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Abstract— This paper proposes a Harmony Search (HS) 

algorithm to solve the multiple runways aircraft landing 

scheduling (ALS) problem. ALS is a combinatorial optimization 

problem that has been recognized as an NP-hard problem. It 

deals with assigning landing times and runways for a set of 

arrival aircrafts. Each aircraft has its predefined target landing 

time within a time window, and a separation time between each 

successive pairs of aircrafts. The objective of ALS problem is to 

minimize the deviation from the target landing time of each 

aircraft subject to a set of constraints. The performance of the 

proposed algorithm is evaluated on thirteen benchmark 

instances ranging from 10 to 500 aircrafts, and 1 to 5 runways. 

The results show that the proposed algorithm works 

considerably well on small-sized instances. 

 

Index Terms—Aircraft Landing Scheduling Problem; 

Combinatorial Optimization Problem; Harmony Search 

Algorithm 

 

I. INTRODUCTION 

 

According to the aviation reports, there is a great increase in 

the use of air transportation over the last years. Thus, air 

transportation industries facing the problem of airspace 

congestion in the terminal area especially in busy airports. 

The increase of the number of passengers using air 

transportation on one hand and the fixed number of airports 

or runways in the airports on the other hand necessitates the 

discovery of an efficient method to deal with congestion 

problems. Air traffic controllers (ATC) have the 

responsibility of giving the landing order of the arrival 

aircrafts. Usually, they use the first come first save (FCFS) 

strategy to generate the landing schedule. FCFS is a fair 

strategy but it is not efficient when air space is congested. 

Therefore, ATC needs to look for sufficient strategies for 

managing the aircraft landing scheduling (ALS) problem. 

The ALS problem deals in generating a landing schedule for 

a set of aircrafts by assigning landing time and specific 

runway for each aircraft, by taking into consideration the 

safety constraints between each successive pair of aircrafts. 

The goal is to minimize the total deviation from the 

predefined target landing time and thus increasing the runway 

throughput.  

Different optimization approaches have been used to tackle 

the ALS problem. Exact methods provide optimal solution in 

many research papers with a small instance of the problem 

[1]. While with large instances, exact methods are not the 

suitable choice due to the time consumption growing 

exponentially with the instances size. Metaheuristics 

represent the suitable choice in this class of problem. 

Different metaheuristic algorithms have been proposed for 

the ALS problem in literature.  For example, scatter search 

[2], iterated local search [3] hybrid particle swarm 

optimization with local search [4] and hybrid simulated 

annealing with variable neighborhood search [5]. These 

approaches show a better performance on a number of 

instances.    

In this work, we propose a harmony search (HS) algorithm 

to tackle the ALS problem. HS is a well-known algorithm and 

widely used to solve optimization problems [6-11]. Harmony 

Search (HS) algorithm is a metaheuristic search algorithm 

inspired from the musical performance by [12], where 

musicians cooperate in tuning the pitches of their music tools 

to generate a euphonious harmony. HS is a population based 

stochastic algorithm with a simple design, clear concept and 

few parameters. Due the efficiency and simplicity of HS, it 

has been adopted in several optimization applications such as 

engineering [13], scheduling [11]; [14], clustering [15] and so 

many others [16]. To the best of our knowledge, HS has not 

been used in ALS problem. This motivates us to investigate 

the performance of the HS algorithm in ALS problem.  

The structure of this paper is organized as follows: Section 

2 presents the problem description and formulation of the 

ALS problem. The fundamentals of the Harmony Search 

(HS) algorithm is described in Section 3, followed by the 

algorithm for ALS in Section 4, experimental results in 

Section 5, and conclusion and future work in section 6. 

 

II. PROBLEM DESCRIPTION AND FORMULATION 

 

The problem description employed in this work is adopted 

from [3]. The input for the ALS problem can be stated as 

below: 

 

n: the number of the arrival aircrafts. 

m: the number of runways  

Sij: the separation time (Sij > 0) between aircrafts i and j if they 

are assigned to the same runway. 

Sij: the separation time (Sij = 0) between aircrafts i and j if 

they are assigned to the different runways.  

Ti: the preferred landing time (target time) of aircraft i. 

Ei: the earliest landing time of aircraft i.  

Li: the latest landing time of aircraft i.  

C1i: the incurred penalty per unit of time for late landing of 

aircraft i. 

C2i: the incurred penalty per unit of time for early landing of 

aircraft i. 
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The decision variables used as follows:  

xi: the assigned landing time of aircraft i (i =1, 2... n). 

yij: equal to 1 if aircraft i is assigned to land before aircraft j. 

Otherwise equals 0. 

yir: equal to 1 if aircraft i is scheduled to land on a runway r 

(r = 1,2,…, m). Otherwise equals 0. 

δij: equal to 1 if aircrafts i and j are scheduled to land on the 

same runway. Otherwise equals 0.  

ai: the tardiness of landing when aircraft i is scheduled to land 

after the target time, ai=max(0, xi-Ti). 

bi: the earliness of landing when aircraft i is scheduled to land 

before the target time, bi=max(0, Ti-xi). 

 

The objective function is to minimize the total penalty 

incurred from landing before or after the target time 

formulated as follows:  

 

 
1

     1 2
n

i

Minf aiC biC


   (1) 

 

This is subject to the following:  

Time window: landing time for aircraft i must be with its time 

window: 

 

i i iEt x Lt                i = (1, 2 ..,n)                                 (2) 

 

Separation time: for aircrafts i and j land on the same runway, 

there is at least Sij time that must be considered between 

them:                      

 

 –  xj xi Sij             i,j= 1,2,…,n       i ≠ j                  (3)  

  

The priority of landing for each successive pairs of aircrafts i 

and j, either i or j lands first:  

 

1ij jiy y                             (4) 

 

Each aircraft allocated to only one runway: 

 

 –  1,ij ir jry y      i,j= 1,2,…,n    i ≠ j,    

r=1,2,….,m 
(5) 

 

Each aircraft must be allocated to only one runway:   

 

1

  1 
m

r

yir


                i  = 1, 2…, n                                      (6) 

 

Note that, if two aircrafts land on different runways, no 

separation time is required between them. 

 

III. FUNDAMENTALS OF THE HARMONY SEARCH (HS) 

ALGORITHM 

 

HS algorithm is a population-based algorithm found by 

Geem and Kim [12]. The inspiration of the HS algorithm 

mimics a team of musicians in generating pleasing harmony 

by interacting the harmonies of their music tools. The quality 

of the resulted harmony is determined by the esthetic 

standard. For the optimization process, HS algorithm can be 

represented as an optimization technique to generate (near) 

optimal solutions determined by the objective function.  

Assume that there are three musicians playing different 

musical instruments, such as a saxophone, a double bass, and 

a guitar. Each musical instrument represents a decision 

variable in the optimization problem as (x1, x2,x3). Each 

pitch generated by any of these musical instruments has a 

specific range. As example the musical instruments is the 

saxophone with the range = {La, Si, Do} corresponding to the 

decision variable x1 = {1, 2, 3}, the double bass with the 

range = {Do, Re, Mi} corresponding to the decision variable 

x2 = {3, 4, 5} and the guitar with the range = {Mi, Fa, Sol} 

corresponding to the decision variable x3 = {5, 6, 7}. In the 

optimization process, each musician  represents a decision 

variable. Therefore, if La is selected by the saxophone, Do is 

selected by the double bass and Mi is selected by the guitar, 

the new harmony will be (La, Do, and Mi). This new harmony 

is evaluated by esthetic standards. Similarly, in the 

optimization process, if the values of the decision variables 

selected are 1, 3 and 5 respectively, then the new solution will 

be represented as (1, 3 and 5). This new solution will be 

evaluated by the objective function as a maximization or 

minimization function according to the optimization problem 

in hand.  

The general scheme of HS algorithm described in Figure 1. 

HS consists of five steps, as follows [18]: 

Step 1: Parameters initialization, 

Step 2: Harmony memory (HM) initialization and evaluation,  

Step 3: Improvise new harmony,  

Step 4: HM update, 

Step 5: Termination Criterion. 

 

 

Step 1: Initializing the algorithm parameters  

The parameters of HS algorithm are initialized. HS algorithm 

has the following parameters:  

 Harmony Memory Size (HMS): This parameter is equal 

to the population size in the metaheuristic algorithm. In 

the HS algorithm, a number of solutions is stored in the 

harmony memory (HM). The HM represented in our 

work is a two-dimensional matrix (as in Figure 2) where 

Figure 1: General Scheme of a HS Algorithm 
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the rows represent the solutions and the columns 

represent the decision variables. The size of the row and 

the column are equal to HMS and the decision variables 

of the problem in hand, respectively. f(x1), f(x2)..., and 

f(xn), as shown in Figure 2 represents the deviation from 

a preferred target time of each aircraft based on Eq. (1). 

 

 

Figure 2: HM Representation [15] 

 

 Harmony Memory Consideration Rate (HMCR): This 

parameter is used in the improvisation process to 

determine whether the value of decision variable of a 

new harmony will be selected from HM, or it will be 

generated at random from the possible range between [0, 

1]. The probability of randomly selecting the decision 

variable value from the possible range is given as 1-

HMCR. 

 Pitch Adjustment Rate (PAR): This parameter is used to 

decide whether to maintain or to modify the value of the 

selected decision variables from HM to its neighboring 

value. The value of PAR is between [0,1] 

 Number of Improvisations (NI): This parameter 

represents the number of iterations of the HS algorithm. 

 

Step 2: HM initialization 

This step represents the generation of a population of 

solutions. The number of solutions in this population is equal 

to the HMS. The size of the solution is equal to the size of the 

decision variables and evaluated by the objective function 

f(x). The solution is generated at random by assigning 

random values of each decision variable from the range 

bounded by the lower and upper bounds as; 

 

[0,1]*( )j

i i i ix Lx rand Ux Lx    (7) 

 

where rand returns a random number between [0,1], Uxi and 

Lxi are the upper and lower bounds of the decision parameter, 

respectively.  

 

Step 3: Improvising new harmony  

In this step, a new harmony (solution) Xnew is generated 

according to the following procedure:  

Assuming k is the number of the decision variables. Solution 

X in HM can be represented as X = {x1, x2, x3,..,xk}. To 

generate a new harmony Xnew = {x1new, x2new, x3new,.., 

xknew }, the improvisation process will undergo to the 

following procedure:  

 Generate a random number between [0,1]. 

 If the generated random number is less than HMCR, the 

decision variables of the new solution Xnew will be 

assigned from the HM. Otherwise, it will be randomly 

assigned from its range according to the probability of 1-

HMCR.   

 The decision variables assigned according to the HMCR 

will be adjusted according to the value of PAR. The 

adjusting process starts by generating a random number 

between [0,1]. If the generated random number is less 

than PAR, the decision variables assigned by HMCR will 

be adjusted. Otherwise, the decision variables will not 

change. 

 

Step 4: Updating the HM 

The new harmony (generated in Step 3) will replace the worst 

harmony in the HM if its fitness is better than the worst 

harmony. 

 

Step 5: Termination criteria  

The process of HS algorithm will terminate when the 

maximum number of improvisation NI is reached. Otherwise, 

repeat Step 3 and Step 4. 

 

IV. THE ALGORITHM  

 

This section presents the initial solution construction, and 

the application of the HS on the ALS problem. 

 

A. Initial Solution Construction  

In the ALS problem, a solution is represented as a sequence 

of landing aircrafts, landing times and runways allocated for 

all the aircrafts in the sequence. The initial solution algorithm 

is described in Figure 3.  

 

Initial solution construction 

1. Let n: number of the aircrafts, m: number of runways  
2. Let Sij: separation time between aircraft i and aircraft j, xi : landing 

time of aircraft i  
3. Let T: target landing time {T1,T2,…,Tn} 

4. Generate m sequences {seq1, seq2, …, seqm}     // sequence for runway  

5. Randomly select one seq for each runway    
   

6.     If there is an aircraft a is  not assigned to runway    

7.                             Add a to d1                                     // d1 ϵ m              
8.     Else, return seq1, seq2,.., seqm 

9.     Endif   

10. Sort seq1, seq2,.., seqm  according to their target landing time T in 
ascending order. {T1<T2<T3…, Tn}  

11.     For i=1 to n   do  

12.                     If    Ta ≤ Tb + Sab
                 // a,b  ϵ  n   

13.                                        Set    xb = Tb  

14.                    Else  

15.                                        xb = Ta + Sab 

16.                    Endif  

17.     Endfor i  
18.  Return the generated solution.  

 
Figure 3: Initial Solution Construction 

 

The algorithm starts by assigning the values for the number 

of the aircrafts (n), number of runways (m) and target landing 

time (Tn).  Then, we divide the aircrafts into a number of 

sequences equal to the number of runways. For each runway 

d, randomly select one sequence, seq, of aircrafts.  If there is 

a modulus or remainder from the division, we add it to the 

first runway (d1).  Next, aircrafts are sorted in ascending 

order based on their target landing time. For each aircraft i, 

assign landing time (x) based on their target landing time (T) 

with respect the separation time constraint. Note that, in 

assigning the landing time (x) for each aircraft, the separation 

time between each successive pair of aircrafts (Sij) must be 

respected in order to maintain the feasibility of the solution. 
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Thus, the landing time (x) for each aircraft equals to its target 

landing time (T) if it does not violate the separation time 

constraint.  Otherwise, the landing time (x) is equal to the 

target landing time (T) plus the separation time (of the 

preceding aircraft) and end the for loop statement. Finally, 

return the generated initial solution. Figure 4 shows the 

representation of the solution. The first row represents the 

sequence of aircraft. The landing time for each aircraft is 

represented in the second row. Each aircraft is allocated to a 

specific runway as in the third row. Based on Figure 4, a 

sequence of three aircrafts (denoted as A1, A2 and A3) are 

assigned to land on Runway 1. Landing time for aircraft A1 

is 150, landing time for aircraft A2 is 160 and landing time of 

A3 is 782. The same procedure is repeated for the other 

sequences of the aircrafts. 

 
Aircraft id A1 A2 A3 … ... ... An 

Landing time ( 

x) 

150 160 782 … ... ... .. 

Runway no Runway1 Runway... Runway m 

 
Figure 4: Initial Solution Representation 

 

For a better understanding, here we give an example how the 

assignment of aircrafts to runways is carried out. Assume that 

there are 10 aircrafts and 3 runways. Firstly, we divide the 

number of aircrafts with the number of runways (i.e., 10/3). 

The result of this division is three aircrafts for each runway, 

and there are 1 remaining aircraft which has not yet been 

assigned.  Thus, the remaining aircraft will be assigned to 

Runway 1. In case there are 2 remaining aircrafts, each of 

them will be assigned to Runway 1 and Runway 2. 

 

B.  HS Algorithm for ALS Problem  

In this section, we describe the implementation of the HS 

algorithm in solving the ALS problem as in Figure 5. 

Firstly, the HS parameters are initialized, and an empty 

solution Si is generated. Improvising the new solution is based 

on the values of the HMCR and PAR as follows: The decision 

variables of the ALS problem which are the landing time x 

and the runways number m for each aircraft. Based on HMCR 

and the random number generated as in the third step of the 

HSA in the section 3, the improvisation process will be 

repeated up to the maximum number of improvisation NI that 

identified in Step 1. According to the number of the decision 

variables, random number r1 will be generated between [0,1].  

If the value of the random number r1 is less then HMCR, the 

decision variables will be selected from the HM. Next, 

random number r2 will generated between [0,1]. If r2 is less 

than PAR, the selected decision variables according to 

HMCR will be adjusted i.e., swap two aircrafts that are 

randomly selected and generate a new landing time for them.  

Note that one swap operation is carried out when decision 

variables need to be adjusted.  Otherwise, no change will be 

made. The HM is updated if the new solution is better than 

the worst solution in the HM. The procedure continues until 

the stopping criterion, which is the number of improvisations 

is met.  

 

 
 

Figure 5: Improvising New Solution in ALS Problem on HS 
Algorithm 

 
V. EXPERIMENTAL RESULTS   

 

Benchmark instances, parameter setting and experimental 

results are presented in this section. The proposed method is 

coded in the Java programming language and run on a 

personal computer with 3.4 GHz Core i5 CPU and 4 GB of 

RAM 

 

A. Benchmark Instance 

We used 13 well-known instances (with 49 instance id) to 

verify the performance of the proposed methods that we 

introduced by [17] and is available in OR Library and can be 

freely download from OR-library 

([http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.ht

ml] . The number of aircrafts ranges from 10 to 500 and the 

number of runways ranges from 1 to 5. There are two 

categories of datasets i.e., small instance (Airland1 to 

Airland8) and large instance (Airland9 to Airland13). 

 

B.  Parameters Setting  

There are five parameters that need to be determined in 

advance. We conduct some preliminary tests to set the 

parameter values for the HMCR, PAR, HMS and NI, where 

the values of all parameters are determined one by one 

manually, by changing one value while fixing the rest. The 

values of the parameters of HS algorithm are presented in 

Table 1.  

 

 

HS algorithm for ALS  

1. Input: population of solutions, HMCR, PAR, x, m             // x: 

landing time of aircraft, m: the total number of runways,  

2. for i = 1 to NI  

3.         Si= Φ                                                                                   

4.           for j = 1 to the number of decision variables  

5.             r1 = uniform random number between [0,1] 

6.               if  r1 < HMCR                                                                           

7.                     Si
j= randomly select aircraft p and assign landing 

time x and runway m from HM        //  p ϵ  n  

8.                     r2= uniform random number between [0,1] 

9.                     if r2 < PAR              

10.                          Si
j = randomly select aircrafts p1,p2  based on 

the probability of PAR + bw   

11.                                          swap  [p1, p2]  

12.                                  assign new landing time p1(x), p2(x)      

   

13.                   else maintain [p1,p2] in same order  

14.                   endif 

15.           else select x, m from the range with the probability of [1-

HMCR] 

16.      endif  

17.   Add Si
j to HM  

18. endfor 
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                                      Table 1 

         The Parameter Settings of the HS Algorithm 
 

No Parameter Suggested 

Value 

1 HMCR 0.95 

2 PAR 0.5 

3 
4 

5 

HMS 
NI 

bw 

20 
1000 

1 

 

C. Result and Comparisons 

The performance of the HS algorithm is compared with the 

best-known solutions reported by the state of the art 

algorithms for ALS instances. The algorithms in comparison 

are as presented in Table 2. 

The results are presented in Table 3 in terms of the 

percentage gap from the best known values in the literature 

(BKV) which is calculated as follows: Δ(%)=((B 

BKV)/BKV)) *100, where B is the best result returned by the 

tested algorithm over 30 runs and the BKV results are taken 

from [11]. ∆(%) = 0 means the obtained solution is equal to 

the BKV, -∆(%) indicates the obtained solution superior than 

the BKV, and +∆(%) indicates that the obtained solution is 

inferior  than the BKV. The number of aircrafts (N) and the 

number of runways (m) in each instance reported in Table 3. 

In the table, the best results obtained by the compared 

algorithms are indicated in bold. From the results reported in 

Table 3, it can be observed that: 

 

- Comparing the results of the HS algorithm with BKV, 

HS algorithm matches the best-known results on small-

sized instances (10 out of 49 instances id) i.e., instance# 

3,5,6,8,9,12,13,17,20 and 25. 

- Comparing the results of the HS algorithm with other 

algorithms in comparison also show similar results in 

which it works considerably well on small-sized 

instances. 

- The HS algorithm shows weak performance on large-

sized instances in comparison with best-known 

solutions and other compared algorithms. This is 

expected, since in this work a basic HS algorithm is 

employed without any modification in comparison with 

other algorithms that include an improvement 

mechanism on the basic algorithm. For example, local 

search is hybridized with the particle swarm 

optimization in HPSO-LS, different perturbation 

operators are employed in the iterated local search by 

[3], hybridization between simulated annealing and 

variable neighbourhood descent and variable 

neighbourhood search in [5] 

 

The performance of the HS algorithm possibly can be further 

improved by considering the following: 

Employ an online/adaptive instead of offline parameter 

tuning, control the diversity of the solution in the population 

during the optimisation process and possibly and hybridise 

with a local search. 

 

 

 

 

 

 

Table 2 

State of the Art Algorithms in Comparison 
 

# Algorithm 

Symbol  

References  Description 

1 SS [11] Scatter search algorithm 
with linear objective 

function  

2 ILS [12] An iterated local search 
algorithm with multiple 

perturbation operators and 

time varying perturbation 
strength 

3 

 

HPSO-LS 

 

[2] 

 

Hybrid particle swarm 

optimization algorithm in a 
rolling horizon 

4 

 

SA-VND [13] Simulated annealing with 

variable neighborhood 
descent 

5 SA-VNS [13] Simulated annealing with 

variable neighborhood 
search 

 

VI. CONCLUSIONS AND FUTURE WORK 

 

The aircraft landing scheduling problem has been studied 

in this work. A Harmony Search (HS) algorithm has been 

proposed to solve the problem. Numerical experiments on 13 

well-known datasets ranged from 10 to 500 aircrafts, and 

from 1 to 5 runways have been presented to show the 

effectiveness of the HS in producing a minimum deviation 

from the target landing time. In addition, the results showed 

that HS is competitive in terms of ∆ (%) when compared to 

best known results on small-sized instances. For future work, 

we intend to investigate an adaptive mechanism to control 

parameters of the proposed algorithm. We believe that better 

solutions can be obtained if the parameter is adaptively 

modified during the optimization process. 
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Table 3 

The Computational Results of HS Algorithm Compared to the State of the Art Algorithms 

Instance 

name 

Instance 

no. 

N m BKV HS HPSO-LS ILS SS SA-

VND 

SA-

VNS 

∆ (%) ∆ (%) ∆ (%) ∆ (%) ∆ (%) ∆ (%) 

Airland1 1.  10 1 700 72,857.14 0 0 0 0 0 

 2.   2 90 33,333.33 0 0 0 0 0 

 3.   3 0 0 0 0 0 0 0 

Airland2 4.  15 1 1,480 37,162.16 0 0 0 0 0 

 5.   2 210 0 0 0 0 0 0 

 6.   3 0 0 300 0 0 100 100 

Airland3 7.  20 1 820 179.27 0 0 0 0 0 

 8.   2 60 0 16,667 0 0 16.66 16.66 

 9.   3 0 0 100 0 0 100 100 

Airland4 10.  20 1 2,520 77,777.78 0 0 0 0 0 

 11.   2 640 6.25 3,125 0 0 3.12 3.12 

 12.   3 130 0 23,076.90 0 0 23.07 27.02 

 13.   4 0 0 300 0 0 100 100 

Airland5 14.  20 1 3,100 129,677.40 0 0 0 0 0 

 15.   2 650 67,692.31 0 0 0 0 0 

 16.   3 170 41,176.47 0 0 0 0 0 

 17.   4 0 0 300 0 0 100 100 

Airland6 18.  30 1 24,442 23,774.65 0 0 0 0 0 

 19.   2 554 18,050.54 0 0 0 0 0 

 20.   3 0 0 0 0 0 0 0 

Airland7 21.  44 1 1,550 3,264.78 0 0 0 0 0 

 22.   2 0 2820 0 0 0 0 0 

Airland8 23.  50 1 1,950 116,923.10 0 0 52.05 0 0 

 24.   2 135 18,518.52 0 0 0 0 0 

 25.   3 0 0 100 0 0 100 100 

Airland9 26.  100 1 5,611.70 147.84 0 0 30.06 8.55 8.55 

 27.   2 452.92 120,096.30 -1,947.36 -1.74 5.67 -0.58 0 

 28.   3 75.75 245,610.60 0 -2.31 0 0 0 

 29.   4 0 909.20 0 0 0 0 0 

Airland10 30.  150 1 12,329.31 168,350.90 -0.30 -0.06 44.96 0 0 

 31.   2 1,288.73 127,812.70 11,227.332 -1.37 7.87 -5.39 0 

 32.   3 220.79 411.64 -6,576.38 -9.41 8.88 -6.49 0 

 33.   4 34.22 1,456.08 3,097.60 -6.16 16.74 3.09 3.09 

 34.   5 0 3,499.40 0.6 0 0 100 100 

Airland11 35.  200 1 1,2418.32 129,977.20 0 -0.05 17.95 0 0 

 36.   2 1,540.84 179,751.30 -13,624.39 -8.49 9.19 -8.04 0 

 37.   3 280.82 576,946.10 -9,881.77 -3.46 21.59 -2.81 0 

 38.   4 54.53 1.529.195 0 -6.47 2.77 0 0 

 39.   5 0 5.642.3 0 0 0 0 0 

Airland12 40.  250 1 16,209.78 120,460.20 -0.54 0 22.15 0 0 

 41.   2 1961.39 159,539.40 -13,550.08 0 18.80 0 0 

 42.   3 290.04 719,004.30 -23,469.18 -6.21 17.48 -3.56 0 

 43.   4 3.49 34,595.13 -30,085.96 -2.57 271.63 0 0 

 44.   5 0 7,770.80 0 0 0 0 0 

Airland13 45.  500 1 44,832.38 105,281.70 -17,327.37 -7.70 3.24 -7.54 0 

 46.   2 5,501.96 157.074.20 -28,727.94 -0.79 3.72 -0.47 0 
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 47.   3 1,108.51 470,884.30 -39,211.19 0 1.98 -32.79 0 

 48.   4 188.46 2.105.232 -52,271.04 -50.71 22.98 -46.62 0 

 49.   5 7.35 40,371.84 -100 -59.18 0 -48.16 0 
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