5 0 3,499.40 0.6 0 0 100 100

Airland11 35. 200 1 1,2418.32 129,977.20 0 -0.05 17.95 0 0

 36. 2 1,540.84 179,751.30 -13,624.39 -8.49 9.19 -8.04 0

 37. 3 280.82 576,946.10 -9,881.77 -3.46 21.59 -2.81 0

 38. 4 54.53 1.529.195 0 -6.47 2.77 0 0

 39. 5 0 5.642.3 0 0 0 0 0

Airland12 40. 250 1 16,209.78 120,460.20 -0.54 0 22.15 0 0

 41. 2 1961.39 159,539.40 -13,550.08 0 18.80 0 0

 42. 3 290.04 719,004.30 -23,469.18 -6.21 17.48 -3.56 0

 43. 4 3.49 34,595.13 -30,085.96 -2.57 271.63 0 0

 44. 5 0 7,770.80 0 0 0 0 0

Airland13 45. 500 1 44,832.38 105,281.70 -17,327.37 -7.70 3.24 -7.54 0

 46. 2 5,501.96 157.074.20 -28,727.94 -0.79 3.72 -0.47 0

Harmony Search Algorithm for the Multiple Runways Aircraft Landing Scheduling Problem

 e-ISSN: 2289-8131 Vol. 9 No. 3-7 65

 47. 3 1,108.51 470,884.30 -39,211.19 0 1.98 -32.79 0

 48. 4 188.46 2.105.232 -52,271.04 -50.71 22.98 -46.62 0

 49. 5 7.35 40,371.84 -100 -59.18 0 -48.16 0

REFERENCES

[1] Ernst, A.T., Krishnamoorthy, M. and Storer, R.H., 1999. Heuristic and

exact algorithms for scheduling aircraft landings. Networks, 34(3),
pp.229-241.

[2] Pinol, H. and Beasley, J.E., 2006. Scatter search and bionomic

algorithms for the aircraft landing problem. European Journal of
Operational Research, 171(2), pp.439-462.

[3] Sabar, N.R. and Kendall, G., 2015. An iterated local search with

multiple perturbation operators and time varying perturbation strength
for the aircraft landing problem. Omega, 56, pp.88-98.

[4] Girish, B.S., 2016. An efficient hybrid particle swarm optimization

algorithm in a rolling horizon framework for the aircraft landing
problem. Applied Soft Computing, 44, pp.200-221.

[5] Salehipour, A., Modarres, M. and Naeni, L.M., 2013. An efficient

hybrid meta-heuristic for aircraft landing problem. Computers &
Operations Research, 40(1), pp.207-213.

[6] Jaddi, N.S. and Abdullah, S., 2017. A cooperative-competitive master-

slave global-best harmony search for ANN optimization and water-
quality prediction. Applied Soft Computing, 51, pp.209-224.Moh, O. et

al., 2011.

[7] Zeng, B. and Dong, Y., 2016. An improved harmony search based
energy-efficient routing algorithm for wireless sensor

networks. Applied Soft Computing, 41, pp.135-147.
[8] Zheng, Y.J., Zhang, M.X. and Zhang, B., 2016. Biogeographic

harmony search for emergency air transportation. Soft

Computing, 20(3), pp.967-977.
[9] Wang, G.G., Gandomi, A.H., Zhao, X. and Chu, H.C.E., 2016.

Hybridizing harmony search algorithm with cuckoo search for global

numerical optimization. Soft Computing, 20(1), pp.273-285.
[10] Sun, W. and Chang, X., 2015. An improved harmony search algorithm

for power distribution network planning. Journal of Electrical and

Computer Engineering, 2015, p.5.

[11] Gao, K.Z., Suganthan, P.N., Pan, Q.K., Chua, T.J., Cai, T.X. and

Chong, C.S., 2016. Discrete harmony search algorithm for flexible job

shop scheduling problem with multiple objectives. Journal of
Intelligent Manufacturing, 27(2), pp.363-374.

[12] Geem, Z.W., Kim, J.H. and Loganathan, G.V., 2001. A new heuristic

optimization algorithm: harmony search. Simulation, 76(2), pp.60-68.
[13] Fesanghary, M., Mahdavi, M., Minary-Jolandan, M. and Alizadeh, Y.,

2008. Hybridizing harmony search algorithm with sequential quadratic

programming for engineering optimization problems. Computer
methods in applied mechanics and engineering, 197(33), pp.3080-

3091.

[14] Yuan, Y., Xu, H. and Yang, J., 2013. A hybrid harmony search
algorithm for the flexible job shop scheduling problem. Applied Soft

Computing, 13(7), pp.3259-3272.

[15] Moh’d Alia, O., Al-Betar, M.A., Mandava, R. and Khader, A.T., 2011,
December. Data clustering using harmony search algorithm.

In International Conference on Swarm, Evolutionary, and Memetic

Computing (pp. 79-88). Springer Berlin Heidelberg.
[16] Geem, Z.W., 2010. State-of-the-art in the structure of harmony search

algorithm. In Recent Advances In Harmony Search Algorithm (pp. 1-

10). Springer Berlin Heidelberg.
[17] Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M. and Abramson, D.,

2000. Scheduling aircraft landings—the static case. Transportation
science, 34(2), pp.180-197.

[18] Al-Betar, M.A. and Khader, A.T., 2009, August. A hybrid harmony

search for university course timetabling. In Proceedings of the 4nd
multidisciplinary conference on scheduling: theory and applications

(MISTA 2009), Dublin, Ireland (pp. 157-179).

[19] Turky, A.M. and Abdullah, S., 2014. A multi-population harmony
search algorithm with external archive for dynamic optimization

problems. Information Sciences, 272, pp.84-95.

