

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 203

Non-Functional Requirement Traceability Process

Model for Agile Software Development

Adila Firdaus Arbain1, Dayang Norhayati Abang Jawawi1, Imran Ghani2 and Wan M. N. Wan Kadir1
1Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

2School of Information Technology, Monash University Malaysia.

adilafirdaus@gmail.com

Abstract—Agile methodologies have been appreciated for the

fast delivery of software. They are criticized for poor handling

of Non-Functional Requirements (NFRs) such as security and

performance and difficulty in tracing the changes caused by

updates in NFR that are also associated with Functional

Requirements (FRs).This paper presents a novel approach

named Traceability process model of Agile Software

Development for Tracing NFR change impact (TANC). In

order to validate TANC’s compatibility with most of Agile

process models, we present a logical model that synchronizes

TANC with the two of enhanced models: secure feature-driven

development (SFDD) and secured scrum (SScrum).Then, we

conducted a case study on TANC using a tool support called

Sagile. In terms of adaptability with agile process model, the

logical model could be depicted in SFDD and the case study

proved that TANC is carried out successfully in SFDD.

Index Terms—Agile Methodologies; Feature Driven

Development; Non-Functional Requirement; Scrum.

I. INTRODUCTION

Most of the software teams deal with non-functional

requirements (NFR) in an ad-hoc fashion. [1]-[3]. There is

also a few discussions about implementing security [1] in

Agile software development models such as Scrum [4],[5].

Some of the teams claim that they only trace the NFR if the

software is a safety or security-based system like an e-

banking system [5],[6]. The rest of the NFRs are just

formality checks usually performed at the end of the

development process [7],[8]. Tracing NFR in agile

approaches becomes worse because the clients or users often

ignore safety and performance but expect the system to be

developed fast. In this hassle, the mishandling of NFRs

brings fatal consequences to the software. Then, agile

software development is seldom equated with the NFR

measurement such as a secure development, due to lack of

formal processes, understanding and emphasis on security

instant issues [3]. Therefore, it is difficult to apply

traditional security controls such as risk analysis, formal

validation of internal and external security reviews while

practicing Agile software development process. All these

issues occur due to a number of reasons. For example,

traceability principles [9], are more clearly defined in

comprehensive time and heavyweight processes [10]

compared to agile principles that are more flexible, easy and

loose couple [5],[8],[11]. Both are two different principles.

For an example, one of the NFR (security) [12],[13]

verification and traceability is too redundant and

documented wise that go against with Agile method

disciplines and does not properly show the relation directly

with the structure of the system. Furthermore, Bartsch

(2011) states that neglecting communication and interaction

patterns in agile development such as tracing security will

lead to a loss of detection on security measures

(authentication and operational security). However, if

traceability could be well defined in terms of the procedures,

and can be simplified, flexible, agile and manageable

[13],[14],[16], then it can produce satisfactory results. By

looking at each one of these attributes we can develop

quality software by solving and tackling each of these

problems with traceability.

In conjunction with the issues discussed above, the rest of

the paper is organized as follows: Section II presents the

Traceability process model of Agile Software Development

for Tracing NFR change impact (TANC) and its mechanism,

the phases inside the TANC process model and the

integrated methods. Section II demonstrates the SAgile tool

support and Section IV presents the evaluation process by

using logical model and a case study that deployed TANC

process model Lastly, Section V presents the conclusion of

this study.

II. TANC PROCESS MODEL

Basically, the process model traceability has four main

phases and each phase has its activity flow and techniques.

Figure 1 depicts the decision on how to use the traceability

in order to help trace the NFR change impact in agile

software development. It starts with the strategic trace phase

that does the planning of creating trace artefacts. In this

phase, agile information management (AIM), quality agile

information management (QAIM), Change Management

Table (CMT) and test case (TC) are collected during the

requirement elicitation process. AIM contains all the

information such as user stories, backlog, iteration feature,

timestamp and link information while QAIM holds the data

on the NFR, NFR timestamps and the link information of

the NFR. CMT is explained in Subsection D.

Lastly, TC is prepared after the requirements elicitation

process and the NFR are well defined in the early stage of

development. These TCs will be used as a trace indication to

show any change impact that happens to the NFR if some

FR are changed during the iterations. Thus, it is important to

create both FR and NFR test cases. Then, during the create

trace phase, all the trace artefacts and trace links are defined

and stored in the traceability information management

(TIM). After the create trace phase, the traceability is used

again during iterations in the test phase to update the NFR

based on the test cases. If changes happen and the NFR also

need to be re-evaluated, then the next phase is use trace

phase. In this phase, the traceability information storage is

Journal of Telecommunication, Electronic and Computer Engineering

204 e-ISSN: 2289-8131 Vol. 9 No. 3-5

represented in the form of TVT and TT. TVT and TT

provide clear trace vision in order to see which user story

and NFR are affected during the requirement changes. After

some modification of the system during the next iteration,

the maintain trace phase will update the TIM.

The next sections present each phase in details. For

example, in the use trace phase, the information model uses

TT to show the current evolution of the user story

development. The strategic trace phase applies the quality

attribute workshop (QAW) technique in planning the

hierarchy and decomposition of NFR elements, as well as

visualization of backlog, user story and all types of changes.

Encapsulate in
 TIM

C
R

E
A

TE

TR
A

C
E

TVT

Changes
Happen

M
A

IN
TA

IN

TR
A

C
E

U

S
E

TR
A

C
E

S
TR

A
TE

G
IC

TR
A

C
E

Strategic Planning
QAIM Info

AIM

TC

TIM

TT

Updating TT and TVT

Strategic
Planning
AIM info

Use TVT

Represent TIM in
TVT

QAIM

CMT

Strategic Prepare
CMT Info

Strategic Planning
AIM info

Use TT

Represent TIM in
TVT

Maintaining
TIM

TIM(Updating)

TVT(update)

TT(update)

No changes happen

Iteration
are not
finished

Iteration
are

finished

Trace Process End

Figure 1: TANC process model

A. Strategic Trace Phase

The strategic trace phase is important for strategically

planning and structuring the maintenance process, changing

the impact information, changing the propagation and

evolution of trace artefacts. One of the trace artefacts that

are used in this phase is QAIM. Basically QAIM is derived

from QAW (Quality Attributes Workshop) attributes. From

the derivation of QAW attributes, this stage plans the links

of related NFR into coarse-grained requirements.

The strategic trace phase presents how the trace

links/relationships are drawn across the user stories to the

NFR. This phase is highly important as it will determine the

update of change impact during the development and testing

phase. Figure 2 shows the activity diagram of strategic trace

phase.

Figure 2: Strategic trace phase activity diagram

B. Create Trace Phase

The create trace phase comes after the strategic trace

phase. In this phase, the development team or the modeling

team will create the trace artifact that will be used to trace in

the software development. Therefore, this phase must be

done before the iteration starts in order to determine the set

of requirements (set of sprints in scrum and set of features in

FDD). Figure 3 shows the process flow in the create trace

phase which creates the trace links based on the four

components of trace artefacts that have been initialized and

analysed during strategic trace phase, AIM, QAIM, CMT

and TC. All these trace artefacts are the information form in

TIM.

Figure 3: Create trace phase activity diagram

C. Maintain Trace Phase

The maintain trace phase helps to solve the propagation

Legend:
AIM: Agile Information Management, QAIM: Quality Attributes Information Management, TIM: Traceability Information

Management, TT: Trace TimeLine, TVT: Trace Version Table, CMT: Change Management Type, TC: Test Case

Non-Functional Requirement Traceability Process Model for Agile Software Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 205

issue in updating changes in requirements. This phase is

crucial for preparing the trace artefacts that will be used

during or after requirement changes phases. This phase

accuracy should be determined by the representation trace in

the create trace phase, but the method in this phase

determines the consistency of the whole traceability.

Therefore, this phase is quite important. This phase is

divided into two process flows, which are maintaining trace

n (normal requirement and NFR trace) and maintaining trace

n.1 (updating the change of requirement). The maintaining

trace phase is for normal updates of the test cases, NFR

status and the user story. This trace has a tendency towards

backward traceability techniques. In addition, maintaining

trace for requirement change also has the tendency towards

bi-directional traceability techniques, where the user story

and affected user stories have to be changed first, followed

by the NFR(if the change impact is reflected on the NFR)

and lastly on the test cases. Next, the horizontal tracing

technique applies tracing between related NFR. After

updating each trace (propagate), the final result will be

depicted in the traceability information storage. Figure 4

illustrates the steps in the maintain trace phase.

Figure 4: Maintain trace phase activity diagram

D. Use Trace Phase

The use trace phase is a conditional phase where this

phase is only considered when there is a change in the

requirements. The source of this phase is from the

traceability information storage (TIM). The development

team will recheck each relationship between user story and

NFR, and NFR and NFR which being updated during the

maintain trace phase. This phase will help the developer in

making the decision to trace which user story and NFR if

there are some changes made during the development

process. It also helps the developer to check the progress of

the development. The calculation of development progress

will be done in future work. Lastly, it will help the

developer to decide whether or not the iteration has been

completed. This phase is recommended to use automated

system that could generate the traceability graphs, matrixes

and timelines. Figure 5 illustrates the activity diagram of use

trace phase.

Figure 5: Use Trace Phase Activity Diagram

In TANC, we introduce a new representation form that is

TVT to show the link between the FR and NFR for the

many-to-many relationship (Table 1). They are represented

by the versioning number in TVT (Table 1). After that, the

trace artefacts in the traceability information storage is

visualised using TVT. The orange highlighted box in Table

1 shows that the user stories that belong to backlog 1 (US

1.1) are linked to the access control (US 1.1.S.1) that

belongs to security NFR. The versioning numbers show the

link or relation between each component of the requirement

and also show the layer of the requirement level (backlog,

user story, iteration). The versioning label also shows the

relationship among the NFR, as shown in the green

highlighted box. (S.3.P.3) shows the relationship between

security and performance.

Table 1

Trace versioning table

Iteration Backlog Panel User Stories Panel FR→NFR (Test Cases) QAW

1 BG1 US1.1

US1.1.S.1
access control

(S.1) Resistance
Security

US1.1.S.2 Encryption (S.2)

US1.1.P.2

2 US1.2

US1.2.S.1 Offline (P.1)
Scheduling

Performance US1.2.P.1 Online (P.2)

US1.2.P.2
3 BG2 US2.1 … S.3.P.3 Security + Performance

Some researchers [16] identified types of changes of FR

and how to deal with this issue by introducing event-based

traceability and using the technique of subscriber and

publisher. However, she overlooked the change impact of

NFR for each change that has been applied on FR, thus she

created goal-centric traceability (GCT). Nevertheless, this

technique has its own weaknesses. It is unable to solve the

scalability issue and cross-cutting issue that cause

traceability redundancy. This technique also cannot be

applied to the agile process because this technique is

architecture-centric. Table 2 presents the types of changes

that could impact NFR.

The symbols show the types of trace impact relationship

in the traceability timeline. It can help the developer to

determine which other potential NFR may change. It can

also help in resolving the issue of redundancy of tracing

Journal of Telecommunication, Electronic and Computer Engineering

206 e-ISSN: 2289-8131 Vol. 9 No. 3-5

change impact on NFR. For example, the orange highlighted

box in the table shows the possible changes if a user story

has been modified. One of the impacts is on the security

related to that modified user story, represented by the

symbol “≥”. There are also impacts on other NFR that affect

the same or different NFR. For example, security to security

uses the ↔ symbol and security to performance uses the

S↔P symbol. These symbols are also used in the

traceability NFR timeline.

Table 2
Change management table

Type of changes in FR (JaneClehuang, 2002) Change impact to NFR (performance & security) Symbol

Create New Addition of new NFRs →
Delete (--) Deletion of NFRs

Modified (-) →Security

→Performance
Security↔Security

Performance↔Performance

Security↔Performance
Performance↔ Security

≥

↔

S↔P
P↔S

Merge (++) Security + Security=newSecurity

Performance + Performance=newPerformance
Performance1= Performance2

Security1=Security2

Addition of New NFR
Deletion of NFR

++

Decompose(+-) Addition of New NFR

Performance1= Performance2
Security1=Security2

Deletion of NFR

Security=newSecurity + newSecurity
Performance= newPerformance+ newperformance

+-

The most suitable type of traceability representation form

for evolving tracing is timeline format. The timeline is the

best and simplified version of how to show the evolution of

changing requirements. Therefore this study decide to use

this representation form as one of trace artefacts

representation, which called as traceability NFR timeline

(TT). It could shows the update of changing requirements

and the results of tracing the relationship of the user story to

the NFR and the NFR to NFR. The timeline is depicted in

Figure 6.

Figure 6: Traceability NFR timeline

The timeline shows the changes of each user story and

NFR that already existed in each iteration. The timeline also

shows the relationship between the user stories with other

user stories and user stories with NFR. This relationship will

be updated during the maintain trace phase while finishing

each iteration. This relationship is very important to help the

developer checking if any requirement changes. The

function of each symbol is presented in Table 2. If changes

happens, this relationship will help developers to know

which user stories and NFR will be affected.

III. SAGILE TOOL SUPPORT

One of the objectives of this research is to develop a tool

that can support the process of improved SFDD process.

Figure 7 shows the main page of the SAgile tool.

Figure 7: Login Page

This tool has four main types of users based on the roles

listed in FDD, namely project manager, chief manager,

tester, and lastly the new role, master security. When each of

these users logs in, they will see the project list. The project

list records the systems that they plan to develop. Figure 8

portrays the features list in a project that has been added by

the project manager or feature team based on client

requirements. If the user clicks on a feature, the system will

provide the details of the feature as depicted in Figure 9.

Figure 9 shows the details of ‘check out’ feature such as

the estimated date, start date, and finish date. Each features

is assigned to certain chief programmer and tester by the

project manager. One of the speciality of using Sagile tools

is it can assign specific security feature to the functional

feature by the security master role. Based on Figure 10,

‘Make Booking’ feature is highlighted in red.

Non-Functional Requirement Traceability Process Model for Agile Software Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 207

This shows that this feature has embedded security feature

as depicted in Figure 10. Based on this figure, ‘Make

Booking’ feature is linked with SQL injection and XSS

features as those security features’ checkboxes are checked.

After this, a statistical analysis is conducted on the logical

model for both SFDD and SScrum models. This analysis is

conducted to evaluate the relevance of these logical models

towards this research.

Figure 8: SAgile features list

Figure 9: Example of a feature’s details

Figure 10: Interface of Make Booking feature

IV. CASE STUDY

This section presents the preliminary evaluation of the

TANC process model in the case study. The discussion

includes the design of a logical model in synchronizing

TANC with security improved Scrum(S-Scrum) and FDD

(SFDD). This logical model is the instruction of using

TANC in both process model of SFDD and S-Scrum. Then,

a case study applying the logical model have been

conducted. For the case study, we use the SFDD logical

model in order to show how the TANC process model will

be used in the actual enhanced FDD process (SFDD).

A. Agile Trace Logical Model

This section presents a description of each trace phase that

can be synchronized with the agile process models in the

logical model manner. However, in this logical model, we

do not try to synchronize with a normal agile process model

but with an enhanced security agile process model, namely,

the SScrum [17] on Figure 11 and SFDD [18] on Figure 12.

The strategic trace phase will be done during the product

backlog collection phase, and the create trace phase will be

done in the sprint backlog planning meeting phase. As the

sprint iterates, the maintain trace phase will iterate as well

and the use trace phase is used during the daily meeting

process. Figure 12 shows the synchronization of the

traceability phase with SFDD.

This shows that these features

are linked to the ticked check

boxes for which Security

features

Journal of Telecommunication, Electronic and Computer Engineering

208 e-ISSN: 2289-8131 Vol. 9 No. 3-5

Figure 11: SScrum logical model

Figure 12: SFDD logical model

Based on Figure 12, it shows that the strategic trace phase

will be done in the development of an overall model phase

and the create trace phase will be done during the build a

feature list phase and the plan by feature phase. As it iterates

between the design by feature and the build by feature, the

maintain trace and the use trace phases will iterate as well.

B. Hotel management system case study experiments

using TANC

The hotel management system has 26 features and some

of the features were filled in with the SAgile tool as in

Figure 13. These features were filled in, in the form of user

stories. Therefore, all the information about each feature

management linked together in a page. This case study is

explained based on the order of SFDD and TANC phases.

C. Strategic trace and create trace phases in developing

an overall model

The starting phase in SFDD is called as the Develop an

Overall Model phase. During this phase, the TANC strategic

trace phase starts concurrently. This phase will start

collecting all the related system features such as AIM,

QAIM CMT and TC. All these feature trace links and

connection will be planned out during this phase.

Figure 13: Features listing in Hotel Management System Project

Based on Figure 13, it shows the feature listing of AIM

and QAIM. The red fonts features are the indication of links

between the AIM and QAIM and the blue fonts features are

not linked to any QAIM features. This action are done

during this two phases.

D. Build and design feature phase

Then we move to the next phase in FDD that is the build

and design feature phase. In this phase, each feature is filled

in with more detailed information including the duration, the

team member and the tester.

E. Create trace phases in the build security by feature

phase

As FR or AIM features are already considered, next we

need to fill in the quality attributes information management

artefact. As only security and performance are within the

scope of this research, the QAIM section is shown in Figure

14 listing all the security features and in Figure 15 listing all

the performance features. Based on the new enhancement of

the FDD model, this phase is specifically handled by the

 act Business Workflows

dev elop an ov eral model

Build and design Feature

Build security by Feature

Plan By Feature

Build By feature

Test Security by Feature

New Features

/changes added

Strategic Trace

Create FR

Create NFR

Create Test and

association

Maintain test case

Use Trace

Non-Functional Requirement Traceability Process Model for Agile Software Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 209

Security Master that keeps track of the quality of the system

especially the security features.

Figure 14: List of security features

After building the QAIM, the next step is to link each

feature directly to each AIM feature as shown in Figure 16

using the SAgile tool. The red highlighted box shows that

the security and performance details for the assigned feature

while the two green highlighted boxes show security and

performance features were chosen to link with the feature.

The security and performance details are very important for

the developers to code appropriately based on the

requirements and the tester to test exactly based on the

requirements. Consider it as extra notes for the developer

and the testers. This tool’s features are mapped from the

techniques of TVT whereby it lists out the granularity from

each AIM and QAIM and then map the links from the

lowest level of granularity.

Figure 17 shows the view from the QAIM side. It shows

which AIM features are attached for each quality feature and

the status of the development of the parts of the system. This

shows that the TANC approach applies bi-directional

traceability techniques.

Figure 15: List of performance features

Figure 16: AIM and QAIM features links

The overall detail

on Security and

performance

information for this

feature.

The specific

security feature that

link to this feature

The specific performance

feature that link to this feature

Journal of Telecommunication, Electronic and Computer Engineering

210 e-ISSN: 2289-8131 Vol. 9 No. 3-5

Figure 17: QAIM status based on project traceability table

F. Maintain trace and use trace phases in plan by

feature phase

As shown in Figure 18 depicts the iterations listing that

have been set during plan phase and Figure 19 shows the set

of user stories that linked under one of the iterations. This is

the phase where all the features are placed in each iterations.

In Figure 19, the green highlighted box shows that the

feature is in green font. This means that the feature has been

assigned to both security and performance features. This

phase is closely associated with the maintain trace and use

trace phases. As the iteration starts to incrementally iterate,

the maintain trace phase also runs simultaneously; however,

in this case, the SAgile tools helps to automate the process

of this trace phase.

Figure 18: Iteration feature listing

Figure 19: Features listing by iteration

Then, the use trace phase is used when the features need

to be re-evaluated based on the changes needed and the

changes have happened during the development. In the plan

by feature phase, the use trace phase is used in order to plan

the arrangement of each phase if needed. For example, a

feature is done from the previous iteration but suddenly that

feature needs to be improved. Therefore, it needs to be

arranged in the next iteration. In order to track which

features and iterations have been changed, the use trace

phase is used. During this phase, the traceability information

model that has been mapped in TVT and TT is formed,

allowing us to track and document any change impact of the

feature especially toward quality features.

G. Build by feature phase

In this phase, all the documentation is coded to build the

features of the overall system. Even though this phase does

not relate directly to any traceability phase, this phase is like

a middle process in order to make the traceability as light as

possible. This is due to the reduction of the trace artifacts.

H. Use trace phase in the test security by feature phase

During this phase, every feature that has been built will

undergo testing. The current agile process usually only starts

testing the AIM features and the QAIM features. These

features are only tested when the whole system is

completed. However, in the enhancement model, quality

assessment testing must also considered especially in every

iteration. The results from this testing are the input in the

TIM as shown in Figure 20, during the use trace phase. In

this way, the TANC approach can track the change impact

toward any changes and the changes propagated from the

features toward the quality features of the system.

When the development team has some changes or

additions to the current system, they use the TVT or TT in

order to check the status of the system. CMT helps to

symbolize any type of changes that happen between the

AIM features and QAIM features. This will help the

development team to easily track what type of changes and

which parts of the system are affected after applying some

changes.

Figure 20: Feature’s test result

Since agile practices involves less decoupling between

features, it is easier to act on them as individual units and

because of this if any changes happen, it most probably does

not affect the other features. After a few iterations, if

Feature has been assigned to

both security and performance

features

Non-Functional Requirement Traceability Process Model for Agile Software Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 211

changes happen the developer can spot which specific

features are changed because by using TVT, it has

decomposed NFR as individual units that are directly related

one-on-one with FR plus with other related NFR. This

reduces the effort involved in the trace because it will be

easy to find which parts of the system are affected. Since the

system is built increment iteratively order, when changes

happen during the development it could easily modify the

design of the system. However, a method of presentation

that can easily show the evolution of the system

development is needed. Therefore, in this study, we

represent it in timeline format. The timeline presentation

format is able to show the evolution of the development

based on which iteration it is on, so that we can know which

part needs to be traced.

V. CONCLUSION

This research paper has reviewed the current issues terms

of NFR traceability and agile methodology and to solve the

issues that have been highlighted. In conjunction with the

issues discussed above, this paper presents a new

traceability process model, TANC, that is consists of the

traceability process and improved techniques from the

matrix table approach that is widely used in the traceability

process. In this paper, we present how this new traceability

process could be adapted with one of most commonly used

agile methodologies, FDD. It is worth mentioning that this

model have been improved with NFR management, with a

special emphasize on security. Based on the case study

shown in Section IV, TANC process model is proved to

assist FDD in tracking the change impact of NFR by using

SAgile tool support. Therefore, it is called as SFDD process

model.

ACKNOWLEDGMENT

We are thankful to Universiti Teknologi Malaysia (UTM)

and Ministry of Science, Technology and Innovation

(MOSTI), Malaysia for funding this project under Vot No:

4S113.

REFERENCES

[1] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements

engineering practices and challenges: an empirical study,”

Information Systems Journal, vol. 20, no. 5, pp. 449-480, 2010.
[2] R. B. Svensson, M. Host, and B. Regnell, “Managing quality

requirements: A systematic review,” in 36th EUROMICRO

Conference on Software Engineering and Advanced Applications

(SEAA), 2010, pp. 261-268.
[3] J. Walden, C.E. Frank, and R. Shumba, “Teaching software security

with threat modeling,” Journal of Computing Sciences in

Colleges, vol. 22, no. 1, pp. 119-120, 2006.
[4] J. Walden, C. E. Frank, and R. Shumba, “Teaching software security

with threat modeling,” Journal of Computing Sciences in Colleges,

vol. 22, no. 1, pp. 119-120, 2006.
[5] M. Serrano, and J.C.S. do Prado Leite, “Capturing transparency-

related requirements patterns through argumentation,” in

Requirements Patterns (RePa), First International Workshop, 2011,
pp. 32-41.

[6] D. Gregorio, “How the Business Analyst supports and encourages

collaboration on agile projects”, in 2012 IEEE International Systems
Conference SysCon 2012, 2012, pp. 1-4.

[7] E. Hadar, and G. M. Silberman, “Agile architecture methodology :

long term strategy interleaved with short term tactics,” in OOPSLA
Companion '08 Companion to the 23rd ACM SIGPLAN Conference

on Object-oriented Programming Systems Languages and

Applications, 2008, pp. 641-651.

[8] K. Mohan, P. Xu, L. Cao, and B. Ramesh, “Improving change

management in software development : Integrating traceability and

software configuration management,” Decision Support Systems, vol.
45, no. 4, pp. 922-936, 2008.

[9] J. Cleland-Huang, O. Gotel, and A. Zisman, Software and Systems

Traceability. London: Springer, 2012.
[10] M. Mirakhorli, and J. Cleland-huang, “Tracing Non-Functional

Requirements,” in Software and Systems Traceability, J. Cleland-
Huang, O. Gotel, and A. Zisman, Eds. Berlin, Heidelberg: Springer,

2012, pp. 299-320.

[11] J.S Persson, L. Mathiassen, and I. Aaen, “Agile distributed software
development: enacting control through media and context,”

Information Systems Journal, vol. 22, no. 6, pp. 411-433, 2012.

[12] S. Bartsch, “Practitioners' perspectives on security in agile
development,” in 6th International Conference on Availability,

Reliability and Security (ARES), 2011, pp. 479-484.

[13] M. Cardinal, Addressing Non-Functional Requirements with Agile
Practices Who Am I ?. Agile Specification, Addison-Wesley, Spring

2012.

[14] J. Cleland-Huang, M. Rahimi, and P. Mäder, “Achieving lightweight
trustworthy traceability,” in Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering,

2014, pp. 849-852.
[15] M. Qasaimeh, and A. Abran, “An audit model for ISO 9001

traceability requirements in agile-XP environments,” Journal of

Software, vol. 8, no. 7, pp. 1556-1567, 2013.
[16] J. Cleland-Huang, and D. Schmelzer, “Dynamically tracing non-

functional requirements through design pattern invariants,” in

Workshop on Traceability in Emerging Forms of Software
Engineering, in conjunction with IEEE International Conference on

Automated Software Engineering, vol. 10, 2003, pp. 1.

[17] Z. Azham, I. Ghani, and N. Ithnin, “Security backlog in Scrum
security practices,” in 5th Malaysian Conference in SoftWare

Engineering, 2011, pp. 414-417.

[18] A. Firdaus, I. Ghani, and S.R. Jeong, “Secure feature driven
development (SFDD) model for secure software development,”

Procedia-Social and Behavioral Sciences, vol. 129, pp. 546-553,

2014.

