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Abstract— Healthcare data analysis is widely used in cancer 

classification and disease prediction. Hence, fuzzy linear 

regression integration into dynamic analysis can provide better 

decision making process in healthcare industry especially 

dealing with dynamic data analysis. Healthcare officers and 

related researchers require efficient regression tools to produce 

precise inference as an aid to save human life. However, the key 

problem in this circumstance is related to computational 

complexity and processing time. Both of these parameters 

drastically increase beside an increment of data size in dynamic 

databases. With regard to the aforementioned problem, the 

main objective is to improve the implementation of fuzzy linear 

regression for fuzzy data by addressing and mitigating some 

limitations of the existing methods through a convex hull 

approach. More specifically, we look at the realization of an 

incremental algorithm called Beneath-Beyond algorithm. This 

algorithm provides a useful vehicle to reduce the computing time 

and computational complexity as well. Furthermore, a real 

fuzzy healthcare data set which derive from healthcare industry 

will be selected as the main source of data sets. Additionally, 

there are two major procedures or components namely a 

formulation of a product of fuzzy number optimization and the 

use of the convex hull technique to the obtained locus points in 

hyper-rectangles polygon and each of them have their own 

distinctive activities. As a research output, the combination of 

this mathematical geometry algorithm and fuzzy linear 

regression analysis will produce an optimized algorithm called 

convex hull-based fuzzy linear regression model deliberately for 

dynamic fuzzy healthcare data. The proposed algorithm may 

help to produce a rapid decision making especially for critical 

area such as healthcare industry. 

 

Index Terms—Fuzzy Regression; Convex Hull; Fuzzy Data; 

Healthcare Data. 

 

I. INTRODUCTION 

 

In real-world optimization problems, which we routinely 

encounter in engineering, management, economy, medicine, 

psychology, biotechnology and other disciplines, it is quite 

common to handle large amounts of various types of data ([1], 

[2], [3], [4], [5]). In particular, dynamic data analysis 

becomes more important given the growing demand to 

support efficient managerial practices, which call for on-line 

(dynamic) timely results of data analysis [6]. The main intent 

in this setting is to reduce computing overhead in supplying 

the results in dynamic. 

Soft computing techniques such as fuzzy logic have 

become an important alternative to realize effective data 

analysis, especially for decision making process ([4], [7], 

[8]). On the other hand, regression analysis is a generic 

statistical tool to explore and describe dependencies among 

variables. When forming a synergy between these two 

essential modeling methodologies, we arrive at fuzzy 

regression, which takes full advantage of the strengths of the 

contributing technologies; cf. ([9]). Linear programming (LP) 

was used to determine the location of the centers and the 

spreads of the fuzzy coefficients (fuzzy numbers) of the fuzzy 

regression hyperplane by minimizing an objective function 

which takes into consideration the total spread of the outputs 

of the model treated as fuzzy numbers ([2], [10], [11], [12], 

[13]). 

Let recall that convex hull is a fundamental concept present 

in many applications encountered in pattern recognition, 

image processing, and statistics. Convex hull is defined as the 

smallest convex polygon located in a multidimensional data 

space which contains all point set (vertices) [14]. In other 

words, convex hull polygon is corresponds to the intuitive 

conception of a “boundary” of a set of points and as such can 

be used to approximate a shape of any available objects of 

complex geometry. 

In real-world problems such as those present in economics, 

bio-computing or engineering, we are concerned with the 

massive data sets of high dimensionality to analyze in a 

limited time or even in real-time or dynamic situation [15]. In 

addition to experimental evidence of numeric nature, some 

data can be described in a linguistic term, which immediately 

invokes the concept of fuzzy sets ([16], [17]). 

Related to the methods used for dynamic application where 

statistical regression has been shown to be highly relevant, 

we can also observe some shortcomings, which arise when 

dealing with several characteristics of the data or making 

some simplifying yet not necessarily fully legitimate 

assumptions, cf. [18]; Difficulties with a thorough 

verification of assumptions about data distributions; 

Vagueness present in the relationships between input and 

output variables; Ambiguity of events or non-Boolean 

degrees to which they occur, and Inaccuracy and distortion 
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introduced by linearization. 

In all these scenarios, the use of the “standard” regression 

might raise some hesitation. Here the use of fuzzy regression 

arises as a viable alternative. There are two general ways 

supporting the development process of fuzzy regression 

([18]) including, models where the relationships among the 

variables is inherently fuzzy, and models where the input 

(independent) variables themselves are fuzzy. There are some 

arguments that are worth highlighting with regard to fuzzy 

regression. As an example, there’s no proper interpretation of 

fuzzy regression interval [9]. Besides that expert could still 

provide an interval of possible values but also indicate the 

probability of occurrence of each one of them. Obviously, this 

approach would require more information ([20], [21]). 

Given the explanation presented above, a convex hull 

approach can help implement dynamic fuzzy regression 

model by serving as an alternative optimization vehicle. The 

main objective of this research is to enhance the 

implementation procedure of dynamic fuzzy regression 

model with the utilization of the designated convex hull 

approach. In addition, the adaptation of selected algorithm of 

this approach, specifically the Beneath-Beyond algorithm, 

helps address the limitations of the generic implementation of 

fuzzy regression when applied to the analysis of dynamic 

data. 

The paper is organized as follows. Section 2 serves as a 

related previous works, which includes brief review of the 

fundamentals of fuzzy regression. Next, Section 3 presents 

basic Beneath Beyond algorithm and related terms. Hybrid 

optimization for real-time fuzzy linear regression model 

realized with the use of the convex hull approach clearly 

explain in Section 4. Section 4 is devoted to empirical 

experiments. Finally, Section 5 presents concluding remarks. 

II. FUZZY REGRESSION MODEL 

 

Essentially, dynamic data analysis refers to studies where 

data revisions (updates, successive data accumulation) or data 

release timing is important to a significant degree. The most 

important properties for dynamic data analysis are dynamic 

analysis and reporting, based on data entered into a system in 

a short interval before the actual time of the usage of the 

results [22]. The following sub sections were highlight some 

theories and techniques related this study. 

Regression models are statistical constructs, which 

describe relations among variables. They explain a dependent 

variable by making use of some independent variables [10]. 

The variables used to explain the target variable(s), are called 

explanatory attributes ([22], [12], [23]). 

Since Zadeh proposed fuzzy sets, the concept of fuzziness 

has received more attention and fuzzy data analysis has 

become increasingly important. In order to consider the 

fuzziness in regression analysis, the earlier proposal related 

to the study of fuzzy linear regression model which 

considering two factors, namely the degree of the fitting and 

the vagueness of the model. In addition, fuzzy linear 

regression is suitable for problems in which human experts 

use subjective judgment or some experience [24]. 

Furthermore, trying to build a latent structure model from 

such data as well as possible, any developed regression model 

should be based on availability of an adequate amount of raw 

material or samples of data which represent the actual 

scenario, in order to minimize the erroneous problem of the 

obtained result [25]. When independent variables are given, 

then the estimate of the output is expressed as follows: 

 

nixhY iii ,...,1,)(    (1) 

 

where )(h  represents some function and si  an 

independent random variable with zero mean and some 

variance, ni ,...,1 . A major difference between fuzzy linear 

regression and statistical regression is that the deviations 

(differences) between the collected data and the estimated 

values (coming from the model) are assumed to be associated 

with the vagueness (which is captured through fuzzy linear 

regression) rather than with the randomness as it is done in 

conventional regression techniques ([26], [27], [14]). In other 

words, fuzzy linear regression seems more appealing for 

estimating the relationship between the dependent variable 

and independent variables [28]. 

Furthermore, a fuzzy set-based approach can be used to 

gain insights into a complex system for which analytical 

model may not exist [18] or when dealing with human 

perception processes [29]. Moreover, studies dealing with 

fuzzy linear regression can be broadly classified into two 

approaches which are includes LP based approach and fuzzy 

least squared approach ([17], [9]). Therefore, with the 

incorporation of fuzzy sets, an enhancement of regression 

models comes in the form of a fuzzy linear regression or 

possibilistic regression was introduced which to reflect the 

non-numeric nature of relationship between the dependent 

and independent variables. The upper and lower regression 

boundaries are used in the possibilistic regression to reflect 

the possibilistic distribution of the output values. On the other 

hand, since the measure of best fit by residuals under fuzzy 

consideration is not presented in Tanaka’s approach, the 

fuzzy least-squares approach been proposed; which is a fuzzy 

extension of the ordinary least squares based on a new defined 

distance on the space of fuzzy numbers [17]. 

Based on the several previous studies which deal with a 

generic form of triangular numbers, fuzzy linear regression 

quantifies the deviations existing between the data and the 

linear model [9]. Computationally, the estimation of the fuzzy 

parameters of the regression gives rise to in a certain problem 

of LP. 

Let us recall that the fuzzy linear regression comes in the 

form 
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variables while ]
~

,...
~

,
~

[
~

10 KAAAA  is a vector of fuzzy 
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where j  and jc  are the central (modal) and spread values 

of the triangular fuzzy number, respectively. 

Given the notation used above, (3) can be rewritten as 

 
t

KKKi XcXcXccY Xcα ),(),(...),(),(),(
~

22211100    (4) 

 

where ),...,,(),,...,,( 1010 KKccc  αc . 

In the above model, we assume that the numeric input and 

output data are available, while the relation between the input 

and output data is defined by some fuzzy function whose 

parameters are governed by the corresponding membership 

functions ([17], [30]). 

Making use of the extension principle, we derive the 

membership function of fuzzy number iY
~

 to be in the 

following form: 
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where 




K

j

ijj
t
i xc

0

|||| Xc , ),...,1(:10 nixi  . 

 

In order to develop the fuzzy linear regression with the 

minimal level of fuzziness of the output, the following 

objective function is proposed to minimize the total spread of 

the resulting fuzzy number iY
~
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along with the constraints that each observation iY  has at least 

h  degree of membership in iY
~

, that is, 

),...,1()( nihyu i  . This requirement can be expressed 

in the following equivalent form 
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The above formulation of the membership functions leads 

us to the following task of LP: 
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In other words, the fuzzy linear regression model is built 

in such a way so that it includes all potential samples of data 

points under the analysis process; refer to cf. [31]. In addition, 

this problem can be re-formulated in the language of LP [32]. 

When fuzzy output data    ,,~,,~
iiiii dyyy x  are given with 

numeric input data such    nixxxx iKiiii ,...,1,...,,, 210 x  with 

general convex membership function )(L  instead of a 

triangular membership function of fuzzy coefficients )( cα, , 

the development of the fuzzy linear regression model gives 

rise to the following LP problem: 
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where,  uL  is a shape of the membership function of the 

parameters of the fuzzy linear regression model and h  is a 

grade expressing to which extent a given datum is “captured” 

by the model. 

 

 
Figure 1: Fuzzy linear regression model (case of 0jd ) 

 

In essence, the LP problem formulated in this manner 

produces a solution for obtaining the fuzzy linear regression 

model to represent relationship of analyzed data ([33], [15], 

[20]). Referring to (4), Figure 1 illustrates the relation 

between the output of the model and the data. In a nutshell, 

as noted earlier, the model of the fuzzy linear regression 

should “contain” or “cover” all samples. Through the 

membership grades, we quantify the degrees of inclusion of 

the data. Furthermore in such formulation, it is possible of the 

fuzzy linear regression model to treat non-fuzzy data with 

zero width by setting the value of d to 0 as described in the 

above formula; refer to ([34], [35]) for details. 

III. BENEATH-BEYOND ALGORITHM - A BRIEF REVIEW 

 

This algorithm incrementally builds up the convex hull by 

keeping track of the current convex hull iP  using an incidence 

graph. In order to add a new point P  to the convex hull, the 

incremental algorithm identifies the facets below the point. 

These are the facets visible from the point. The boundary of 

the visible facets builds the set of horizontal ridges for the 

point. If there are no visible facets from point P , the point 

inside the convex hull can be discarded. Otherwise, the 

algorithm constructs new facets of the convex hull from 

horizon ridges and the processed point P  and does not 

explicitly build the convex hulls of lower dimensional faces. 
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A new facet of the convex hull is a facet with point P  as its 

apex and a horizon ridge as its base. The cone of point P  is 

the set of all new facets. Any point chosen to be added to the 

current convex hull must not be in the same affine space as 

any of the facets of the current convex hull. For instance, if 

the current convex hull is a tetrahedron, a new point to be 

added will not be coplanar with any of the faces of the 

tetrahedron [39]. 

The Beneath-Beyond algorithm comprises the following 

steps: 

Step 1 : Select and sort outsider points along one 

direction, say 1x . Let },...,,{ 110  nppps  be 

input points after sorting. Process the points in 

an increasing order. 

Step 2 : Take the first n  points, which define a facet 

as the initial hull. 

Step 3 : Let iP  be the point to be added to the hull at 

the ith stage. Let ),...,,( 110  ii pppconvp

be the convex hull polytope built so far. This 

step includes two possible hull updates: 

a. A pyramidal update is done when 

),...,,( 110  ii pppaffp - when iP  is not 

on the hyperplane defined by the current 

hull. A pyramidal update consists of 

adding a new node representing iP  to the 

incidence graph and connecting this node 

to all existing hull vertices by new edges. 

A non-pyramidal update is done when the 

above condition is not met, i.e., iP  is in the 

affine subspace defined by the current convex 

hull. In this case, facets that are visible from 

iP  are removed and new facets are created. 

In addition, processing a point through Quickhull (a 

variation of Clarkson and Shor’s algorithm) and the 

randomized incremental algorithm comes as an 

implementation of the following Beneath-Beyond theorem 

(Grunbaum’s Beneath-Beyond theorem) [39]. 

Figure 2 shows an example of an implementation of the 

Beneath-Beyond algorithm. 

 

 

 

Figure 2: Illustration of the implementation of the Beneath-Beyond 

algorithm 

 

The rationale behind the first condition is straightforward. 

The second condition describes a face of the cone that is to be 

created if p  is at least above one facet. The ridge with one 

incident facet below and the other one above p  is the 

equivalent of the edge between a visible and an invisible face 

for the incremental algorithm discussed above. 

The efficient determination of visible facets for a given 

point is crucial to the runtime behavior of any incremental 

algorithm. As visible facets are neighbors; once one visible 

facet has been found, the others can be easily detected. The 

main idea behind Quickhull is to maintain a set for each facet 

in which points are stored that are outside the respective facet. 

A point is outside a facet iff  the signed distance between the 

facet and the point is positive. Each unprocessed point or 

newly inserted point that appears in the particular field 

belongs to exactly one outside set. It can be shown that if a 

point is on the outside of multiple facets, it does not matter to 

which of the corresponding outside sets the point belongs. 

These outside sets represent a partitioning of the set of 

unprocessed points. 

IV. HYBRID OPTIMIZATION WITH FUZZY LINEAR 

REGRESSION 

 

In order to elucidate the procedure of the proposed 

approach, we refer to the overall flow of processing as 

visualized in Figure 3. 

 

 

 

 
Figure 3: An overall flow of processing realized in the proposed approach 

and related processes for Beneath-Beyond implementation and Fuzzy 
Regression Models generation 

 

Given the discussion presented so far, let us outline a flow 

of computing of the dynamic fuzzy regression model. Two 

major processes should be considered, see following below. 
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Process_1 For given points of sample npppp ...,,, 321 , 

create a convex hull and list convexes nP
C . 

Construct a fuzzy regression model nU
Y  and 

nL
Y  using the convexes )(nP

C  by LP. 

Process_2 When we have new points of samples

qnn pp  ,...,1 , if all q  samples are included 

between nL
Y and nU

Y , then create )( wnP
C 

which adding w  samples to )(nP
C . 

If any samples are not included in between 

nL
Y  and nU

Y , then create )( wnP
C   by adding 

w  samples to nP
C  and create wnL

Y   and 

wnU
Y   using vertices )(nP

C  and q  new 

samples. 

 

On the other hand, there are several situations which 

dealing with fuzzy data. This type of data is considered as a 

problem of n samples with one-output and K -input interval 

values. It looks more difficult to solve because it consists of 

Kn products between the fuzzy coefficients and confidence 

intervals. Additionally, the most appropriate method while 

dealing with this situation is a vertices method [7]. 

This problem can be simplified into that of n  samples 

with one-output interval value and K2  vertices in K  

dimensions. Hence, we can solve this problem of Kn 2  

samples with K  attributes of input by the conventional 

method. The numbers of products which obtain from Kn 2  

are becomes as potential vertices for convex hull polygon. 

We use this figure as an input of our proposed fuzzy dynamic 

regression model. 

In the suggested approach, the selection of particular 

vertices for convex hull constructions concerns some related 

points, which were pointed as the particular rectangles that 

represent the loci of the membership function support of 

fuzzy data, see Figure 4. 

 

 
Figure 4: Example of rectangles that are loci of the membership functions 

 

The vertex points of selected loci will become possible 

convex vertices and these points will connect to each other to 

create convex hull edges or boundaries. Consequently, the 

connected edges will construct a convex hull for selected 

samples of fuzzy data and basically, whole of analyzed data 

will fall inside constructed convex hull. Figure 5 illustrates 

the essence of the process. 

 
Figure 5: Convex hull polygon construction process 

 

Therefore, based on the developed convex, the 

determination of the possibilistic regression to represent the 

distribution of sample data is easier because the slight 

changes (either decreasing or increasing) of the vertex points 

influence the model and these (that is the vertex points of only 

selected loci) must be considered for further LP formulation. 

In other words, we just consider selected vertex points in the 

analysis, which previously resulted in building up the convex 

hull structure. 

 

A. An Efficient Formulation of the Fuzzy Linear 

Regression Model for Fuzzy Data 

Basically, the proposed approach can be implemented by 

considering the outside of the locus hyper-rectangle points, 

which support a fuzzy set where their membership values 

become zero. The selected points potentially become vertices 

of a convex. Due to this selection step, the number of vertices 

considered for building a convex will decrease quite 

drastically. Therefore, the computing phase including LP and 

the convex hull approach has to be carefully revisited as far 

as the underlying complexity is concerned. Moreover, this 

feature may also reduce the time required to generate models 

of fuzzy linear regression. The incremental algorithm referred 

to as a Beneath-Beyond method provides the proposed 

approach with significant advantages. Moreover, this 

algorithm does not necessitate more additional computational 

time for selecting potential locus points, which become 

convex vertices as well as constructing a convex hull 

polygon. 

Based on the original method of the determination of the 

convex hull, the process has to be realized using all given 

samples. A new method is developed to build a convex hull 

using the given calculated fuzzy data. The proposed 

algorithm consists of the following steps: 

Step_1 : Form a set of fuzzy data. 

Step_2 : Formulate product of fuzzy number 

optimization process for obtaining the total 

product of fuzzy numbers, kn 2 . 

Step_3 : Determine the outsider vertex points given 

as the loci of the membership functions' 

graphs. 

Step_4 : Perform the Beneath-Beyond algorithm to 

formulate the convex hull, 0 , using one 

of the selected vertex points that were 

chosen for building the convex hull. 

 Substep_4.1 : Connect each of the selected 

potential vertex points to 

construct convex edges. 



Journal of Telecommunication, Electronic and Computer Engineering 

54 e-ISSN: 2289-8131   Vol. 9 No. 3-7  

 Substep_4.2 : Connect constructed edges to 

create boundaries of a 

convex hull,  .  

 Substep_4.3 : Omit points that are not 

included in the convex hull,

 . 

Step_5 : Newly arrived data added to the initial 

analyzed sample of data 

Step_6 : Newly added samples are large or 

processing time is adequate? 

If Yes move to Step_2 otherwise proceed to 

Step_7 

Step_7 : Output the solution and terminate the 

process. 

Basically, there are two major optimization component 

called a fuzzy number and convex hull utilization 

optimization process, respectively. Iteration might occur 

while new samples of data arrive and are added to the 

remaining samples. There is a selective decision in dealing 

this condition; if newly added samples are huge or processing 

time is adequate then several previous steps should be 

restarted again, otherwise final process which concern with 

the use of convex hull vertices as a part of LP constraint 

portion in fuzzy linear regression formulation. Figure 6 offers 

a general view at all optimization activities realized here. 

On the other hand, the choice of the Beneath-Beyond 

algorithm as a convex hull approach is legitimate here 

considering that no extra computing is required for the  

 
Figure 6: The overall optimization process 

 

construction of the facet structure. This may reduce the 

computing time required to produce the best solution for an 

equivalent problem. In addition, the main concern that 

distinguishes the different variants of this algorithm is the 

way to search for the visible facets. Put it differently: we can 

find a visible facet among those added in the previous stage; 

therefore, we may simply search through all the latter facets 

until a visible one has been found. Then we examine adjacent 

facets and repeat the process on those that are visible. 

V. NUMERICAL EXAMPLE 

 

Now let us examine another numerical example that 

concerns a larger number of samples. This sample concern 

about identification for the common factors that contribute to 

cardiovascular disease by following its development over a 

long period of time in a large group of participants. Here there 

are 100 data points, 100n  and 12 inputs attribute, )12( K  of 

fuzzy numbers. Given the dimensionality of the problem, the 

possible number of all products of fuzzy numbers as 

estimated earlier is 600,4092*100 12  . This huge number of 

potential vertices may not be efficiently utilized when 

running fuzzy linear regression. As discussed in the previous 

example, the computed product of fuzzy numbers represents 

the loci of membership functions and its elements or locus 

points can be potentially selected to become the vertices of a 

convex polygon. 

In order to minimize the computational complexity, we 

consider further adaptation of the convex hull approach. As 

shown in Examples 1, the implementation of this method is 

realized by selecting the outside plots of the loci that represent 

the graphs of fuzzy data. Selected points may become convex 

vertices and each of them will connect to each other. This will 

produce edges and finally these connected edges will result 

in a convex hull polygon. Therefore, this selection process 

will drastically reduce the number of vertex points under 

consideration. Following this strategy, as illustrated in Figure 

6, the large number of fuzzy data that represent potential 

vertices is drastically reduced to 274 points )274( P . In 

other words, the load rate becomes reduced at the rate of 

000669.0Pr P for which running the LP for this constructed 

convex hull becomes far more effective as well as leads to a 

significant time reduction. The obtained coefficients of the 

regression model (for 50.0h ) are included in Table 1. 

 

 

Fuzzy number optimization process

Load set of fuzzy data samples

Newly added 

samples are 

large or 

processing time 

is adequate?

Output the solution and process 

terminate

No

Yes

Refer to Watada 

et al. [5]}

Newly proposed 

approach; 

utilization of 

convex hull 

approach

}

)2( kn

Determine the potential outsider locus 

points

Omit points that are scatted 

inside constructed convex hull

Connect each of the selected 

locus points

(construct convex edges)

Connect constructed edges

(create boundaries of a convex 

hull)

Perform the Beneath-Beyond algorithm

Select and sort points along one 

direction

Newly arrive samples added

Used convex hull points as 

constraint for LP of fuzzy linear 

regression formulation 

START

END
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Table 1. 

 Fuzzy Parameters for the Construction of Convex Hull,  ia~  

)50.0( h  

 

Fuzzy Parameter center im  spread ic  

0
~a  0.0507 0.0024 

1
~a  0.0576 0.0027 

2
~a  0.3025 0.0268 

3
~a  -0.2010 0.0000 

4
~a  0.1357 0.0091 

5
~a  0.3881 0.0289 

6
~a  0.5350 0.0412 

7
~a  -0.0408 0.0000 

8
~a  -0.1660 0.0000 

9
~a  -0.1911 0.0000 

10
~a  0.0645 0.0031 

11
~a  0.1070 0.0068 

12
~a  -0.0484 0.0000 

 

To present a real-time data analysis in which changes in 

sample size occurs over time, we add a number of samples, 

100n  to the initially analyzed samples. The total number of 

samples, which have same properties is equal to 200 and the 

total product of fuzzy number is 200,81922002 12  Kn . The 

obtained result shows that 179P  locus points, which were 

initially selected as convex hull vertices are reused and 

268P  new locus points were added. Therefore, in total, 

447P  locus points were transformed to vertices to 

reconstruct a convex hull polygon. Moreover, the constraint 

portion of fuzzy linear regression formulation was utilizing 

these points for producing appropriate models. The load rate 

for this group of samples is decreased to 000546.0Pr P . The 

lists of regression coefficients are present in Table 2. 

 
Table 2.  

Fuzzy Parameters for the Reconstruction of Convex Hull,  

ia~  )50.0( h  

 

Fuzzy Parameter Center im  Spread ic  

0
~a  0.0319 0.0015 

1
~a  0.5169 0.0396 

2
~a  0.5333 0.0401 

3
~a  -0.2451 0.0000 

4
~a  -0.0696 0.0000 

5
~a  -0.1552 0.0000 

6
~a  0.0615 0.0023 

7
~a  0.1728 

0.0125 

8
~a  -0.1050 0.0000 

9
~a

 
0.0153 0.0008 

10
~a  0.2089 0.0164 

11
~a  -0.2050 0.0000 

12
~a  0.1605 0.0117 

 

Based on both numerical examples above, it is worth noting 

that we do not have to consider the complete feature vectors 

for building fuzzy linear regression models; just we utilize the 

selected vertices which are used for the construction of the 

convex hull. Therefore, this situation will lead to the decrease 

of computing load. On the other hand, with regard to 

computing overhead in the subsequent iteration, it will only 

consider the newly added samples of data together with the 

selected vertices of the previous convex hull. Thus, the LP 

realization becomes effective. 

For that reason, this computing scenario will reduce the 

computation time as well as computational complexity 

because of the lower number of the feature vectors used for 

the subsequent processing of regression models. Overall, the 

computational complexity decreases which cuts down the 

computing time. 

 

A. Comparative Analysis 

The increase in sample size might cause computational 

difficulties in the implementation of the LP problem. Another 

problem might emerge when changes occur with regard to the 

variables themselves, thus the entire set of constraints must 

be reformulated. Therefore the computing complexity 

increases. The increase of computing complexity has been 

alleviated by the use of the proposed approach. 

To highlight the main features of proposed fuzzy linear 

regression and ordinary (conventional) fuzzy linear 

regression models, we summarized the results (produced after 

second iteration) in Table 3. 

Referring to the fuzzy linear regression as stated in above 

table, we can generalized here that, comparing of both 

implemented approach, almost similar results were obtained. 

 
Table 3.  

Ordinary and Proposed Fuzzy Linear Regression Models Obtained in 
the Two Numerical Examples (all data considered) 

 
Regression 
Analysis 

Approach 

Obtained Regression Models 

Proposed of 

fuzzy linear 

regression model 
(h=0.50) 

12

1110

98

76

54

32

1

~)0117.0,1605.0(

~)0000.0,2050.0(~)0164.0,2089.0(

~)0008.0,0153.0(~)0000.0,1050.0(

~)0125.0,1728.0(~)0023.0,0615.0(

~)0000.0,1552.0(~)0000.0,0696.0(

~)0000.0,2451.0(~)0401.0,5333.0(

~)0396.0,5169.0()0015.0,0319.0(

a

aa

aa

aa

aa

aa

aY













 

Ordinary fuzzy 

linear regression 

model 

12

1110

98

76

54

32

1

~)0118.0,1605.0(

~)0000.0,2051.0(~)0163.0,2088.0(

~)0008.0,0153.0(~)0000.0,1051.0(

~)0126.0,1728.0(~)0022.0,0614.0(

~)0000.0,1552.0(~)0000.0,0697.0(

~)0000.0,2450.0(~)0401.0,5333.0(

~)0397.0,5170.0()0016.0,0320.0(

a

aa

aa

aa

aa

aa

aY













 

 

On the other hand, based on the experimental studies 

discussed, it becomes evident that the implementation of the 

proposed approach is efficient and may drastically reduce the 

complexity of the overall computing process. Table 4 offers 

some comparative insights into the performance of the 

ordinary regression approach and the proposed method. 
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Table 4.  

Results of Comparative Analysis (Considered Convex Hull Vertices) 
 

Regression 

Analysis 

Method 

Potential 

Vertices 

Points 

Considered 

Vertices 

Points 

Newly 

Potential 
Vertices 

Points 

Reconsidered 

Vertices 

Points 

Proposed 

fuzzy linear 
regression 

analysis 

409, 600 274 819, 200 447 

Ordinary 
fuzzy linear 

regression 

analysis 

409, 600 409, 600 819, 200 819, 200 

 

All in all, the experiment showed that the implementation 

of this proposed approach made considered or reconsidered 

convex hull vertices fewer then recognized potential locus 

points which might be selected. In both examples studied 

here, we have witnessed a substantial improvement. 

Specifically, the reduction achieved in the first example is 

99.34% for initial group of samples and 99.54% for second 

iteration, while in the second one; initially we have achieved 

99.93% improvement and 99.95% for the next iteration. 

As mentioned in Section 1, the time factor is crucial to the 

quality of the method. With this regard, Table 5 reports the 

pertinent details. 

The implementation of the proposed approach is very 

much appropriate for fuzzy linear regression analysis in 

presence of fuzzy data especially for real-time data analysis. 

In order to show the difference of time usage between both 

implemented approaches, we report the detailed results in 

Table 5. 

 
Table 5  

Computing Time for Experiments Reported in the Study 

 

Regression Analysis 

Method 

Computing Time (in seconds) 

Component 1 Component 2 
Total 

Component 1 Component 2 
Total 

FNO CHA LPA FNO CHA LPA 

Initial Iteration Second Iteration 

Proposed fuzzy linear 

regression analysis 
00.35 00.91 00.33 01.59 00.39 01.35 00.41 02.15 

Ordinary fuzzy linear 

regression analysis 
00.00 00.00 04.45 04.45 00.00 00.00 07.26 07.26 

**FNO: Fuzzy Number Optimization, CHA: Convex Hull-Based Approach, LPA: Linear Programming Approach 

 

The implementation of the proposed approach is very 

much appropriate for fuzzy linear regression analysis in 

presence of fuzzy data especially for real-time data analysis. 

In order to show the difference of time usage between both 

implemented approaches, we report the detailed results in 

Table 6. 
Table 6 

Computing Time for Reported Experiments 

 

Iteration Sample Size Time Differences 

First iteration 100 samples 02.86 seconds 

Second Iteration 200 samples 05.11 seconds 

 

Based on above table, we notice that the more newly 

acquired data have been added to the currently analyzed 

group, more significant time savings are reported. This 

observation has a far reaching implication for real-time data 

analysis. 

Moreover, with regard to the real-time environment, we 

note that a dynamic data analysis will increase the size of data 

sets. This situation might cause computational difficulties in 

the implementation of the LPs. Other problems may arise 

when the variables themselves change meaning that the entire 

set of constraints must be reformulated. As a result, the 

computational complexity will increase. This problem can be 

handled efficiently through the proposed approach. 

In summary, it becomes apparent that the quality of this 

proposed approach is refers to the computing time as well as 

the overall computational complexity. 

VI. CONCLUSIONS 

 

In this study, we have proposed an augmentation of the 

fuzzy linear regression for fuzzy data that relies on the 

Beneath-Beyond algorithm, one of the convex hull 

techniques for fuzzy healthcare dataset. As a result, the 

development of the model is based on the construction of 

related edges or boundaries by connecting the outside points, 

which in this way become convex vertices. 

Our objective was to establish a practical approach to 

solving a real-time fuzzy linear regression analysis with a 

fuzzy data set by implementing a convex hull approach called 

Beneath-Beyond algorithm of any dimensionality. In general, 

the proposed approach becomes an effective alternative to 

realize real-time fuzzy linear regression in the presence of 

fuzzy data by connecting outside vertices points obtained 

from hyper-rectangles that are the loci of the membership 

functions. 

Moreover, the number of vertices obtained by the convex 

hull does not extremely increase/decrease, therefore retaining 

the computing time relatively constant in spite of an 

increasing number of fuzzy data; this suggests that the 

method can be applied to large-scale systems in the real 

world, especially in real-time computing scenarios. The 

proposed approach does not lead to any computational 

overhead, as it focuses on the construction/reconstruction of 

the convex hull by connecting selected vertices points.  

We have successfully performed extensive numerical 

healthcare datasets example which offered some evidence 

that this method performs like a randomized incremental 

algorithm that is output-sensitive to the number of vertices. 

In addition, this approach uses less space than most of the 

randomized incremental algorithms and executes faster for 

inputs with non-extreme points, especially when dealing with 

real-time data analysis. We anticipate that such fuzzy linear 

regression analysis could become an efficient vehicle for 

analyzing real-world data and for our future work; we plan to 

enhance this proposed approach for non-linear problems. 
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